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Abstract: Fault diagnosis for body-in-white (BIW) welding robots is important for ensuring the
efficient production of the welding assembly line. As a result of the complex mechanism of the
body-in-white welding robot, its strong correlation of components, and the many types of faults,
it is difficult to establish a complete fault diagnosis model. Therefore, a fault diagnosis model for
a BIW-welding robot based on a multi-layer belief rule base (BRB) was proposed. This model can
effectively integrate monitoring data and expert knowledge to achieve an accurate fault diagnosis and
facilitate traceability. First, according to the established fault tree, a fault mechanism was determined.
Second, based on the multi-layer relationship of a fault tree, we established a multi-layer BRB model.
Meanwhile, in order to improve the accuracy of the model parameters, the projection covariance
matrix adaptive evolutionary strategy (P-CMA-ES) algorithm was used to optimize and update the
parameters of the fault diagnosis model. Finally, the validity of the proposed model was verified by a
simulation experiment for the BIW-welding robot.

Keywords: welding robot; belief rule base; fault tree; P-CMA-ES algorithm

1. Introduction

With the promotion of modern industrial intelligent manufacturing, the traditional
artificial manufacturing industry has been turning to the development trend of modern
automated production with robots as the main body. As a large and complex system,
the body-in-white (BIW) welding robot is difficult to judge and detect because of the
complexity of the control object and the variety of tasks it handles. Faults in the welding
production process lead to the shutdown of the welding production line as well as untimely
or imperfect equipment maintenance, etc., which directly affects the welding production
efficiency and reduces the quality of the body-in-white. Due to the highly integrated,
independent, and intelligent nature of body-in-white welding robots, it is very challenging
to study their overall normal operation statuses. Once a part of the welding robot fails,
the loss and damage caused are far greater than those for ordinary mechanical equipment;
the failure may cause equipment downtime, causing economic losses for the enterprise,
and personnel accidents, leading to more serious disasters. Therefore, it is meaningful to
conduct fault diagnosis research on the robot [1]. However, the complexity, correlation,
and uncertainty of the welding machine system make it very difficult to study the fault
diagnosis of the welding machine. It has become a difficult problem to establish a fault
diagnosis model for welding robots and to improve the diagnosis accuracy.

The BIW-welding robot is an integrated system containing mechanical, electrical,
control, and other complex system components. The work object is complex, and the
processing tasks are heavy, resulting in a high probability of failure. As a result, the
research on its fault diagnosis has also received increasing attention from experts and
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scholars at home and abroad. At present, there are mainly three types of fault diagnosis
methods: analytical model-based methods [2], data-driven methods [3], and qualitative
knowledge-based methods [4]. Behrouz et al. [5] proposed an adaptive order tracking
method with a recursive Kalman filter algorithm to implement fault diagnosis on induction
motors. Yang et al. [6] proposed an improved fuzzy hierarchical analysis method to realize
the application of condenser fault diagnostics in power plants. The above analytical model
can effectively and accurately determine the fault. However, the number of variables
and influencing factors in the real environment makes it difficult to establish accurate
mathematical and analytical expressions. Chen et al. [7] proposed a method based on
the maximum overlap discrete wavelet transform and artificial neural networks to realize
the fault diagnosis of a distributed generation system; Liu et al. [8] proposed a method
combining feature vector selection and support vector machines to handle the question of
classifying imbalanced data. Zheng et al. [9] proposed a hidden Markov model approach
to achieve the application of ball mill gearbox fault diagnosis. The above methods have a
powerful function for simulating the real system. However, in practice, a large amount of
training data are often required to train the system model, and the training data often have
the difficulty of a small sample size which is difficult to obtain. Most data-driven approaches
are “black-box modeling”, leading to problems such as the lack of interpretability of
diagnostic results. Guo et al. [10] proposed a VFDR fault diagnosis strategy based on expert
knowledge to realize its application in variable refrigerant flow system fault diagnosis.
Zheng et al. [11] proposed a fault tree and Bayesian-based approach to address applications
in the fault diagnosis of overhead crane equipment. Hu et al. [12] proposed a robot joint
fault diagnosis method based on a BP neural network, which could solve the problem of
the low accuracy of robot joint fault diagnosis. The above methods can obtain better fault
diagnosis results. However, the system structure is usually complex and lacks the ability to
handle quantitative data.

