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Abstract: The OPF problem has significant importance in a power system’s operation, planning,
economic scheduling, and security. Today’s electricity grid is rapidly evolving, with increased
penetration of renewable power sources (RPSs). Conventional optimal power flow (OPF) has non-
linear constraints that make it a highly non-linear, non-convex optimization problem. This complex
problem escalates further with the integration of renewable energy resource (RES), which are generally
intermittent in nature. This study suggests a new and effective improved optimizer via a TFWO
algorithm (turbulent flow of water-based optimization), namely the ITFWO algorithm, to solve
non-linear and non-convex OPF problems in energy networks with integrated solar photovoltaic
(PV) and wind turbine (WT) units (being environmentally friendly and clean in nature). OPF in the
energy networks is an optimization problem proposed to discover the optimal settings of an energy
network. The OPF modeling contains the forecasted electric energy of WT and PV by considering the
voltage value at PV and WT buses as decision parameters. Forecasting the active energy of PV and
WT units has been founded on the real-time measurements of solar irradiance and wind speed. Eight
scenarios are analyzed on the IEEE 30-bus test system in order to determine a cost-effective schedule
for thermal power plants with different objectives that reflect fuel cost minimization, voltage profile
improvement, emission gases, power loss reduction, and fuel cost minimization with consideration of
the valve point effect of generation units. In addition, a carbon tax is considered in the goal function
in the examined cases in order to investigate its effect on generator scheduling. A comparison of the
simulation results with other recently published algorithms for solving OPF problems is made to
illustrate the effectiveness and validity of the proposed ITFWO algorithm. Simulation results show
that the improved turbulent flow of water-based optimization algorithm provides an effective and
robust high-quality solution of the various optimal power-flow problems. Moreover, results obtained
using the proposed ITFWO algorithm are either better than, or comparable to, those obtained using
other techniques reported in the literature. The utility of solar and wind energy in scheduling
problems has been proposed in this work.

Keywords: power systems operation; metaheuristic algorithm; renewable energy resources;
optimization; greenhouse gas emissions

1. Introduction
1.1. Motivation

The optimal power flow (OPF) is an optimization method to minimize a specific
optimization benchmark while satisfying security, physical and feasibility limits. The
various OPF problems have been broadly applied in recent studies, and have served as
a multi-model, non-linear, and non-convex optimization problem [1,2]. In the last two
decades, various OPF objective functions had a grandness due to the quick adoption of
divided power resources in an energy network [3]. The accretion of divided and periodic
renewable power sources (RPSs), as with wind energy (WE) and photovoltaic (PV) systems,
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into modern energy networks has generated novel types of problems for managing and
operating the energy network [4,5]. Optimizing the various OPF problems has become
more intricate with the enormous incorporation of RPSs that constrain volatile dynamics
for the energy network due to their uncertainty [6,7].

Conventional search approaches, such as quadratic programming (QP) [8], and non-
linear programming (NLP) [9–11] presented great convergence trends in optimizing the
objective functions of the different OPF problems; however, these methods apply theo-
retical hypotheses not suitable for real-world problems, as they have non-smooth and
non-differentiable objective functions [12–14]. In addition, the preceding methods some-
times fail to show the main trends of the objective function as a convex OPF function [12].
Therefore, metaheuristics have been applied to dominate the above-mentioned weak-
nesses [12,15].

