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Abstract: There are several index insurance methodologies. Most of them rely on linear piece-wise
methods. Recently, there has been studies promoting the potential of data-driven methodologies in
construction index insurance models due to their ability to capture intricate non-linear structures.
However, these types of frameworks have mainly been implemented in high-income countries due
to the large amounts of data and high-frequency requirements. This paper adapts a data-driven
methodology based on high-frequency satellite-based climate indices to explain flood risk and
agricultural losses in the Antioquia area (Colombia). We used flood records as a proxy of crop
losses, while satellite data comprises run-off, soil moisture, and precipitation variables. We analyse
the period between 3 June 2000 and 31 December 2021. We used a logistic regression model as a
reference point to assess the performance of a deep neural network. The results show that a neural
network performs better than traditional logistic regression models for the available loss event data
on the selected performance metrics. Additionally, we obtained a utility measure to derive the costs
associated for both parts involved including the policyholder and the insurance provider. When
using neural networks, costs associated with the policyholder are lower for the majority of the range
of cut-off values. This approach contributes to the future construction of weather insurance indexes
for the region where a decrease in the base risk would be expected, thus, resulting in a reduction in
insurance costs.

Keywords: index insurance; crop insurance; machine learning; neural networks; satellite data; google
earth engine

1. Introduction

Climate change has resulted in acute difficulties for low-income economies. Extreme
weather events, such as droughts or heat waves, can cause crop failures and threaten the
livelihoods of farmers and the food security of communities [1]. Mainly, these concerns
can be severe due to underdeveloped financial services, where communities have access to
limited financial services or even none at all [2]. Crop insurance is a tool that mitigates risk
in farmers’ investments and is a growing market that reached USD36.6 billion globally in
2021 [3]. Globally, traditional insurance is one of the most widely used forms of protection
for farmers, and traditional insurance calculates the indemnity by assessing losses after
the occurrence of a weather event. However, it has two main problems: adverse selection
and moral hazard [4]. Adverse selection occurs when there is a lack of symmetry in the
information prior to establishing a deal between a buyer and a seller. A moral hazard
occurs when there are fraudulent behavioural changes that might occur which could likely
increase the risk of loss when a person knows that insurance will provide coverage.
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An approach to mitigating risk is the use of index insurance which estimates the in-
demnity with an independent indicator of crop loss, such as a weather index [5]. In addition
to reducing expenses, index insurance allows researchers to predict an individual farmer’s
losses at different costs and different levels of accuracy [2]. The primary distinction between
these different kinds of insurance is that the payoffs for the index insurance are determined
by measuring weather variables [6].

Moreover, these types of insurance programs can also be beneficial for rural areas
with social conflicts [7,8], as in the case of crop-productive regions in Colombia. Recent
studies reveal that index insurance uptake reduces conflict risks caused by rangeland
conditions by 17 to 50% and helps reduce poverty traps [9]. Therefore, social protection
programs primarily represented by index insurance programs act as a protective factor
in regions with complex risk profiles, where farmers are exposed to weather and conflict
risks that may interact. This information is needed by governments to promote this type of
insurance adoption.

When designing and implementing index insurance, it should also be recognized that
it is vulnerable to high-basis risk due to imperfect relationships between the weather index
and the risk it covers. Basis risk represents the difference between the payout or indemnity,
as estimated by the weather index, and the policyholder’s actual losses [5]. This basis risk
can take three forms: design, temporal, and spatial. Design basis risk occurs when the
selected index does not correctly explain the target crop [5]. Temporal basis risk arises
as a result of inappropriate period selection used to derive the index, while spatial risk
arises from the spatial distance between the location where climate index data are collected
and the location where losses occur [5]. Larger amounts of basis risk lead to high levels of
remaining uninsured risk. Consequently, the index insurance contract is not cost-effective
for farmers [10].

In Colombia, agriculture is one of the most important socio-economic sectors, ac-
counting for 7.43% of the gross domestic product (GDP) in 2021 [11]. Agricultural land
constitutes 35% of the national territory or 39 million hectares of land [12]. According to the
National Administrative Department of Statistics (DANE by its Spanish acronym), 48.2% of
the total agricultural production is concentrated in the departments of Antioquia, Valle del
Cauca, Tolima, Cundinamarca, Meta, and Nariño, where agro-industrial products such as
tubers, bananas, and cereals are grown [13]. Despite the sector’s importance, agricultural
insurance in Colombia has a low penetration rate. As of 2014, only about 2.4% of the sown
crop area of about 7.1 million hectares was insured [2]. Therefore, farmers are exposed to
different types of risks and have to manage them.

