
Citation: Guven, M.; Uysal, F. Time

Series Forecasting Performance of the

Novel Deep Learning Algorithms on

Stack Overflow Website Data. Appl.

Sci. 2023, 13, 4781. https://doi.org/

10.3390/app13084781

Academic Editors: Yuliang Zhao,

Yongliang Yang and Fei Fei

Received: 3 March 2023

Revised: 31 March 2023

Accepted: 8 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Time Series Forecasting Performance of the Novel Deep
Learning Algorithms on Stack Overflow Website Data
Mesut Guven 1,* and Fatih Uysal 2

1 Gendarmerie and Coast Guard Academy, Beytepe, Ankara 06805, Turkey
2 Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture,

Kafkas University, Kars 36100, Turkey; fatih.uysal@kafkas.edu.tr
* Correspondence: mesuttguven@gmail.com or mesut.guven@jsga.edu.tr; Tel.: +90-530-522-4189

Abstract: Time series forecasting covers a wide range of topics, such as predicting stock prices,
estimating solar wind, estimating the number of scientific papers to be published, etc. Among the
machine learning models, in particular, deep learning algorithms are the most used and successful
ones. This is why we only focus on deep learning models. Even though it is a hot topic, there are only
a few comprehensive studies, and in many studies, there is not much detail about the tested models,
which makes it impossible to constitute a comparison chart. Thus, one of the main motivations for this
work is to present comprehensive research by providing details about the tested models. In this study,
a corpus of the asked questions and their metadata were extracted from the software development
and troubleshooting website. Then, univariate time series data were created from the frequency of
the questions that included the word “python” as the tag information. In the experiments, deep
learning models were trained on the extracted time series, and their prediction performances are
presented. Among the tested models, the model using convolutional neural network (CNN) layers in
the form of wavenet architecture achieved the best result.

Keywords: trend prediction; time series forecasting; long short-term memory networks;
convolutional neural network; wavenet

1. Introduction

Time series are seen nearly everywhere in our daily life. We can observe time series
in stock prices, weather forecast, historical trends, demand graphs, heartbeat signals, etc.
If we make a concise description, a time series is an ordered sequence of values that are
usually equally spaced over time. In univariate series, there is only one value at each time
step, and in multivariate time series, there are multiple values at each time step. Forecasting
the future via time series is very popular because artificial intelligence applications such as
predicting forex and stock prices have high financial potential [1]. Time series forecasting is
also used for reconstructing corrupted or missing parts, which is known as imputation [2,3].
In some cases, time series analyses are also used to detect abnormal patterns. For example,
in the cybersecurity field, they are used to detect abnormalities in the network traffic such
as spam or denial of distributed service attacks [4]. Multi-layered neural networks, which
are called deep learning methods, have been applied to various kinds of classification and
regression problems. Especially in image classification tasks, they have surpassed other
machine learning algorithms. One of the fields that deep learning algorithms are used for
is time series forecasting. Especially, long short-term memory (LSTM) and CNN-based
models are very successful in predicting the next elements of the time series [5–8].

In this work, we have tested the forecasting performance of deep learning algorithms
on a dataset that is extracted from the “https://stackoverflow.com/ (accessed on 7 April
2023)” website. The dataset consists of two-month long records of asked questions and
corresponding information such as owner, tags, body, title, etc. This dataset consists of

Appl. Sci. 2023, 13, 4781. https://doi.org/10.3390/app13084781 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084781
https://doi.org/10.3390/app13084781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0957-8541
https://orcid.org/0000-0002-1731-2647
https://stackoverflow.com/
https://doi.org/10.3390/app13084781
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084781?type=check_update&version=1


Appl. Sci. 2023, 13, 4781 2 of 15

32,890 rows and 10 columns. Each row represents the questions, and in the columns,
information for those questions is presented. Some useful statistics were extracted from
the raw dataset. This statistical information is the number of questions asked per day and
hourly, the most frequently used tag groups, the most frequent individual tag item, etc.
The hourly frequency counts of the asked questions are regarded as a time series and are
used for the input data.