1.2. Literature Review

The following algorithms have been successfully applied to optimize various OPF
problems: manta ray foraging optimizer (MRFO) [3], grey wolf optimization (GWO) [16,17],
a parallel genetic algorithm (GA) (EPGA) [18], multi-objective electromagnetism-like al-
gorithm (MOELA) [19], a distributionally robust approach for OPF [20], a combination
firefly-bat algorithm (HFBA-COFS) [21], social spider optimization (SSO) [22], solving
OPF by GA and teaching-learning-based optimization (TLBO) (G-TLBO) [23], a bacte-
rial foraging algorithm (BFA) [24], various differential evolution (DE) algorithms [25–31],
Harris hawks optimization (HHO) [32], cuckoo search algorithm (ECSA) [33,34], chaotic
invasive weed optimization algorithms (CIWOs) [35], multi-objective dynamic OPF (MOD-
OPF) [36], salp swarm algorithm (SSA) [37], TLBO with Lévy mutation (LTLBO) [38],
voltage stability constrained OPF (VSC-OPF) [39], considering effects of solar position [40],
the hybridization of PSO with GWO, namely a PSO-GWO algorithm [41], symbiotic or-
ganisms search (SOS) [42], artificial bee colony (ABC) algorithms [43–45], group search
optimization (GSO) [46,47], a new combine algorithm, SFLA-PSO [48], a colliding bodies
optimization (CBO) [49], tunicate swarm algorithm (TSA) [50], a modified hybrid PSO [51]
and GSA with chaotic maps (CPSOGSA) [52], sine-cosine algorithms (SCAs) [53,54], chaotic
bonobo optimizer (CBO) [55], a honey bee mating optimization (HBMO) [56], a heap-based
optimization (HBO) [57], slime mold algorithm (SMA) [58], mayfly algorithm (MA) [59],
BAT search algorithm [60], moth swarm algorithms (MSA) [61,62], bird swarm algorithm
(BSA) [63], a new evolutionary algorithm (EA) [64], etc.

1.3. Contribution and Paper Organization

In 2021, Ghasemi et al. [65] introduced the TFWO algorithm, which is inspired by
the formula of turbulent fluctuations in water flow in nature. The recent research has
demonstrated that TFWO can be effectively used to find optimal solutions to a variety
of optimization problems. For example, TFWOs were used for optimal reactive power
distribution (ORPD) in [66]. The chaotic TFWO (CTFWO) was introduced in [67] as a
means of reducing voltage deviation (VD) and real power loss. The TFWO model has been
successfully used to solve problems related to unit commitment model integration with
electric vehicles in [68]. An estimation of the correlation parameter of the Kriging method,
enhancing the accuracy of the Kriging surrogate modeling (KSM) used to approximate the
complex and implicit performance functions in [69]. To solve short-term hydrothermal
scheduling, the authors of [70,71] have proposed quasi-oppositional TFWO (QOTFWO).
The cascading nature of hydro plants, valve-point loading (VPL), and multiple fuel sources
have been assumed in their modeling. Through a comprehensive comparison of three
robust performance and fast convergence algorithms, ref. [72] proved that the TFWO can
optimize an isolated hybrid microgrid. The TFWO also have been applied for proportional
integral derivative (PID) controller to ensure reliable operation of active foil bearings [73],
and optimal allocation of shunt compensators in distribution systems [74]. Based on the
results of [74], the TFWO algorithm was found to be effective in reducing power loss,
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enhancing the voltage profile, and determining the type, size, and location of the reactive
power compensators (RPCs).

In different patterns of partial shading, TFWO was shown to be capable of maxi-
mizing duty cycle of DC/DC converters to achieve global optimal power [75]. In [76],
the performance of the TFWO was compared and validated against seven well-known
algorithms. As a result of optimizing photovoltaic models, the TFWO were able to pro-
vide the minimum fuel cost and significant robust solutions to the ELD problem over
all networks tested in [77,78]. It was demonstrated in [77,78] that the estimated power-
voltage (P-V) and current-voltage (I-V) curves achieved by the TFWO were very close to
the experimental data.

It has been demonstrated in recent research that TFWO can be effective in solving
real-world problems. It is worth noting that, due to its non-convex and non-linear nature,
the OPF problems can be extremely challenging. The robustness and convergence speed
of existing algorithms, such as turbulent water flow (TFWO), need to be improved in
order to tackle such a complex problem. An innovative and successful improvement of the
TFWO (ITFWO) approach is presented in this paper to address a variety of OPF problems
encountered in hybrid power systems. To demonstrate the algorithm’s ability to solve
OPF problems, this paper compares the developed algorithm with existing state-of-the-
art methods.

This paper highlights the following points:

• Enhancing the TFWO algorithm’s convergence speed, exploration capabilities, and
exploitation capabilities.

• The original TFWO algorithm has been improved by the addition of an enhanced
operator to update the population, which increases the local search capability of the
algorithm.

• The proposed improved algorithm is successfully applied to solve the non-convex and
non-linear OPF problems considering different objective functions.

• The magnitude of the voltage at the WT and PV buses is considered a decision variable,
while the forecasts of the WT and PV power generation are considered dependent
variables.