In summary, there are some results of the current research on the problem of complex
system fault diagnosis [13]. However, the BIW-welding robot is a complex production
process with multiple processes and conditions, and its failure characteristics are numerous.
It becomes very difficult to establish an accurate mathematical analysis model, and accurate
results cannot be obtained by relying on qualitative knowledge. Only using data-driven
methods lacks interpretability and cannot utilize the experience and knowledge of experts,
and the above three methods lack the ability to deal with various types of uncertain
information. Yang et al. [14–17] proposed a belief rule base (BRB) expert system based on
an evidential reasoning approach that could handle uncertain information that arises in the
human decision-making process. For uncertain information, BRB can express it at the same
time and can combine the advantages of quantitative analysis and qualitative analysis to
obtain credible fault diagnosis results while ensuring model accuracy. By using numerical
data to optimize the initial parameters in the BRB model, the relationship between input
and output could be more intuitively described. The initial parameters of the BRB model
can be fine-tuned through expert knowledge, and the BRB model reasoning method is used
in fault diagnosis, life evaluation, and other fields. Expert systems have the characteristics
of multi-type information processing. In contrast to the above disadvantages, the BRB
expert system has the ability to handle both the lack of data and conflicting evidence. When
dealing with qualitative and quantitative information, the BRB expert-system learning
model is an optimization problem with linear and nonlinear constrained optimization.
Meanwhile, the BRB model is prone to the combinatorial explosion problem that affects
the final results [18]. For the above-mentioned problems, the multi-layer BRB model can
be used to solve them. The main idea of the multi-layer BRB is to adopt a bottom-up
model. First, the underlying indicators and second, the use of the combination result
are combined as the input of the next layer and finally reach the target state [19]. The
advantage of multi-layer BRB over single-layer BRB is that the system is built according
to the system structure. The multi-layer BRB hierarchy effectively reduces the number of
rules and effectively avoids the combination explosion generated by the BRB model.
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As a result, this paper uses a multi-layer BRB, a semi-quantitative tool, to construct
a fault diagnosis model that incorporates expert knowledge and quantitative data. This
model addresses the limitations of using only single knowledge for diagnosis by utilizing
surveillance data and expert knowledge to produce a better diagnosis. Realizing the
comprehensive utilization of the working mechanism, failure mechanism, and the data
of the BIW welding and assembly robot can improve the accuracy of diagnosis. The
local adjustment of model parameters by the (P-CMA-ES) algorithm [20] can reduce the
limitations of expert knowledge. The validity of the method was verified by experiments.

2. Mechanism Analysis and Problem Description of BIW-Welding Robot
2.1. Mechanism Analysis and Fault Tree Construction of BIW-Welding Robot

At present, the BIW-welding robot is mainly used in the welding production line for
the welding production of the automobile BIW. The welding system is mainly composed of
a welding gun, welding clamp, welding power source, wire feeder, gun clearing mechanism,
and other components. The welding system is the basic component order to complete the
welding task. In the automatic welding production of BIW, long-term welding by welding
robots causes problems such as the residual welding slag in the contact tip and wear of
the motor. As a result, it affects the welding efficiency and the welding quality of the
body-in-white. In order to ensure the safe and stable operation of the welding production,
a gun cleaning mechanism can be used to maintain the gun regularly based on its working
cycle and maintenance needs. It can ensure the normal delivery of welding gas, remove the
adhesion of the welding slag, and ensure that the elongation length of the welding wire
is appropriate. Additionally, the service life of the welding gun can be extended, and its
related equipment can guarantee the safety and stability of the BIW welding process.

The welding system failure modes are shown in Table 1 below.

Table 1. Welding system failure mode.

Equipment Name Failure Mode Fault Cause Fault Effect

Welding power supply Welding system without
current

Electronic and electrical
components burned out

Welding cannot be
performed

Wire feeder No normal wire feeding Wire feed drive motor failure Arc break

Welding torch Cannot be soldered Poor contact of welding
torch cable Reduced welding efficiency

Welding pliers Cannot be soldered Electrode cap failure Cannot finish welding

Gun cleaning mechanism
Low injection pressure and low flow

rate of silicone
nozzle

Controller failure Welding slag clogging the torch tip

At present, the body-in-white welding robot is relatively mature, and its failure
probability is generally low. Some possible failures may not appear in the factory log;
the log is only a simple presentation of the failure category, and there is no distinction
between the failures and contact for analysis. The events represent the state of the current
component or system, including top events, basic events, intermediate events, etc.; logic
gates represent the symbols of the logical relationship between events, including “or gate”,
“and gate”, etc. The fault tree analysis of the body-in-white welding robot can deeply
analyze the relationship between faults. This paper combines the events and related logical
relations in the fault tree analysis (FTA) with the establishment of a knowledge base for the
BRB expert system to create a fault tree model for welding robots.