In the experiments, the input data were divided into three categories: training part,
validation part, and test part. Then, a total of six different deep learning algorithms were
trained and tested with the same training, validation and test sets. The algorithms belong
to several groups such as simple deep models and memory models that are designed to
predict time series data. After training six different deep learning models, forecasting
performances were measured by using mean absolute error (MAE) metrics. According to
the results, the fully convolutional CNN model outperformed other models.

2. Related Work

Forecasting the future behavior of a system can be solved by predicting time series
data. Thus, predicting time series is essential and has been studied widely in various
domains such as finance, climate, logistics, crime, medicine, etc. [9]. It is possible to
divide the works into two main categories. The first group of works uses methods from
classical machine learning algorithms based on statistical techniques. The second group of
works uses deep learning models. Even though this work mainly focuses on deep learning
models, it is important to emphasize traditional machine learning studies on time series
forecasting since models such as support vector machines (SVM), decision trees, and other
methods have been widely used before the deep learning revolution in 2012. For example,
in 2003, K. Jae Kim employed an SVM model on financial time series data [10], and in
2009, L. Robert K. et al. used a fuzzy decision tree model for predicting financial data [11].
In 2004, L. Shen, and H.T. Loh used rough sets from S&P 500 data [12]. In 2015, J. Patel
et al. conducted a two-phased experiment using support vector regression and random
forest [13]. Another study was conducted by Zhang et al. They adopted the SVM model and
multi-layer perceptron (MLP) for predicting stock price movements in China’s market [14].
In another study, the classification performance of some of the classical machine learning
algorithms was evaluated on the same data, and the results are presented in [15]. Classical
machine learning models are generally based on statistical theories and are used to solve
the regression problem, which is the main task in time series prediction. Even though these
models are used as time series predictors, they lack memorizing previous data that fail to
predict and adapt to sharp changes in trends.

On the other hand, deep learning models such as LSTMs are capable of memorizing
previous data and thus producing more agile predictions [16]. Even on stock data, which
event-driven, lowly correlated, and unstable data, LSTM models perform well. For ex-
ample, in a study conducted by Chen et al., an LSTM-based approach resulted in a 13%
improvement in accuracy over classical machine learning models [17]. Another study with
the LSTM model was conducted on the same dataset by Luca Di al. and yielded satisfactory
results over five-day-long intervals [18]. In this work, a relatively bigger window was used
for utilizing the memorizing power of LSTM architecture. Morgan B. et al. followed a simi-
lar approach as we did in this study by comparing the prediction performances of LSTM,
RNN, and CNN models of three layered networks [19]. They tested deep learning models
on different time series data from public datasets such as S&P 500 Daily Closing Prices
stock data, Nikkei 225 Daily Closing Prices stock data, etc. According to their findings, an
LSTM-based model that consisted of one bidirectional LSTM layer, followed by a dropout
layer and fully connected layer, outperformed other models.

Financial time series forecasting studies constitute the majority of the research. Studies
have been conducted on various data such as stock prices, bond prices, forex prices,
cryptocurrency prices, etc. Most of the studies use price data as the only input, while
some studies use price data and financial news data together [8]. These studies use hybrid
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deep learning models by combining memory cells, such as LSTM, and natural language
processing (NLP) methods, such as BERT, word2vec embedding, etc. [20,21]. LSTM and
variations of LSTM models dominate the financial time series forecasting studies. These
text-mining hybrid works are aimed at solving financial time series problems that naturally
consist of event-driven patterns. Thus, adding some textural information from financial
news by using NLP techniques helps to increase the accuracy of predictions. To increase the
accuracy in financial time series prediction is to using hybrid models in a single network.
For example, Liu et al. applied CNN and LSTM [22], and Batres et al. combined deep belief
networks (DBNs) and MLP [23].

Another important study area in time series prediction is the evaluation of multivariate
time series. Likewise, we can observe multivariate time series ubiquitously in everyday
life. If there is no correlation between the components of the multivariate time series, then
the extra dimensional information does not contribute much to the prediction performance.
Thus, in this case, univariate and multivariate predictions produce fairly similar results.
Neural networks and deep learning models have also been applied to multivariate time
series. For example, in a study conducted by Kang W. et al., real-world datasets, traffic data
and solar energy data were analyzed with multiple CNN models [24]. the traffic dataset
had two different sensors, and the solar energy dataset had information from 137 power
plant. According to the experiments, multiple CNNs performed better than similar time
series model such as the LSTM. In a study conducted by Lian et al. on pre-processing,
principal component analysis was used on the original multidimensional input. Then,
pre-processed data were used for prediction purposes [25]. Yuya Jeremy O. et al. proposed
a new method by transforming original multivariate data into a higher tensor network [26].