The paper has been arranged as follows. The modeling of OPF is characterized in
Section 2. The optimization process of TFWO and ITFWO is characterized in Section 3.
Section 4 illustrates the obtained optimal results. Finally, the conclusions of this paper are
supplied in Section 5.

2. Problem Formulation

OPF combining the uncertainties of PV and WT units has been formulated in this [79]:

min F(y, x) (1)

g(y, x) = 0 (2)

h(y, x) ≤ 0 (3)

xεX (4)

where: the objective function (F) to be solved; x indicates vector of decision parameters as
Equation (5), output active power (PGi) excluding at the slack bus (i = 1: NG, the number of
units), generator voltages including PV and WT (VGi; i = 1: NG), tap settings of transformer
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(Ti) (i = 1: NT, the number of regulating transformer), and (QCi) (i = 1: NC, the number of
VAR compensators) is the shunt VAR compensations [79]:

x =

[
PG2, . . . , PGNG, VG1, . . . , VGNG, VWT , VPV ,

T1, . . . , TNT , QC1, . . . , QCNC

]
(5)

y =

[
PG1, , VL1, . . . , VLNL, QG1, . . . , QGNG,

QWT , VPV , Sl1, . . . , SlNTL

]
(6)

Here, y shows the resultant of dependent decision parameters including of voltages
at load bus (VLi; i = 1: NL, the size of load buses), slack bus power (PG1), output reactive
power of any generator (QGi), and loads of transmission line (Sli) (i = 1: NTL, the size of
transmission lines).

2.1. Constraints

The basic OPF Equation (2) indicates the equality constraints [79].

Pi −
NB
∑

j=1
ViVj

[
Bij × sin (δij) + Gij × cos (δij)

]
i = 1, . . . , NB

(7)

NB: the size of busses; Pi: active power; Gij: the real section of bus admittance matrix;
δij: the voltage angle between i and j; Bij: the imaginary section of bus admittance matrix.

Qi −
NB

∑
j=1

ViVj
[
−Bij × cos (δij) + Gij × sin (δij)

]
(8)

Qi: reactive power injected at bus i.
The inequality limits, i.e., Equation (3), includes the voltage magnitude limits, the

generating units’ reactive power constraints, and power flow limits of the branches, which
are expressed as follows [79]:

Voltage magnitudes:
Vmin

Li ≤ VLi ≤ Vmax
Li

(9)

Generator’s reactive power:
Qmin

Gi ≤ QGi ≤ Qmax
Gi

(10)

Branch flow limits:
Sli ≤ Smax

li
(11)

Equation (4) shows the area of feasible search space for any OPF function including
the following limits:

Pmin
Gi ≤ PGi ≤ Pmax

Gi (12)

Vmin
Gi ≤ VGi ≤ Vmax

Gi (13)

Tmin
i ≤ Ti ≤ Tmax

i (14)

Qmin
Ci ≤ QCi ≤ Qmax

Ci (15)
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2.2. Objective Functions

The principal optimization objective F has contemplated in the objective functions is
the fuel cost of the energy units (Fcost). The cost of any generator is shown as a second-class
optimization problem of the generation power of any unit (PG):

minFcost(x, y) = min
NG

∑
i=1

(αi + biPGi + ciP2
Gi) (16)

where ai, bi and ci show the cost factors of the ith generator.
To decrease active loss (Ploss) in the energy network OPF function for optimization

has showed:

minPloss(x, y) = min
NTL

∑
i=1

NTL

∑
j = 1
j 6= i

(
Gij V2

i + BijV2
j − 2Vi Vj cos δij

)
(17)

The OPF function to optimize the voltage deviations (VD) is as follows:

minVD(x, y) = min
NL

∑
i=1

∣∣∣Vi −Vre f
i

∣∣∣ (18)

where Vi indicates the voltage value of the ith bus, and Vi
ref has been contemplated as 1 p.u.

In this study, the emission level of the two significant pollutants, sulfur oxides (SOx)
and nitrogen oxides (NOx), are considered to be minimized [80]:

minEmission(x, y) = min
NG

∑
i=1

(
αi + ξi exp(θiPGi) + γiP2

Gi + βiPGi

)
(19)

where ξi (ton/h), γi (ton/h MW2), βi (ton/h MW), αi (ton/h), and θi (1/MW) are pollution
factors of ith unit.