There are few worldwide ongoing index insurance programs that use artificial intelli-
gence and machine learning frameworks to derive insurance programs [5]. One example
is the Pradhan Mantri Fasal Bima Yojana (PMFBY) program offered by the company
Cropin [14]. As one of the big challenges in index insurance design is the availability
of data, this company started in 2018 piloting small subplots within cultivated fields in
five different states in India through the PMFBY program. The program relied on remote
sensing with ground sensors and satellite images to measure yield performance among
other crop development variables. One of the main goals of the program was to improve
crop-cutting experiments (CCEs). Usually, CCEs are followed by inconsistent processes
which can be translated into delayed and complicated yield data acquisition and forecasting
processes [15,16]. Through artificial intelligence and machine learning techniques, the pro-
gram provides reliable, cost-effective estimates of crop yields, which usually represents
essential information in the conformation of index insurance programs. This program has
benefited more than 250,000 villages across India.

In the case of Colombia, there is a lack of sufficient availability of crop yield data
and other variables that measure soil and crop quality for index insurance research pur-
poses. As crop production relies on high-dimensional weather conditions, the selection
of weather variables for constructing the index insurance contract is crucial for the suc-
cessful implementation of the hedging instrument. Moreover, crop development relies
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on weather conditions in a non-linear way [17–19]. Therefore, we propose an adaptation
to an index insurance model in which we used a proxy variable for crop yield loss and
satellite weather variables. This adaptation could be incorporated in further designs of
index insurance contracts. We use neural networks to show that data-driven methodologies
usually demonstrate superior performances to capture non-linear relationships in weather
index insurance data. These models demonstrate their capability to capture the intricate
relations between the weather variables and the loss, with the goal of lowering basis risk
and costs and, therefore, increasing future willingness of farmers to acquire insurance.

According to Komarek et al. [20], risk can be classified into five types: production,
market, institutional, personal, and financial. Production risk stems from the uncertainty
associated with the natural growth process of crops, which is related to climatic events and
pests [20]. Of the literature associated with weather insurance published from 1974 to 2019,
66% focuses on this type of risk [20].

Several methods have been employed in the literature to estimate the dependence
between production and the index used. These methods seek to study the extent to which
the variation in performance can be explained using the weather index. Rainfall and
temperature are two of the most important factors that contribute to explaining variations
in production [21]. Among these, the most widely used have been ordinary least squares
regression and correlation [5]. Despite their frequent use, they have several drawbacks
as they assume a constant relationship between all weather event scenarios and make
assumptions that do not fit yield behaviour [5]. To overcome these drawbacks, QR, GAM,
and copulas approaches have been explored for index insurance, which has been shown to
be superior to OLS regression [5].

One approach to address the non-linear relationship between crop loss and the weather
index is the implementation of machine learning models, which have great flexibility and
can be adapted to complex information. Chen et al. [22], proposed a neural network-based
design of an index insurance contract for production losses which helps to reduce basis risk
and a utility function to derive the cost-effectiveness of index insurance. They found that
the neural network-based solution had the optimal functional form of the insurance pay-
outs, compared to other contracts such as linear, quadratic, and cubic piece-wise contracts;
therefore, reducing basis risk. They used extensive datasets of annual corn production
from Illinois from 1925 to 2018. The implementation of decision trees has proved useful in
identifying important weather indices from satellite data [23] and for capturing non-linear
relationships between different crop classes and low levels of precipitation, and evapo-
transpiration [5]. Additionally, Cesarini et al. [24] compare the performance of neural
networks and support vector machines for identifying floods and droughts from satellite
data, demonstrating the superiority of both methods over a logistic regression model [24].
There are other types of studies involving machine learning algorithms in weather index
insurance. These are applied to crop yield predictions. Among them are You et al. [25] and
Newlands et al. [26], who used neural networks to predict agricultural yields.

Although Colombia has low rates of penetration of weather index insurance, suc-
cessful cases show that there is a potential for this type of insurance to be extended to
more productive regions [2]. In this article, we aim to implement a machine learning
framework to identify the best model for capturing the intricate relationships between
weather variables and a proxy for crop losses. This represents an alternative method to
traditional linear modelling that is used to derive insurance contracts. This methodology is
applied in the Department of Antioquia, the largest agricultural producer in Colombia [13].
We used Python and Keras to implement artificial neural networks (ANNs). Keras is a
high-performance application programming interface (API) from the TensorFlow library.
This paper contributes to the state of the art as the application of machine learning methods
has been limited in most low-income countries. This limitation has been shown even
though machine learning methods have demonstrated their potential as non-linear and
flexible methods for estimating performance–index relationships [24]. Furthermore, we
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believe that the research in index insurance programs should be promoted in low-income
economies, especially in countries with social conflicts, as is the case of Colombia.

2. Objectives

Given that the application of data-driven methodologies for weather index insurance
products, including machine learning frameworks in low-income countries, represents
an important field of research in agricultural development [5], we have the following
three goals.

First, a unique database from satellite images and flood records (the proxy for crop
yield loss) from the department of Antioquia will be built.