Detailed information about the used algorithms is presented in the Methodology and
Experiments section, but to provide preliminary information for the algorithms, some
literature knowledge is also presented in this section. The MLP is the basis of deep learning
since it consists of a basic unit called the threshold logic unit (TLU). The TLU computes
a weighted sum of its inputs and then applies a step function to that sum and outputs
the result.

MLP architecture consists of three layers: one input layer, some TLU units called
hidden layers, and a final output layer of one TLU unit. For a long time, it was believed
that the TLU unit is only capable of solving linear problems until the discovery that using
a derivable activation function makes it possible to override these limitations [27]. In the
literature, MLP models are highly studied, and some modified versions are proposed. For
example, a study conducted by Robert R. investigated how performance is affected while
using different activation functions other than step functions [28]. MLP is a supervised
model, which means it requires classified data. However, it is possible to use MLP models
in a supervised manner by modifying the usage architecture. In a study conducted by
Ankita C. et al., to represent the usage of MLP in an unsupervised scenario, input features
are mapped to an output cluster node based on the degree of belongingness [29].

The other three models studied in this work belong to RNN and LSTM architecture
which are also called “memory” models, as they take information from prior inputs to
influence the current input and output. These models are designed to process sequential
data such as language data or time series data. The core of these kinds of algorithms is
the RNN. RNNs can only memorize a limited time frame. Thus, there are many studies
on making RNNs more efficient. LSTMs are among one them, and LSTMs are modified
versions of RNNs designed to memorize previous information. In another study, RNN
was extended to a bidirectional recurrent neural network (BRNN). The study showed that
BRNN can be trained without the limitation of user input information up to a preset future
frame [30]. Generally, BRNNs and Bi-LSTMs use different configurations and activation
functions, but they are both effective in predicting real-life time series data [31,32].

Another method used in this work is CNN architecture, which is inspired by the
convolution operator widely used in electronic engineering. CNNs are very effective,
especially on image classification tasks. There are several different configurations of CNNs,
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such as differential convolutional neural networks, wavenet, etc. In one study conducted
by M. Sarıgul et al., mathematical differentiation operation was used in the convolutional
process to increase its accuracy without changing the filter numbers [33]. Wavenet is
another configuration of CNN that uses a dilation factor in each layer. Wavenet is generally
used in speech synthesis and voice conversion tasks, but it can also deal with various kinds
of sequential data such as ECG heartbeat signal or wind speed [34,35].

3. Motivation and Contributions to the Literature

In summary, in the literature, there are different kinds of deep learning models, but the
most used and successful models are MLP, RNN, LSTM, CNN, DBNs, and
autoencoders [36,37]. Throughout the literature, financial time series forecasting is the
most used data since this problem is investigated by the finance industry, individual
investors, and academia, and experiments have been conducted by using various deep
learning environments such as Tensorflow, Keras, Pytorch, Theano, and Matlab [8]. Some re-
searchers claimed they used Python, but they do not provide detailed information about the
development environment and model architecture, which makes it impossible to present a
full comparison chart. Thus, for us, one of the main motivations is to constitute a study that
presents the prediction performance of popular deep learning models by clearly stating the
model’s architecture, development environment, and corresponding codes.

The main contributions of this paper can be summarized as follows:

• Although deep learning models have been widely used for trend prediction and time
series forecasting tasks, there are only a few comprehensive studies that present the
performance comparison of the models. Moreover, the works in these reviews do not
provide enough information for a proper comparison. Thus, in this study, we present
some literature for time series forecasting and investigate the effectiveness of the most
used deep learning models on univariate time series data with the same or similar
complexity models.