So, the main function is considered as follows:

J =
NG
∑

i=1
Fi ( PGi) + λP( PG1 − Plim

G1 )2 + λQ
NG
∑

i=1
( QGi −Qlim

Gi )
2

+ λV
NL
∑

i=1
(VLi −VLlim

i )
2
+ λS

NTL
∑

i=1
( Si − Slim

i )
2

(20)

where λQ, λV, λP, and λS show the penalty coefficients; and xlim shows a variable as an
auxiliary variable:

xlim =


xmin; x < xmin

xmax; x > xmax

x xmin ≤ x ≤ xmax
(21)

2.3. Modelling of RPSs
2.3.1. Modelling of WT Units

The generation power of a WT unit at wind speed v, is modeled as follows [79]:

PWT(v) =


0 v ≤ vci
v−vci

vn−vci
Pwtn vci ≤ v ≤ vn

Pwtn vn ≤ v ≤ vco
0 v ≥ vco

(22)

where vco is cut-out wind speed, vci is cut-in wind speed; vn is nominal wind speed; and
Pwtn, is the nominal generation active energy of the wind turbine.
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The non-linear characteristics of wind speed in a predefined process at a special locality
have been shown via Weibull PDF:

fv(v) =
K
C

( v
C

)K−1
e−(

v
C )k

, v > 0 (23)

The CDF (cumulative distribution function) for the Weibull dispersion (WD) is:

Fv(v) = 1− e−(
v
C )k

(24)

v = C(− ln(r))
1
k (25)

where fv(v) describes Weibull PDF of v; k and C are the shape and scale parameters of WD;
r is a haphazard value uniformly generated on 0 and 1.

The active power of the WT unit has been modeled via the probability of any feasible
state for that time interval [79]:

PWT =

Nv
∑

g=1
PWTg. fv

(
vt

g

)
Nv
∑

g=1
fv

(
vt

g

) (26)

where fν(νg
t) is the probability of v for state g during the special space t; PWTg is the out

active power of WT computed by (22) for v = vt
g; vt

g is the gth state of v at the tth time space.

2.3.2. Modelling of PV Units

The active energy provided of a PV generator is associate on the solar irradiancy [79]:

PPV(S) =

 Ppvn

(
S2

RCSstc

)
S ≤ RC

Ppvn

(
S

Sstc

)
S ≥ RC

(27)

where Rc is a particular irradiancy point; Sstc is the solar irradiancy at test states; S is the
solar irradiancy on the PV surface (W/m2); Ppvn is the nominal active power of the PV
generator.

Beta PDF role of S (fs(S)) has been proposed to formulate the dynamic nature of solar
irradiancy [79,81]:

fs(S) =

{
Γ(α+β)

Γ(α)Γ(β)
Sα+1(1− S)(β−1) f or 0 ≤ S ≤ 1, α ≥ 0, β ≥ 0

0, otherwise
(28)

where Γ represents Gamma role; α, β indicates its shape variables.
The forecasted active power of PV (PPVg) at the tth time interval and the gth state of

solar irradiancy (Sg
t) has been calculated as follows [79]:

PPV =

Ns
∑

g=1
PPVg. fs

(
St

g

)
Ns
∑

g=1
fs

(
St

g

) (29)
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3. The Proposed Improved Optimizer
3.1. The Basic TFWO
3.1.1. Formation of Whirlpools

Firstly, the particle (X) of TFWO (Np: the size of swarm) is distributed similarly
between NWh swarms, and then the best population of the any swarm or whirlpool (Wh)
has been defined as the center of the swarm and its cavity that pulls the particles based on
their spaces to the whirlpool.

3.1.2. Pulling the Objects

In a whirlpool the objects are whirling with their angle (δ) circa their whirlpool’s center,
the novel location (Xi

new) of the ith object is gone as same as Whj −∆Xi, and method to it.
In addition, δi at any generation is modifying: δnew

i = δi + (rand)2 × π:

∆t =
f (Wht)

|sum(Xi)− sum(Wht)|−0.5 (30)

where Whw is Wh with an up cost of ∆t and Whf is Wh with a minimum cost of ∆t,
respectively.