The fault tree of the BIW-welding robot system is built based on the conditions of a
stable factory environment, with no worker operation errors and a smooth external power
supply. In order for the welding robot system to perform the welding work, the robot body
and its related systems must be able to work normally; that is, any failure in any of the
four subsystems of the welding robot causes the welding robot to fail in its normal welding
work. Therefore, the fault of the welding robot system was selected as the top event of the
fault tree. According to the top-down establishment process of the fault tree, starting with
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the fault of the welding robot system as the top event, the overall fault tree of the welding
robot can be listed. By establishing a fault tree model for the welding robot, the correlation
between faults can be clearly represented to clearly understand the cause of the fault and
the fault propagation process of the entire system. Through the detailed decomposition of
the structure and detailed analysis of the working mechanism of the welding robot system,
the overall fault tree of the welding robot is established, as shown in Figure 1.

Figure 1. Welding robot system fault.

2.2. Problem Description of the Welding Robot

The components of the BIW-welding robot are complex and highly correlated, and the
fault tree is used to decompose them layer by layer. The BIW-welding robot is more mature
and less prone to failure. How to establish a complete fault diagnosis model to achieve
the accurate diagnosis of the BIW-welding robot is a problem we attempted to solve in
this paper.

3. Fault Diagnosis Method for BIW-Welding Robot Based on Multi-Layered BRB
3.1. Basic Knowledge of Multi-Layer BRB Model

The rules of BRB are usually determined by domain experts based on the empirical
knowledge and historical data of the system model. Experts determine the initial values
of important parameters of several rules with a belief distribution and embed expert
knowledge into the rules to form a BRB. The multi-layer BRB system is composed of several
sub-rule bases, each consisting of a certain number of rules. The basic structure of the rules
is as follows:

Re
k : If (x1 is Hk

1Λ x2 is Hk
2 . . . xM is Hk

M,
then y is

{
(D1, β1,k), (D2, β2,k) . . . (DN , βN,k)

}
,

with rule θk, attribute weight δ1, δ2, . . . , δM

(1)

where Re
K(e = 1, 2, · · · S) represents the Kth rule of the eth sub-rule base; xi stands for

the attribute input; Hk
i indicates the attribute input reference value (i = 1, 2, · · · , M), y

represents the output result, as the input information for the next layer; Di indicates the
reference level of the output results; βi indicates the belief level relative to the reference
level (j = 1, 2, · · · , N); θk represents the rule weight and δk indicates the attribute weight.

The multi-layer BRB model is shown in Figure 2. If all the input attributes of the
system are divided into n sub-rule bases, xj

i(i = 1, 2, · · · , l j = 1, 2, · · · , m, · · · , n) is rep-
resented as the i-th attribute input in the j-th rule base BRBj (j = 1, 2, · · · , m, · · · , n),
(j = 1, 2, · · · , m, · · · , n) represents the output at the jth rule base, and the output of the
sub-rule base is used as the input to the next level rule base, which is iterated until state yn
is reached.
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Figure 2. The basic structure of the multi-layer BRB model.

The multi-layer BRB model can deal with the problems of uncertainty and ambiguity
more accurately through the reasoning and combination of multiple levels and propose
higher reliability and precision of reasoning. The rule base and belief assignment function
at each level can be interpreted and parsed, which is convenient for users to conduct model
analysis and optimization. At the same time, layers can be added or deleted according to
specific problem requirements and can more flexibly adapt to the application requirements
of different scenarios.

3.2. Establishment of Multi-Layer BRB Diagnosis Model

Bayesian networks can be used to represent causal relationships between variables
using directed acyclic graphs. In Figure 3, the logical relationships in the fault tree corre-
spond to the Bayesian network. Parent nodes in Bayesian networks describe basic events in
fault trees, and child nodes describe the top and middle events in the fault tree; conditional
probabilities are used to describe the logical relationships constructed by the “with” and
“or” gates.