• Long short-term memory networks and recurrent neural networks are the kinds of
networks designed to memorize previous samples. They are the most used models
in time series prediction tasks and are known as the silver bullet for this kind of
task. However, we present that wavenet-based CNN models can also extract useful
knowledge from datasets with the dimension of time and yield producing more precise
prediction results than LSTM models.

4. Dataset

The dataset was acquired through the Stack Overflow website’s API and was saved as
a comma-separated file. The dataset has 32,890 rows, and this number represents the total
number of questions asked between 1 April and 31 May 2022. There are ten columns as
shown in Figure 1, these columns include the information: tags, owner, title, body, score,
last activity date, creation date, question ID, and view count.

Figure 1. Dataset.

In the pre-processing part, the downloaded coma separated file was processed by
using the pandas.DataFrame property. First, the dataframe was checked for duplicate
or missing data. To extract a time series from the data, some useful statistic values were
computed, such as density distribution of tags and number of asked questions on an
hourly, daily, weekly basis, etc. According to this examination, the most popular tag groups
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are presented in Figure 2. The most frequent tag element was “python”, and it occurred
not only as a single tag value but also inside multiple-valued groups such as “python,
pandas”, “python, pandas, dataframe”, “python, django”, etc. Thus, to create time series
data, a number of the asked questions with the tag value “python” were extracted. Hourly
frequency of the asked questions containing the python tag is suitable to use as a time series
since it is independent and identically distributed data that naturally occurs by random
users of the website.

Figure 2. Occurrences Based on Tags Groups.

Thus, the number of asked questions containing the “python” tag is presented in a
time series data format, as seen in Figure 3, and this extracted data were used for comparing
the prediction performance of state-of-art deep learning models.

Figure 3. Time series of the asked questions with the tag value of python.

5. Methodology and Experiments

To provide a holistic viewpoint about the methodology followed in this study, a
flowchart is presented in Figure 4.

Figure 4. Flowchart of the methodology.
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The time series data had 1464 samples for 61 days. The first 984 samples were kept for
training, and this is nearly equal to 67% of all the samples. The following 240 samples were
kept for validation purposes, which are very important for mitigating the overfitting ef-
fect [38,39]. The last 240 samples were used for performance tests of all the algorithms. The
test part of the dataset was used to measure the forecasting performance of the algorithms,
and these data were been used before. In the scope of this work, novel deep learning
models that are highly applied in time series prediction tasks were used [40]. They were:
the multi-layered dense model, simple recurrent neural networks (RNN), stateful RNN,
LSTM, and CNN. Among the tested models, the LSTM and CNN-based models performed
especially well since they are designed to work on sequential data. All the models are
implemented in Google’s Colaboratory environment, which is a cloud service for machine
learning and artificial intelligence computations. It utilizes python and all major python
libraries, such as TensorFlow, scikit-learn, and matplotlib, among many others, which are
pre-installed and ready to be imported. Another powerful feature of Colaboratory is that
it can provide GPU acceleration. As a result, Colaboratory can help to train very deep
networks; otherwise, it is impossible to train such networks in ordinary computers.

5.1. MLP Model

The first model is an MLP model consisting of dense layer units of Keras API. The first
model is shown in Figure 5. Dense layers are the basis of the deep learning process, and
they rely on gradient descent [41]. The theory behind gradient descent can be defined as:
for each epoch, the algorithm first makes a prediction and measures the error, then goes
through each layer in reverse to measure the error contribution from each connection, and
finally slightly tweaks the connection weights to reduce the error.

Figure 5. Dense model representation.

The Huber loss function of the tensorflow.keras API was used. To mitigate the overfit-
ting effect, the “EarlyStopping” callback parameter was also used. To determine the optimal
learning rate, the model was trained for 100 epochs, with different learning rates in each
epoch. The change in the loss value against different learning rates is shown in Figure 6.
Somewhere between 0.0001 and 0.00001 is suitable for the optimal learning rate value.

Figure 6. Loss value versus learning rate.

The first layer accepts 30 samples as input, and all 30 tensors are fully connected with
the first layer’s 10 neuron units. The second layer accepts the first layer’s output, which
is 10 tensors, and it connects those tensors with its 10 units. The last layer accepts inputs
from the previous second layer and outputs only one result as the predicted number of
asked questions for the next sample. The predictions of the dense model are shown with an
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orange line in Figure 7, and the blue line represents the real numbers of the asked questions.
The dense model achieved a forecasting performance of 5.572 MAE.