Second, we want to compare a linear and interpretable model with a highly non-linear
black-box model. Therefore, we will establish whether a machine learning model, such
as the one recently used in the literature to model weather indices and loss [24], can be
employed in a productive region in Colombia to establish if there is a relationship between
weather indices and the observable losses due to floods. We used a logistic regression
model as a reference point to evaluate the performance of a more complex model, ANN.
The results from these machine learning models could serve to elucidate if the weather
indices can better explain the losses in a particular agricultural region where sufficient crop
yield data is not available.

Finally, using both the artificial neural network (ANN) and logistic regression models,
we hope to assess the related costs for a hypothetical policyholder and an insurance
provider. This could be used to derive fairer insurance policies before their implementation.

The main contributions are two-fold. First, we propose a novel way to implement
an index insurance methodology by adapting a proxy variable to asses the crop losses in
a country where no sufficient crop production data is available. Second, in addition to
performance metrics, a utility measure is used to evaluate the performance of the ANN in
relation to the base model, which is logistic regression.

Results obtained in this stage may be useful for the design of reliable indices for
index insurance instruments with lower basis risk levels in low-income countries where
agricultural and catastrophic data records are difficult to obtain. In this study, we use flood
data records as a proxy of agricultural losses and satellite images for weather indices. We
believe that the use of non-linear data-driven methodologies promotes the construction of
fairer weather index insurance models in low-income countries.

3. Theoretical Framework
3.1. Machine Learning Algorithms

Machine learning is the science of programming computers to learn from data [27].
Machine learning models are classified into supervised and unsupervised. Supervised
models are built on the expected response during training, so they learn by comparing the
estimated output with the expected output. On the other hand, unsupervised models do
not have an output variable during training, so their purposes include looking for patterns
in the data or summarising the data into fewer dimensions.

Machine learning models are useful in complex contexts where traditional approaches
cannot provide robust solutions. These models can also be implemented in fast-changing
environments, as the models can be easily retrained and kept up to date [27]. The applica-
tion of machine learning has increased in problems such as image recognition, language
processing, speech recognition, and medical applications. This study uses neural networks,
which are ideal for tackling complex problems due to their versatility and potential.

3.2. Artificial Neural Networks

Artificial neural networks (ANN) are the building blocks for deep learning approaches.
Over the last decade, the area of machine learning and artificial intelligence (AI) has
advanced greatly [28]. The term neural networks comes from the way algorithms tend to
mimic how the human brain thinks. The way a neural network with one single layer works



Appl. Sci. 2023, 13, 4785 5 of 21

is based on the thousands of linear combinations which are fed from input variables. This
information is later transformed by a non-linear activation function to obtain the output
of the model. The final model is linear with respect to the transformed variables. One
example of an ANN with one single layer is depicted below in Figure 1.

Figure 1. Artificial neural network of one single layer. Source: authors.

The output of an ANN with one single layer is [28]:

f (X) = β0 +
K

∑
k=1

βk Ak (1)

where Ak are the activations of each unit of the hidden layer:

Ak = hk(X) = g

(
wk0 +

p

∑
j=1

wkjXj

)
(2)

The function g is the activation function that must be defined previously. One of
the most common activation functions is the ReLU function. The non-linearity of the
activation function is essential to capture the non-linear effects and interactions among
the network [28]. It is required to define a loss function to adjust the model. Therefore,
a gradient descent algorithm is applied to adjust the weights on each of the layers of
the network.

In this study, we used Python’s library Keras to implement the ANN. Keras is a high-
performance API from the TensorFlow library. Keras allows us to build and train the ANN.
It additionally has the ability to optimize GPU computational loads.

3.3. Performance Metrics

ANNs for classification tasks usually generate two types of predictions. One is a
continuous prediction, usually in the form of a probability output. Another is a discrete pre-
diction, which generates a class. In practical applications, categorical predictions are usual
as they ease decision-making. However, probability outputs for continuous predictions
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are useful when assessing the model’s performance and reliability according to a known
class [29].

One common method to assess the performance of a classification model is through
a confusion matrix. This method relies on a table which is a summary of the number of
correct and incorrect predictions made by a classifier. The diagonal elements show the
observations for which the class is predicted correctly, whereas the rest of the elements
show the two types of errors that are present in classification problems; particularly false
negatives and false positives (Figure 2).

Figure 2. Confusion matrix [29].

Despite the use of a confusion matrix to assess a model’s performance in a classification
ANN, when there are thousands of configurations, it is necessary to use a univariate metric
to assess the performance of the ANN model. If one of the classes is considered as one
of interest, it is possible to use metrics such as precision, sensibility, and specificity to
summarize part of the information in the confusion matrix [28].