Figure 3. Transformation of fault trees and Bayesian networks.

In actual working conditions, the specific content of the fault description includes
basic events and top events, which have different states. It can be supposed that the
basic events X1 and X2 have two states: M1 and M2 states. They can be expressed as
AX1 =

{
A1, A2, . . . , AM1

}
and AX2 =

{
A1, A2, . . . , AM2

}
, respectively. The top event has

a status that can be expressed as {D1, D2, . . . , DN}. As shown in Figure 4, the parent and
child nodes in the Bayesian network can be represented as:
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Figure 4. Node representation of Bayesian networks.

The conditional probability reasoning between parent and child nodes in Bayesian
networks represents the nonlinear relationship between them. Combined with the con-
struction process of the BRB network, the Bayesian network fragment in the above figure
can be naturally converted into a BRB. The Kth rule in BRB can be expressed as:

Rk : If (X1 is Ak
1) ∧ (X2 is Ak

2), then
{
(D1, β1,k), (D2, β2,k) . . . (DN , βN,k)

}
,

with a rule weight θk (k = 1, 2, . . . , L) and attribute weight δk1, δk2, . . . , δkTk

(2)

where the reference values of prerequisite attributes X1 and X2 are AX1 =
{

A1, A2, . . . , AM1

}
and AX2 =

{
A1, A2, . . . , AM2

}
, respectively.

Figure 5 shows an example of a fault tree for a welding robot. Combined with the
multi-layer model, this can be divided into two layers and five sub-rule base systems,
where the inputs of the first four sub-rule bases are the corresponding failure faults of each
system component, and the inputs of the first four sub-rule bases are the outputs for the
fifth sub-rule base. Sub-rule base five is the first layer of the welding robot fault diagnosis
model. Meanwhile, it can diagnose the body’s welding robot system. The second level is
to diagnose each component in the servo drive system failure, including the robot body
failure, welding system failure, and control system failure, respectively. It is divided into
four sub-rule bases in total, and the welding robot diagnosis model based on multi-layer
BRB is established by using the expert’s experience, knowledge, and input monitoring
quantity. The model can judge the fault of the welding robot system by inputting the
monitoring quantity. Compared with the single-layer BRB, the established multi-layer BRB
effectively avoids the problems of the combination explosion and parameter optimization
caused by the BRB model.

Figure 5. Multi-layer BRB model for diagnosis of welding robot systems.
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3.3. Reasoning and Optimization Based on Multi-Layered BRB Fault Diagnosis Model
3.3.1. Model Reasoning

When the input feature parameters reach the BRB model, the reasoning of the model
is mainly realized through the evidence reasoning (ER) algorithm. The specific steps for
this are as follows:

1. The matching degree of the input reference value can be found:

αk
i =

Al+1
i −Xi

Al+1
i −Al

i
k = l(Al

i ≤ Xi ≤ Al+1
i )

αk
i = 1− αk

i k = k + 1
αk

i = 0 k = 1, · · · , N(k 6= l, l + 1)

(3)

where ak
i denotes the match of the reference value Ai for the ith input Xi.

2. Calculation of activation weights The main logic gates used in the FTA are the
“with” and “or” gates, so the rules are activated and calculated according to the
conversion rules.

3. ER inference algorithm The belief level of each evaluation result is generated using
the ER inference algorithm with the following expressions:

β̂n =

µ×
[

L
∏

k=1

(
ωkβn,k + 1−ωk

N
∑

n=1
βn,k

)
−

L
∏

k=1

(
1−ωk

N
∑

n=1
βn,k

)]
1− µ×

[
L
∏

k=1
(1−ωk)

] (4)

4. Output results The final output of the BRB model reasoned by the ER algorithm is:

output =
N

∑
n=1

Dnβn (5)

3.3.2. Parameter Optimization of the Model

The initial parameters of the BRB model are given according to expert experience and
expert knowledge. However, the limitations of the expert’s knowledge on the expertise
can make the given parameters inaccurate. In this paper, the Projection Covariance Matrix
Adaption Evolution Strategy (P-CMA-ES) algorithm with projection operation was used to
optimize the parameters of the fault diagnosis model for updating.