Figure 7. Forecasting performance of the dense model.

5.2. RNN Model

The second model tested in the scope of this work was an RNN model. RNN models
can successfully deal with sequential data, because RNN units are designed to memorize
previous states [42]. This memory property was used in the computation of the current
state. Thus, RNN units accept two inputs: previous output and current input value. The
working mechanisms behind RNN units can be formulated as (1).

y(t) = f (x(t) + y(t − 1)). (1)

where x(t) is the current input, y(t) is the current output, and y(t − 1) is the past output.
The function that models this relation is represented by f (x). In the case of RNN, the
function f (x) is a simple hyperbolic tangent function that introduces nonlinearity since it
has a tendency to have unstable gradients. Using a non-saturating activation function such
as the rectified linear unit function causes gradients to grow arbitrarily large. The RNN
model is implemented using the “SimpleRNN” function inside the tensorflow.keras.layers
API. In this model, two recurrent layers and one dense layer were used, as shown in
Figure 8.

Figure 8. RNN model structure.

The recurrent layers accept a batch size of 128. Each recurrent layer has 100 units,
and there are 30 time steps for each. The dense layer accepts the recurrent layers’ outputs
and produces a single value as the predicted number of questions. For each window,
RNN runs with an initial state value of zero. Then, the state value is updated at each time
step until RNN makes its prediction. If not inferred otherwise, SimpleRNN function in
tensorflow.keras API clears the state value after a prediction is made and does not keep
the state value for the next iterations. This configuration is known as the stateless RNN.
In the stateless model, batches can randomly be chosen from the datasets, and they can
even overlap each other. On the other hand, in a stateful model, batches should be chosen
consecutively, and they should not overlap.
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Another configuration is known as the stateful model. In this architecture, RNN units
keep the state information and transfer it to the next iterations. Stateful RNN models
perform better on longer sequences, but they require a longer training time, and sometimes
they perform poorly because consecutive batches are highly correlated. Forecasting per-
formance of the stateless and stateful versions are presented in Figures 9 and 10, where
orange lines are the predicted values and blue lines are the real numbers. The stateless
RNN model performed better than the stateful RNN, but both performed worse than the
dense model. The forecasting performance in terms of MAE was 6.679 for stateless RNN
and 7.039 for stateful RNN.

Figure 9. Forecasting performance of the stateless RNN model.

Figure 10. Forecasting performance of the stateful RNN model.

5.3. LSTM

The LSTM model that is used in this work is presented in Figure 11. The model has
two LSTM cells with 100 units and one dense layer. For the gates, the sigmoid activation
function was used, and for the state vector, the hyperbolic tangent function was used.

Figure 11. LSTM model representation.

Even though recurrent networks are good at dealing with sequences, they cannot
memorize long sequences. To mitigate this downsize, LSTM networks, which are a kind
of variant version of RNN networks, are used. Because of the recurrent configuration of
the RNN models, when the number of time steps increases, it causes a vanishing gradient
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problem [12]. The LSTM architecture is shown in Figure 12, and it provides an efficient way
for the gradients to backpropagate.

Figure 12. LSTM architecture.

LSTM models are more complex than RNN models, but they can deal with longer
sequences, such as several hundred time steps; thus, they can produce successful results
on language models [43]. As seen in Figure 12, short-term memory is conveyed with a
simple RNN cell, and long-term memory is preserved with a dense layer using a sigmoid
activation function and two units, forget gate and input gate. Forget gate takes the previous
state vector and current sample as input. It produces values between one and zero since it
uses the sigmoid function. If forget gate outputs values close to one, long-term memory
is kept, but if it outputs values close to zero, long-term memory is erased. The input gate
also produces values between one and zero, and the product is multiplied by the RNN
cell’s output. If a trend is detected in the current input that has not existed before, the
input gate decides to add this information to long-term memory. Finally, the output gate
produces the result of current time steps by multiplying long-term memory with a dense
layer. Forecasting performance of the LSTM model is presented in Figure 13, where orange
line is the predicted values, and the blue line is the real numbers. The LSTM model has a
forecasting metric of 5.375 in terms of MAE. As a result, the LSTM model performed better
than the RNN models and dense model.