Sensibility =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

Precision =
TP

TP + FP
(5)

There are other metrics to assess other components of the matrix such as the accuracy
and F1 score. The accuracy metric measures the relationship between the observed and
predicted classes, and it is easy to interpret. However, there are some disadvantages in its
use. For example, it is incapable of distinguishing between the type of errors (false positive
or false negative), and it can be unreliable when there are unbalanced classes [29].

Accuracy =
TP + FP

TN + FN + TP + FP
(6)

On the other hand, the F1 score measures the harmonic media between precision and
sensibility [24].

F1 score = 2 · Precision · Sensibility
Precision + Sensibility

(7)

Another way to measure the model’s performance is through probability prediction
which can potentially provide more information than the simple value of the class [29].

The curve “receiving operator characteristic” or ROC, is a chart that uses the rate of
true positives (sensibility) against the rate of false positives (1-specificity) for the range of
probabilities. A perfect model would have a specificity and sensibility of 100% for all the
probability ranges, and the area under the curve (AUC) ROC would be 1. On the other
hand, there is the PS curve, which is obtained by plotting precision against sensibility.
In this case, the AUC could be used to measure the model’s performance [28].

3.4. Index Insurance

Traditional insurance tools assess the risk to the insured. One of the main risk factors
in agriculture is the weather, which is a correlated risk. This means that when an event
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occurs, many policyholders are affected simultaneously [30]. This situation can involve
high costs and is a critical factor for the financial viability of these insurances as a single
event could result in losses that exceed the available capital if careful planning is not carried
out [4].

Unlike traditional loss-based insurance, index insurance pays out to the holder ac-
cording to a predefined index which is highly correlated with a loss variable [4]. These
indices are based on specific measures, such as precipitation or temperature, which can
show a clear correlation with a response variable such as crop production, yield production,
or a proxy of both. One of the advantages of index insurance is that it exhibits lower costs
compared to traditional loss insurance. For example, lower transaction costs which makes
it potentially more affordable in low-income economies [4].

4. Methodology

Index insurance indemnifies the policyholder based on the observable value of the
predefined index which is highly correlated with losses. There are values or thresholds
which define the trigger signal of indemnities. In the context of machine learning, this
corresponds to a classification problem, allowing researchers to predict the occurrence of a
loss event. In this study, we use historic flood data as a proxy of losses. Particularly, we
use two data-driven methodologies to model the relationship between the loss occurrences
with weather indices. The purpose of these models is to determine the occurrence of flood
events based solely on the selected weather indices values. The time period used to train
the models extends from 3 June 2000 to 31 December 2021. The starting date was selected
due to the historical availability of the GPM time series (Table 1), while the end date was
selected due to the lack of availability of data in the flood record database.

Results obtained by Figueiredo et al. [31] showed that logistic regression models
provide good results when explaining loss events through weather indices. However, given
that this is a linear model, its predictive capacity is significantly limited when compared
to more flexible models. Thus, logistic regression was used as a base model to provide a
reference point when assessing the performance of a more complex model, namely ANN.
Given that the goal is to compare a linear and interpretable base model with a highly
non-linear black-box model, other possible non-linear models, such as decision trees and
support vector machines, are not considered.

Table 1. Characteristics of the selected (quasi-)global precipitation databases.

Database Type Resolution Frequency Coverage Time Lapse Latency Reference

CHIRPS Satellite 0.05° 1 d 50° S–50° N January 1981–Present 3 weeks [32]
estimation

PERSIANN-CDR Satellite 0.25° 1 d 60° S–60° N January 1983–Present 48 h [33]
[34]

GPM Satellite 0.10° 30 min 60° S–60° N June 2000–Present 12 h [35]

The particular aim of applying highly non-linear models is to lower the basis risk in
future designs of index insurance instruments.

Consider the occurrence of floods caused by weather events for each time unit
t = 1, . . . , T for a region G, where Lt is a binary variable such as:

Lt =

{
1 i f a f lood is present in G
0 i f a f lood is not present in G

(8)

The objective is to predict the likelihood of a flood event using weather variables from
satellite images. The model has a probabilistic variable output which is used to optimize the
cut points in which indemnities are disbursed. This last step is performed from a two-party
perspective, considering that both parties have different costs.
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Moreover, probabilistic outputs can also provide an uncertain measure that can be
used by final users once the model is implemented [31].

Figure 3 summarizes the methodology used in this study which is adapted from two
recent methodologies: Cesarini et al. [24] and Figueiredo et al. [31].

Figure 3. Project M = methodology flowchart.

4.1. Data
4.1.1. Data Sources

According to [27], the performance of a model can be affected by selecting a “bad
algorithm” or “bad data”; in addition, for most machine learning algorithms, a considerable
amount of data is needed for them to work well [27]. For the specific case developed,
selection criteria were implemented to build a representative database of the problem.
Additionally, some of the selected predictors were proven to be significant in previously
developed research, such as the database selected by Cesarini et al. [24].