The constraints on the BRB model parameter vector V = [θ1, · · ·, θk, · · ·, δ1, · · ·, δm, βk
1, · · ·, βk

n]
T

were:
minMSE(y(θk, δm, βk

n)) (6)

s.t. 0 ≤ θk ≤ 1
0 ≤ βn,k ≤ 1, n = 1, 2, · · · , N

N
∑

n=1
βn,k ≤ 1, k = 1, 2, · · · , L

0 ≤ δi ≤ 1, i = 1, 2, · · · , M

(7)

The objective function was:

MSE =
1
T

T

∑
i=1

(yi − yir)
2 (8)

where MSE(y(θk, δm, βk
n)) is the mean squared error (MSE), T is the amount of data and yir

is the true semantic value.
The specific steps of the P-CMA-ES algorithm are as follows:
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1. Initial value setting.

Set the initial parameters x0, C0, σ, g, λ, respectively, to refer to the initial parameter
vector, initial covariance matrix, initial step size, evolutionary algebra, and population size.

2. Generate initial populations.

Xg+1
k ∼ mg + σgN(0, Cg), for k = 1, . . . , ˘ (9)

3. Project the solution to the feasible region.

Xg+1
i (1 + ne × (j− 1) : ne × j) = Xg+1

i (1 + ne × (j− 1) : ne × j)Ψ
−ΨT

e ×
(

Ψe ×ΨT
e

)
× Xg+1

i (1 + ne × (j− 1) : ne × j)×Ψe
(10)

4. Selection and reorganization.

mg+1 =
µ

∑
i=1

ωiX
g+1
i:λ (11)

5. Update the overall covariance matrix

Cg+1 = (1− c1 − c2)Cg + a1 pc
g+1(pc

g+1)T
+

c2
ε

∑
i=1

γi

( (
Xg+1

1:λ −meang
)

ηg

)( (
Xg+1

1:λ −meang
)

ηg

)T (12)

6. Repeat the above operations until the optimal solution is obtained.

The model parameters are optimized and updated through this algorithm. The advan-
tage of this algorithm is that it reduces the complexity of the algorithm, thus improving the
effectiveness of optimization.

4. Case Studies

This article uses the statement that “the attitude and suspension height of the welding
gun is wrong” to explain the realization process of the fault diagnosis of the body welding
robot. Based on previous analysis, the BIW-welding robot has a complex structure, and
there are many reasons for its failure. However, with the continuous iteration of technology,
welding robots are becoming more mature, and their probability of failure is gradually
decreasing. The performance of parts of the BIW-welding robot gradually degrades with
the operation of the welding production process until it fails. When a fault occurs, the staff
will repair and replace the faulty parts and record them in the corresponding logs, which
can be filtered and organized to obtain the fault samples. Based on the fault samples, it is
possible to use FTA and BRB to build a multi-layer fault diagnosis model for BIW-welding
robots. In this paper, the fault data set was determined by the fault log data of a certain
factory, the software simulated fault probability, and 100 sets of data relating to the fault
diagnosis of the body-in-white welding robot were obtained, which established a fault tree
of the welding robot system using the FTA-based method. The obtained data are shown in
Figure 6. Among them, the data indicators used include drive power failure, a low power
supply voltage, motor encoder failure, bearing wear failure, rotor permanent magnet
demagnetization, a welding seam detection sensor failure, welding torch suspension height
sensor failure, a welding torch suspension height sensor failure, the control computer
failure, incorrect settings, and the incorrect settings for torch attitude and levitation height.
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Figure 6. Experimental data. (a) Drive power failure; (b) The supply voltage is too low; (c) Motor
encoder fault; (d) Bearing wear failure; (e) Demagnetization of rotor permanent magnet; (f) Weld
detection sensor failure; (g) Welding gun suspension height sensor fault; (h) Control computer failure;
(i) Setting error; (j) Incorrect setting of welding gun attitude and suspension height.
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In building the fault diagnosis model for welding robots, the FTA was used to build
a fault in the welding robot. The above conversion process was first used to transform it
into a multi-layer BRB, and then the implementation process for the multi-layer BRB fault
diagnosis model. This conversion process is shown in Figure 7.

Figure 7. FTA to BRB conversion.