Figure 13. Forecasting performance of the LSTM model.

5.4. CNN

Convolution is an operator that slides one function over another to measure the
integral of their element-wise multiplication. For example, for an input vector of “x” and
the filter of “w”, which uses the rectified linear unit function (ReLu) and has a kernel size
of three, the first output of the convolution is computed as shown in Equation (2). For the
second, third, and other elements of the convoluted output vector of “y”, this process is
repeated by sliding one element of the input vector in each step.

y(0) = ReLu(x(0) ∗ w(0) + x(1) ∗ w(1) + x(2) ∗ w(2) + b). (2)

CNN is one of the widely used techniques in the field of image recognition and
classification [44,45]. Convolutional layers have been successfully applied to time series
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prediction tasks [46,47]. In the scope of this work, two CNN models were configured, and
the first model is a hybrid version of CNN and LSTM layers that is shown in Figure 14.

Figure 14. Representation of the hybrid model with CNN and LSTM layers.

In the hybrid CNN model, convolutional layer was used like a pre-processing unit for
LSTM layers. The kernel size of the CNN layer was five, and the stride parameter was set to
one. The padding parameter of the tensorflow.keras API was set to “casual”. This parameter
adds enough zeros at the beginning of each sequence. As a result, the output dimension will
be the same as the input dimension, and the output values will be inferred only from the
current and past input values. LSTM layers have 32 hidden units. The hyperbolic tangent
function was used for state vectorsm, and the sigmoid function was used for the gates. The
final layer was a dense layer that outputs only one value for the predicted number.

The forecasting performance of the hybrid model is presented in Figure 15, where the
orange line is the predicted value, and the blue line is the real numbers. The hybrid model
has a forecasting metric of 5.389 in terms of MAE.

Figure 15. Forecasting performance of the hybrid model.

The second model depends on the idea of using convolutional layers consecutively, as
seen in Figure 16. This architecture is known as the wavenet model, which was proposed by
DeepMind in 2016 and has been widely used in text-to-speech tasks by Google. The wavenet
methodology is inspired by combining two different techniques, respectively, wavelet and
neural networks. Applying convolutional layers in the wavenet format is also very effective
on time series forecasting tasks [48]. In the wavenet architecture, the dilation rate doubles
at every layer. Dilated convolutions enable networks have very large receptive fields while
preserving input resolution throughout the network as well as computational efficiency.

In the tested model, there were six consecutive CNN layers designed in the form of the
wavenet architecture. The CNN layers had dilation rates of: 1, 2, 4, 8, 16, and 32, and each
CNN layer had 32 filters of size two. The stride parameter was set to “one” to make one
shift in each convolutional iteration. The padding parameter was set to “same” to make the
output size equal to the input size. The last layer was also a convolutional layer that had a
filter size of one, kernel size of one, and stride parameter set to one. As a result, the last
layer produced a single output as the predicted value.

The forecasting performance of the full CNN model is presented in Figure 17, where
the orange line is the predicted values, and the blue line is the real numbers. The full
CNN model has a forecasting metric of 1.898 in terms of MAE. The full CNN model in the
wavenet format performed better than all the other models. This result shows the strength
of the wavenet architecture style.
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Figure 16. Representation of the full CNN model.

Figure 17. Forecasting performance of the fully CNN model.

6. Results and Conclusions

There are many well-known datasets, such as S&P 500, weather data, etc. We did not
use these datasets because there have already been many experiments conducted on these
data. Thus, we extracted a time series dataset from a real-world example. The time series
used in this research was extracted from a software debugging web platform that projects
the tendency of how frequently a specific tag is asked in blogs. Comparing the forecasting
performances of some of the most used and famous models on a real-world time series
gives clear insight into how accurate the models can perform.