Satellite data: Regarding satellite data, the Google Earth engine was used. It is a cloud-
based geospatial tool that allows for the analysis of satellite images. Cesarini et al. [24] used
a criteria to select data sources and to implement a tool that could be used in the context of
parametric risk financing tools. These are summarized below:

1. Spatial resolution. A precise spatial resolution that takes into account the differ-
ent climatic characteristics of the area of interest is necessary to develop accurate
parametric hedging products.
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2. Frequency. The datasets selected should be commensurate with the duration of the
event of interest. In the case of floods, which are rapid phenomena, daily frequencies
or lower temporalities are required.

3. Spatial coverage. Global coverage allows for the extension of the developed approach
to areas other than the region of interest.

4. Temporal coverage. Since extreme events are infrequent, a spatial coverage of at least
20 years is necessary for correct model calibration.

5. Latency. A low latency time (i.e., time delay until the most recent data is obtained) is
necessary to develop tools capable of identifying extreme events close to real-time.

Based on the criteria, and restricting the search to databases available in the Google
Earth engine, three precipitation databases and a database with a surface run-off variable,
and four soil moisture levels were selected. The use of multiple databases allows researchers
to improve the ability of the models in capturing extreme events [24]. The selected datasets
for precipitation came from Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS), Precipitation Estimation From Remotely Sensed Information Using Artifi-
cial Neural Networks-Climate Data Record (PERSIANN-CDR), and Global Precipitation
Measurement (GPM) (Figures 4–6). The CHIRPS data (Figure 4) shows the most extreme
differences in precipitation levels. The central and north regions present lowest values
(1000 mm per year). In the other hand, the east and southeast regions present the highest
precipitation levels (5000 mm per year). The PERSIANN (Figure 5) and GPM (Figure 6)
figures show the same configuration of precipitation values, but with different resolutions.

On the other hand, for the run-off and soil moisture variable, the ERA5 dataset was
used, which is produced by the European Centre for Medium-Range Weather Forecasts
(ECMWF). The main characteristics of the datasets are shown in Tables 1 and 2.

Figure 4. Precipitation values in Antioquia Department, Colombia by the Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS).
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Figure 5. Precipitation values in Antioquia Department, Colombia by the Precipitation Es-
timation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data
Record (PERSIANN).

Figure 6. Precipitation values in Antioquia Department, Colombia by the Global Precipitation
Measurement (GPM).

Table 2. Characteristics of the selected global database for soil moisture and surface run off.

Database Type Resolution Frequency Coverage Time Lapse Latency Reference

Era5 Reanalysis 0.1° 1 h Global January 1981–Present 3 months [36]

4.1.2. Flooding Record

The flooding records correspond to the model’s output variable. This variable rep-
resents the consolidated historical record of emergencies produced by the National Unit
for Disaster Risk Management (UNGRD) [37,38]. This entity guides the National Disaster
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Risk Management System and manages the implementation of risk management, policies,
and compliance with internal regulations, as well as the functions and duties established in
Decree 4147 of 2011. Based on the historical record, only the events of interest were filtered;
in this case, reported floods from the records from the department of Antioquia. The data
comprises the natural disasters reported from 1998 to 2021.

4.1.3. Data Transformation

Flood damage is not directly caused by precipitation but by actions caused by the
flow of water. Thus, even if floods are related to rainfall, rainfall by itself is not the best
predictor of the intensity of a flood [31]. Therefore, a transformation is adopted that seeks,
in a simplified way, to emulate the process by which floods are caused due to rainfall. This
is based on an approach proposed by Figueiredo [31].

First, because part of the rainfall water is absorbed by the land, a parameter is adopted
that represents the daily infiltration rate. Then, the rainwater that is not absorbed (run-off)
is defined for the cell gj as:

Rt(gj) = max
{

Xt(gj)− u, 0
}

(9)

In addition, the flow of water over the surface accumulates due to excess rainfall.
For this reason, this behaviour is represented by a weighted moving average, which is
restricted to 3 days. The cumulative surface flow (cumulative run-off) for the cell gj during
days t, t − 1 and t − 2 is given by:

R∗
t (gj) = θ0Rt(gj) + θ1Rt−1(gj) + θ2Rt−2(gj) (10)

where θ0, θ1, θ2 > 0 and θ0 + θ1 + θ2 = 1.
Finally, a summation is performed over the region of interest to summarize the infor-

mation in a single variable with a daily time period.

Yt =
J

∑
j=1

R∗
t (11)

4.1.4. Data Preprocessing

Data pre-processing refers to the addition, removal, or transformation of training data.
Data preparation can make or break a model’s predictive ability. Different models have
different sensitivities to the type of predictors used [29]. In the case of neural networks,
the scale of the predictors can have a large effect on the final result [28]. For this reason, it
is best to standardize the predictors to have a mean zero and a variance of one.