By observing the transformed BRB model, we can see that it has many attributes and a
complex structure. In order to prevent problems such as combination explosion in BRB, a
multi-layer BRB model was established, and the fault tree was divided into six sub-fault
trees and transformed into a multi-layer BRB. In this section, the servo motor driver failure,
the wrong torch attitude, and suspension height were used as examples for specific analysis.
They correspond to the first sub-rule base and the sixth sub-rule base in the multi-layer BRB,
namely BRB1, and BRB6. In BRB1, the two attributes of the drive power failure and supply
voltage are too low and are represented by X1 and X2, respectively. The belief rules of the
BRB1-based fault diagnosis sub-model for the BIW-welding robot can be described as:

Rk : If (X1 is Ak
1) ∨ (X2 is Ak

2), then
{
(D1, β1,k), . . . , (Dn, βn,k)

}
,

with a rule weight θk (k = 1, 2, . . . , L) and attribute weight δk1, δk2
(13)

In BIW-welding robotic systems, the performance of the system and its components
gradually decrease with time until failure occurs. The collected data usually have a certain
distribution pattern. In the BRB model, the premise attribute reference value directly
determines the distribution of the input data and also determines the number of belief
rules in the model and the accuracy of model reasoning. As a result, this study set the
reference value of the premise attribute based on data fluctuation and a level of uniform
distribution. Then, the reference values and initial parameters of the BRB were determined
according to the analysis results, and the input reference values of the BRB were selected
using the method as described above. X1 and X2 set four reference levels, respectively,
including small (S), medium (M), large (L), and very large (VL). The reference values of
BRB1 are shown in Tables 2 and 3. Four reference levels were set for the servo drive system
failure and control system failure: small (S), medium (M), large (L), and very large (VL).
The reference values of BRB6 are shown in Tables 4 and 5.

Table 2. X1 Reference values in BRB1.

S M L VL

0.04 0.043 0.046 0.048
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Table 3. X2 Reference values in BRB1.

S M L VL

0.01 0.012 0.014 0.016

Table 4. Fault reference value of servo drive system in BRB6.

S M L VL

0.04 0.043 0.046 0.048

Table 5. Control system fault reference value in BRB6.

S M L VL

0.272 0.277 0.282 0.286

According to the above setting of the reference level and reference value, a BIW-
welding robot fault diagnosis model was established. The BRB1 model contains 16 belief
rules, and the BRB6 model contains 16 belief rules. The cumulative sum can be set to one to
obtain the initial fault diagnosis model. Tables 6 and 7 in the figure below show the initial
parameters of the BRB1 model and the BRB6 model, respectively. The number of iterations
for the P-CMA-ES algorithm can be set to 100, and the output results of the BRB1 and BRB6
models are shown in Figures 8 and 9.

Table 6. Initial parameters of BRB1.

Rule Rule Weight Input Result

1 1 S∧S (1 0 0 0)
2 1 S∧M (0.8 0.1 0.1 0)
3 1 S∧L (0.5 0.4 0 0.1)
4 1 S∧VL (0.4 0.5 0 0.1)
5 1 M∧S (0.3 0.6 0.1 0)
6 1 M∧M (0.9 0 0.1 0)
7 1 M∧L (0.8 0.2 0 0)
8 1 M∧VL (0.5 0.4 0 0.1)
9 1 L∧S (0.4 0.5 0 0.1)
10 1 L∧M (0.2 0.7 0 0.1)
11 1 L∧L (0.5 0.4 0 0.1)
12 1 L∧VL (0.2 0.35 0.3 0.15)
13 1 VL∧S (0.4 0.4 0.1 0.1)
14 1 VL∧M (0.4 0.4 0 0.2)
15 1 VL∧L (0.2 0.0.4 0.3 0.1)
16 1 VL∧VL (0.1 0.5 0.3 0.1)

Table 7. Initial parameters of BRB6.

Rule Rule Weight Input Result

1 1 S∧S (1 0 0 0)
2 1 S∧M (0.75 0.1 0.15 0)
3 1 S∧L (0.4 0.4 0.1 0.1)
4 1 S∧VL (0.4 0.4 0 0.2)
5 1 M∧S (0.2 0.6 0.2 0)
6 1 M∧M (0.8 0 0.1 0.1)
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Table 7. Cont.