We tested the most used models: MLP, RNN, LSTM, CNN, and the wavenet variant
of CNN. They all have the same or similar complexity. All the models tested in this work
were constructed in Google’s Colaboratory environment. The models were powered by
TensorFlow version “2.8.2” and tensorflow.keras API version “2.8.0”, which are supported
by Google for numerical computing, training, and running neural networks [49]. A list of
the tested models and their basic specifications, such as the number of layers, the number
of units in the layers, filters, etc., are presented in Table 1.

Table 1. Tested models and properties.

MODEL LAYERS FUNCTIONS

Dense 3 Dense ReLu, Linear
Stateless RNN 2 RNN, 1 Dense tanh, Linear
Stateful RNN 2 RNN, 1 Dense tanh, Linear

LSTM 2 LSTM, 1 Dense tanh-Sigmoid, Linear
CNN Hybrid 1 CNN, 2 LSTM, 1 Dense ReLu, tanh, Linear
Fully CNN 6 CNN, 1 CNN ReLu

The prediction performance of the models is presented in Table 2. The metrics used to
represent the forecasting performances were mean absolute error (MAE) and mean squared
error (MSE). MAE computes the absolute values of the error, which are the differences
between the predicted results and actual values. MSE computes the square of the errors.
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Consequently, MSE penalizes large errors more than MAE. If large errors are potentially
more dangerous and cost much more than smaller errors, MSE is more beneficial than MAE.

Table 2. Model performance comparison.

MODEL MAE 1 MSE 2

Dense 5.5728846 61.942547
Stateless RNN 6.6797476 82.98067
Stateful RNN 7.0399313 96.302475

LSTM 5.3750377 59.87254
CNN Hybrid 5.3894196 62.422806
Fully CNN 1.8986198 6.2615194

MAE 1: mean absolute error; MSE 2: mean squared error.

According to the performance metrics, the fully convolutional layer model was the
most successful in both MAE and MSE metrics. Especially, in terms of the MSE, which
penalizes large errors more, the fully convolutional model achieved very successful fore-
casting performance. After the fully CNN Model, the most successful model was the LSTM
model. Using the CNN layer as a pre-processing unit did not positively affect the forecast-
ing performance of the LSTM model. Another important result is the success of the dense
model. The dense model, consisting of two simple layers with ten units, also performed
well when compared with its simplicity and compactness. The RNN models, both stateless
and stateful versions, performed poorly. This is partly because RNN models suffer from
transferring long-term information, which is known as the vanishing gradient problem.

The accuracy of time series prediction usually decreases as the forecast horizon in-
creases. To measure the strength of the algorithms, we conducted more analyses using
shorter window lengths. For example, on 5-day-long windows, the accuracy of the algo-
rithms increased, and the model performances are compared in Table 3.

Table 3. Model performance comparison on 5-day-long windows.

MODEL MAE-1 1 MAE-2 2

Dense 5.5728846 5.9691405
Stateless RNN 6.6797476 6.0903750
Stateful RNN 7.0399313 6.1267543

LSTM 5.3750377 5.3358135
CNN Hybrid 5.3894196 5.9622736
Fully CNN 1.8986198 1.2275864

MAE 1: mean absolute error for 10-day-long predictions; MSE 2: mean absolute error for 5-day-long predictions.

Another important metric for the tested models was the execution time and complexity.
To enlighten this, the number of units, filters used in each layer, and the execution times
are presented in Table 4. The metrics are acquired on a Python 3 Google Compute Engine
(GPU mode) with 12.7 RAM.

Table 4. Model complexity and execution time.

MODEL COMPLEXITY TIME (Second Per Epoch)

Dense 3 layers; 10, 10, 1 units 0.431
Stateless RNN 3 layers; 100, 100, 1 units 1.272
Stateful RNN 3 layers; 100, 100, 1 units 0.575

LSTM 3 layers; 100, 100, 1 units 1.038
CNN Hybrid 4 layers; 32, 32, 32, 1 filters 0.919
Fully CNN 7 layers; 32, 32, 32, 32, 1 filters 0.722

To test the wavenet model’s resilience, we also conducted a preliminary test by using
S&P 500 stock data between 16 December 2011 and 9 November 2017. According to this
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test, the wavenet model predicted the last 400 samples with a mean absolute value of 0.665.
For future works, the wavenet model, which performed better than the memory models,
can be compared by using a public dataset.
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