For most machine learning techniques, a little imbalance is not a problem; however,
if the imbalance is high, the standard optimization criteria or performance metrics may
not be as effective as expected [24]. There are several methods to counteract the negative
effects of class imbalance. Among these are post hoc sampling methods, which are based
on selecting a training sample with approximately the same event rate for both classes.
Among the sampling techniques, there are two general approaches, oversampling and
undersampling [29]. Additionally, there are techniques such as the “synthetic minority
oversampling technique” (SMOTE), described by Chawla et al. [39], which selects a point
at random from the minority class and generates a new point from its k nearest neighbours.

4.1.5. Selection of the Best Model

When modelling a classification problem, the relative frequency of classes can have a
significant impact on the effectiveness of the model [29]. The imbalance of classes can even
affect the evaluation metrics, which can be misleading when evaluating the performance
of a model, possibly resulting in the selection of a poorly designed model [24]. Both the
ROC curve and accuracy should be used with caution when working with unbalanced
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classes [24] because a high number of true negatives tend to result in low false positive
rates (FPR = 1 − specificity).

4.1.6. Result Validation

In addition to assessing the quality of a model, based on performance metrics, it is
possible to assess the utility of the model, i.e., the economic value it brings to the end user.
In fact, a measure of value is even more important than a measure of quality since users
are primarily concerned with the estimated benefit that models can bring in the context of
the problem [31]. To evaluate the usefulness of the implemented models, we follow the
methodology implemented by Figueiredo [31] which is summarized below.

Table 3 shows the frequencies of the four possible combinations of predicted and
occurring events.

Table 3. Event frequency for each case.

Observed

Prediction Yes No

Yes a b
No c d

Each component of the table has an associated cost, which can be expressed in the
form of a cost matrix (Table 4).

Table 4. Event costs for each case.

Observed

Prediction Yes No

Yes Ea Eb
No Ec Ed

The average cost of using a certain predictive system can be obtained by multiplying
the relative frequencies and associated costs.

Esistema =
a
n

Ea +
b
n

Eb +
c
n

Ec +
d
n

Ed (12)

Although this equation allows researchers to calculate the average value, it is also
useful to calculate a measure of the benefit obtained by using the predictive system. Thus,
a reference or base system is defined, for which a system that never predicts a loss event
(flood) is assumed. In this case, the average cost is given by

Ebase = sEc + (1 − s)Ed (13)

where
s = (a + c)/n (14)

The value is then defined as

V = Ebase − Esystem (15)

In addition, the average cost associated with a perfect forecasting system, for which
the predictions and the observed events always agree, is defined. The cost of this system is
given by

Eper f ect = sEa + (1 − s)Ed (16)
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which corresponds to the upper bound on the maximum value that can be obtained from
a system.

By presenting the predictions in probability form, the end user is faced with the
possibility of selecting the cut-off point q that maximizes the value they can obtain from
the system. Varying the cut-off point from 0 to 1 allows a sequence of values V(q) to be
computed, from which the optimal decision can be found.

The model is evaluated from the perspective of two users of a hypothetical parametric
insurance product. This includes the policyholder and the insurer.

The cost matrices associated with each of the parties are then defined. For the insured
party, in this case, the Antioquia region, Ea is defined as the expected indemnity in the event
of a loss event (flood). It is assumed that the indemnity corresponds to the expectations of
the department, so there is no net gain or loss for the insured party. The premium to be
paid by the department is defined as follows:

Ep(q) =
a(q) + b(q)

n
Eam (17)

where m corresponds to the insurer’s relative profit margin (m > 1). Finally, assume that
En > Ea represents the losses incurred by the department in case a loss event occurs but no
indemnity is generated.

Now, the costs of the second party, the insurer, are defined. Assume that Ec corre-
sponds to the operational costs related to administrative actions each time an indemnity is
generated, Er corresponds to the reputations and model recalibration costs generated each
time an indemnity is generated but no event occurred, and El is the reputation cost and the
potential loss of a customer each time the model fails to generate an indemnity when a loss
event occurs.

The cost matrix for both parties is shown in Table 5. From this table, the average cost
of each of the parties associated with a value q can be found.

Table 5. Cost of events for the users.

Observed

User Prediction Yes No

Insured part Yes Ep(q) Ep(q)− Ea
No Ep(q) + En Ep(q)

Insurer Yes Ec Ec + Er
No El 0

For parametric risk financing products, only one cut-off point can be selected in the
policy conditions [31], and it is possible that no single cut-off point is optimal for all parties
involved. However, according to Figueiredo [31], the framework implemented to calculate
the value associated with the predictive system provides a way to make decisions regarding
the cut-off point that is beneficial to all users.

To validate the results obtained, a comparison is made between the best machine
learning model and the best logistic regression model of the value associated with the
optimal cut-off point for each of the parties.