Rule Rule Weight Input Result

7 1 M∧L (0.7 0.2 0.1 0)
8 1 M∧VL (0.4 0.4 0 0.2)
9 1 L∧S (0.3 0.6 0 0.1)
10 1 L∧M (0.2 0.6 0.1 0.1)
11 1 L∧L (0.4 0.4 0 0.2)
12 1 L∧VL (0.2 0.15 0.5 0.15)
13 1 VL∧S (0.2 0.4 0.3 0.1)
14 1 VL∧M (0.3 0.4 0 0.3)
15 1 VL∧L (0.2 0.2 0.5 0.1)
16 1 VL∧VL (0.2 0.4 0.3 0.1)

Figure 8. BRB1 output results.

Figure 9. BRB6 output results.
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Analyzing the output results of BRB1 and BRB6 showed that the MSE of the BRB1
model was 5.385 × 10−7, and the MSE of the BRB6 model was 8.598 × 10−9. The output of
the model in this paper was found to fit the real values of torch attitude and suspension
height failure well, which also proved the advantage of the model numerically.

In order to further verify the effectiveness of the proposed method in the BIW-welding
robot fault diagnosis, a comparative experiment was conducted to compare with other
modeling methods. Currently, commonly used fault diagnosis methods include fuzzy
C-means clustering (FCM), the BP neural network, and RBF neural network, so this model
can be compared with these three methods for verification. The data adopt the above
100 sets of fitted welding torch attitude and the true value of the suspension height fault.
The comparison graph is shown in Figure 10. For comparison, the evaluation results of
several methods and the mean square error (MSE) of each method were calculated. MSE
is a common comparison method of the “average error”. The value of MSE can provide
a measure of the quality of a model. Finally, the mean square error (MSE) can be used as
a judgment criterion for the fault diagnosis model to evaluate the fault diagnosis of the
BIW-welding robot.

Figure 10. Comparison of this model with other methods. (a) Comparison chart of FCM method and
real value. (b) The comparison chart of the model and the real value in this paper. (c) Comparison
chart of BP neural network and real value. (d) Comparison chart of RBF method and real value.

The specific mean square error value is shown in Figure 11 below.
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Figure 11. Comparison of mean square error of different methods.

The curve trend of each fault diagnosis model can be seen in Figure 10, in which the
blue curve represents the real value, while the other color curves represent the trend curve
obtained through different fault diagnosis models. It can also be seen that the curve trend of
the model in this paper and the real data have the best-fitting effect. The RBF neural network
is slightly less effective than this model, and the curve has the same trend as the data as a
whole. The effect of the BP neural network is not good, and the curve is only partly similar
to the trend of the data. The fuzzy C-means clustering (FCM) curve fluctuates significantly,
and it is difficult to express a good diagnostic effect. Meanwhile, Figure 11 illustrates the
validity of the above analysis in terms of data. According to Figure 11, it can be seen that
the MSE of the model in this paper reached a minimum value of 8.598 × 10−9, while the
MSE of FCM was 1.055598 × 10−6, the MSE of a BP neural network was 5.534598 × 10−7,
and the MSE of the RBF neural network was 1.026598 × 10−7. The results obtained in
Figures 10 and 11 are consistent, illustrating the validity of the model.

The model can be trained by combining testing data and expert knowledge and has
a high training accuracy. At the same time, the effectiveness of the method in this paper
was verified under the conditions of a complex structure and mechanism and difficult data
acquisition. We can assume that the simulated data used in this paper were completely
reliable. However, in actual working conditions, there were still deviations in the data
we obtained, which may be due to the inaccurate data caused by the quality of the sensor.
This situation affects the reliability of the data we use. Therefore, multi-level BRB models
considering data reliability need further research. Additionally, future work may have
better engineering implications.

5. Conclusions

This paper proposes a multi-layer BRB model for the fault diagnosis of body-in-white
welding robots. This model can improve the fault diagnosis accuracy for a welding robot.
In the proposed method, the multi-layer BRB model was constructed by transforming the
results into BRB belief rules through the fault tree analysis of the BIW-welding robot. Mean-
while, updating and optimizing the model parameters through the P-CMA-ES algorithm
can ameliorate the interference of some other factors with the model diagnosis results. This
model can be applied to the fault diagnosis of welding robots, and the results show that,
when compared with other models, it has a better diagnostic effect.
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The model can make the results more reliable than traditional single-expert knowledge
by utilizing the fusion of data and experience. Through the combination of the fault tree and
multi-layer BRB model, the efficient diagnosis of other complex equipment can be realized.
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