5. Results and Discussion

The results are presented next. The first part refers to model building and then the
performance and selection of the models are carried out, including insights into the costs
for both parties.

In model building, there are multiple hyperparameters, such as the loss function,
the optimizer used, the number of layers and nodes, and the activation function. Each
of these hyperparameters can be chosen from a large number of options, but there is no
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clear indication of the number of hidden layers or nodes that should be used for a specific
problem. According to James [28], it is currently considered that the number of units per
layer can be high, and over-fitting can be controlled by making use of the various forms of
regularization. Accordingly, the space of configurations for the neural network must be
limited, since it is practically infinite. For this reason, a range of values was selected for
each of the hyperparameters of the model, which are summarized in Table 6.

Table 6. Explored configuration space.

Model Parameter Values

Neural
Network

Combinations of input datasets 15 combinations

Resampling

Unweighted
Oversampling

SMOTE
Combination Undersampling and Oversampling

Loss function Binary Cross Entropy

Optimizer ADAM *

Number of layers
and nodes

Layers: [1:9]
Nodes: 100

Dropout and rate
layers

Layers dp: [1:9] (same as # Layers)
rate dp: [0.0, 0.2, 0.4, 0.6, 0.8]

Activation functions ReLU
Tanh

Number of configurations 27,000

* ADAM is “an algorithm for first-order gradient-based optimization of stochastic objective functions, based on
adaptive estimates of lower-order moments” [40].

A space of 27,000 configurations is explored, using 15 combinations of the data series.
The selected combinations were chosen as follows:

1. Possible combinations from two to four precipitation data series of indices were tested.
Specifically, the three precipitation data series and the surface flow data series. This
results in 11 possible combinations.

2. Subsequently, each of the soil moisture levels were added sequentially. This corre-
sponds to 4 additional combinations of the model inputs.

Referring to the pre-processing techniques, there was a severe class imbalance, where
the ratio of the minority class to the majority class was approximately 1:16. For this specific
problem, oversampling, SMOTE, and a mixture between undersampling and oversampling
were selected as pre-processing techniques, specifically to improve the sensitivity of the
implemented models.

Regarding the selection of the best models and in line with the methodology used
by Cesarini [24], we used several performance metrics: F1 score and the area under the
precision–sensitivity (PS) or the AUC score. Additionally, we used a utility measure to
derive the optimal cut-off point which also serves to derive the costs related to each model.
When using two metrics, they will not necessarily coincide when selecting the best model,
so the models selected with an F1 score are analysed first, followed by those selected with
the AUC. In this study, we used a logistic regression model as a baseline to compare the
performance of the best models.

Therefore, the performance of the models shows that when using:

• F1 score as a selection criterion: the best model is obtained using seven datasets,
a combination of undersampling and oversampling as a pre-processing technique, one
hidden layer, and ReLU as an activation function. The hidden layer’s dropout rate is
0.4. This architecture corresponds to a simple neural network, with an intermediate
level of regularization.



Appl. Sci. 2023, 13, 4785 15 of 21

• The area under the precision–sensitivity curve (AUC): the best model uses seven input
datasets, a mixture between undersampling and oversampling as a pre-processing
technique, four hidden layers, and the ReLU activation function. The dropout rate for
each layer is 0.0, 0.6, 0.6, and 0.6, respectively.

On the other hand, when comparing the best model architectures with those obtained
by Cesarini [24], it is evident that the model complexity here studied is significantly lower
than the one obtained in that study. Even though deeper structures were explored, results
showed poorer performance metrics due to possible overfitting during training. This
low performance may happen for several reasons. One possible failure in the reporting
processes for catastrophic events in low-income economies, such as the one studied here for
flood events, is a possible lack of coherence between the actual flood date and the reported
one. As mentioned by Géron [27], the performance of a model can be affected by using
poor data as is the case here.

Figure 7 shows the performance of the best 27 configurations in the precision-recall
space, which also includes level curves corresponding to the F1 score. The precision–
sensitivity curve allows each model to be evaluated for the whole range of cut-off probabil-
ities. The perfect model resides in the upper right corner, with a precision and sensitivity of
1. Based on this result, the performance of the best models is far from the optimal model
and closer to the baseline model.

Figure 7. Top 0.1% configurations according to F1 score.

The best performance of the neural network models is associated with an F1 score
of 0.2989, while the logistic regression model achieves a maximum F1 score of 0.2739.
Regarding the AUC metric, the machine learning model achieves a score of 0.214, while the
logistic regression model achieves an AUC score of 0.205. Table 7.

Table 7. Model comparison, F1 score selection.

Model F1 Score AUC

Neural Network 0.290 0.214
Logit 0.274 0.205

Figure 8 compares the F1 score evaluated in the test data for an increasing number
of input datasets. Neural network results were averaged for three iterations, due to the
stochastic component related to model training.



Appl. Sci. 2023, 13, 4785 16 of 21

Regarding the indices that better explain the losses, the results show that the machine
learning algorithm achieves a better result, but its performance is not superior in all cases.
The selection of datasets was performed as mentioned earlier, where the first four datasets
correspond only to precipitation and run-off data, and the last four datasets are the different
soil moisture levels. In Figure 8, a significant jump can be observed when the first soil
moisture level is included, which indicates an improvement in the predictive capacity of
both models.

Figure 8. Comparison test F1 score, ANN and logistic regression.

As previously stated, we also used AUC as a selection metric, where we derived
the best model and compared its performance with a logistic regression model. Figure 9
shows that the machine learning model achieves an AUC score of 0.23, while the logistic
regression model achieves an AUC score of 0.20.

Figure 9. Precision-recall.

Figure 10 shows the F1 score for the range of cut-off probabilities. The neural network
model achieves a higher F1 score than the linear model for almost the entire probability
range. The curve related to the machine learning model is generally above the curve of
the linear model, which indicates that it generally performs better for the range of cut-off
probabilities. On the other hand, similar models [24] achieve higher performance metrics
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for the F1 score and AUC score. However, the methodology presented here supports the
idea that machine learning methodologies perform better than logistic regression which
represents a traditional classification framework.

Figure 10. F1 score.

As mentioned earlier, a hypothetical utility measure is computed for both parties
(policyholder and insurance provider), which could be used to derive the optimal cut-off
point and compare the costs related to each model. Therefore, we followed the procedure
mentioned in Section 5 First, the various costs associated with the parametric model must
be defined. The following parameters are used: Ea = $1,000,000; En = $2,000,000; m = 1.15;
Ec = $5000; Er = $20,000; El = $350,000. Figures 11 and 12 show the average cost associated
with the best model selected using the F1 score, comparing its performance with the cost
associated with a linear model. Results show that the curves associated with neural network
models have lower costs than the logistic regression model for almost the entire range
of probabilities. As for the insurer, the logistic regression model achieves the lowest cost.
However, the neural network models generally present lower costs for almost the entire
range of probabilities.

Figure 11. Policyholder-related costs.
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Figure 12. Insurance provider-related costs.

6. Conclusions

In this study, we employed two data-driven frameworks to assess the relation between
three weather indices: precipitation, run-off, and soil moisture. We used flood records
as loss events. This adds nuance to the building processes of index insurance models,
particularly in the field of basis risk and its reduction. We used data from the period
between 3 June 2000 and 31 December 2021 from the department of Antioquia, Colombia.
We used flood records as a proxy for crop production loss, which is the traditional variable
in index insurance models because agricultural data in Colombia is difficult to obtain or in
many cases, non-existent.

We implemented a similar methodology to Cesarini [24], by using neural networks
and logistic regression frameworks and by using the F1 score and AUC score for the
selection of the best models. Results show that neural networks with one hidden layer,
100 hidden units, 0.4 dropout rate, and the ReLU activation function performs better than
traditional logistic regression models for the data used. Even though the F1 score and
area under the precision–sensibility curve metrics perform better than logistic regression,
performance metrics are lower than the state-of-the-art architectures. However, these
results are coherent with previous studies that indicate that data-driven methodologies,
such as neural networks, tend to perform better than traditional methods for explaining
the relationships between the weather indices and the losses in index insurance models.

Perhaps, one of the biggest restrictions in data-driven studies is the quality and
availability of data. As is the case for low-income economies, low-performance results
could be explained by the quality of the data, where one possible cause of such results
could be related to the reporting processes for the catastrophic events in the region studied,
in this case, the flood records.

To support the selection process for best model performance and to understand related
costs in a weather index insurance contract, we applied a utility model to derive a measure
for the costs associated for both parties involved: the policyholder and the insurance
provider [31]. A measure of value is more relevant than a measure of quality, as the end
users are more concerned with the estimated benefits associated with the context of the
problem. Results show that costs associated with the policyholder are lower for the most
part of the range of cut-off values. This is related to an improvement in the predictive
capacity of the model, which is in line with a reduction in the basis risk. This approach
contributes to the future construction of weather insurance indices for the region where a
decrease in the base risk would be expected and, thereby, a reduction in insurance costs.
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This study provides a reference point for many practitioners and researchers in index
insurance models in low-income economies where agricultural data availability is limited.
We obtained coherent results which indicate the potential of data-driven methodologies
such as neural networks. We compared the performance of neural networks to traditional
models and demonstrated that with limited data, we could reach relevant conclusions that
indicate that it is possible to improve the design of index insurance models, especially
for low-income economies. The results presented here could be improved by creating a
new loss event dataset by alternative means. For example, by cross-referencing multiple
catastrophic news events, or acquiring production loss data by other means, such as
field inspections. We believe this work serves as an interesting study to encourage more
discussion and promote the development of agricultural insurance in Colombia.
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