∆Xi = (|− sin(δnew
i ) + cos(δnew

i )|+ 1)×
(
− sin(δnew

i )× (Whw − Xi) + cos(δnew
i )×

(
Wh f − Xi

))
(31)

Xnew
i = Whj − ∆Xi (32)

3.1.3. Centrifugal Force (FEi)

FEi is formulated according to δnew
i , and if FEi is more than the random number r, FEi

is executed for the elected kth dimension randomly as Equation (34):

FEi =
(
(sin(δnew

i ))2 × (cos(δnew
i ))2

)2
(33)

xi,k = −xi,k +
(

xmin
k + xmax

k

)
(34)

3.1.4. Interplay between the Swarms

Whirlpools (swarms) displace and interact together. To the determined ∆Whj, the
nearest swarm is determined according to its cost and the minimum value of Equation (35)
and based on the Equations (36) and (37) and according to the amount of δj, change of the
whirlpool’s location is determined as follows.

∆t =
f (Wht)∣∣sum(Wht)− sum

(
Whj

)∣∣−1 (35)

∆Whj =
∣∣∣sin

(
δnew

j

)
+ cos

(
δnew

j

)
+
∣∣∣× rand(1, D)×

(
Wh f −Whj

)
(36)

Whnew
j = Wh f − ∆Whj (37)

Optimization process of TFWO has been given in Figure 1.



Appl. Sci. 2023, 13, 4760 8 of 25

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 25 
 

new
j f jWh Wh Wh= − Δ

 
(37)

Optimization process of TFWO has been given in Figure 1. 

{ }
( ) ( ) ( ) 0.5

for t=1:

*

end
with minimum valueof
with maximum valueof

t t

Wh

t i

f t

w t

j

f Wh sum Wh sum X

Wh Wh
Wh Wh

N −

Δ = −

= Δ
= Δ  

( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

2new

new new new new

new

1 cos sin cos sin ;

;

i i

i i i i f i i w i

i j i

rand

X Wh X Wh X

X Wh X

δ δ π

δ δ δ δ

= + ∗

Δ = + − ∗ ∗ − − ∗ −

= − Δ
 

( )( )
( ) ( )

( ) ( )

min max , , ;

;

;

 new new min max
i i

new
i i

new
i i

new
i i

X X X X

if f X f X

X X

f X f X

end

=

≤

=

=

 

( )( ) ( )( )

( )
( )

( ) ( )

22 2new new

min max
, ,k

sin * cos

round 1 rand *( 1)

i i i

i

i k i k k

new
i i

FE

if rand FE
k D

x x x x

f X f X

end

δ δ =  
 

<
= + −

= − + +

=

 
{ }

( )
( ) ( ) 1

for t=1:

end
with minimumvalueof

t
t

t j

f t

Wh j

f Wh

sum Wh sum Wh

Wh Wh

N

−

−

Δ =
−

= Δ  
 

( ) ( ) ( ) ( )
new

new new

new
1 2

;

sin cos 1,
j f j

j j j f j

j j

Wh Wh Wh

Wh rand D Wh Wh

rand rand

δ δ

δ δ π

= − Δ

Δ = + + ∗ ∗ −

= + ∗ ∗
 

( )( )
( ) ( )

( ) ( )

new new max

new

new

new

min max , , ;

;

 

;

min
j j

j j

j j

j j

Wh Wh X X

if f Wh f Wh

Wh Wh

f Wh f Wh

end

=

≤

=

=

  
Figure 1. Optimization process of TFWO. Figure 1. Optimization process of TFWO.
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3.2. Improved TFWO (ITFWO)

In this paper is proposed a novel ITFWO in optimizing very complex real-world
problems. Equation (38) shows the new learning and effective search in the proposed
ITFWO optimizer. In Equation (38), local and global searches are integrated, similar to
the original algorithm, and also separated from each other, which makes the population
move towards the global optimum with different equations of motion and with different
accelerations, and the search range of the population effectively increases. This new
equation makes the proposed algorithm much better at searching both locally and globally.
As a result, the proposed algorithm can solve more problems.

 ∆Xi =
∣∣cos

(
δnew

i
)∣∣× (Wh f − Xi

)
i f f

(
Wh f

)
≤ f (Whw)

∆Xi =
∣∣sin

(
δnew

i
)∣∣× (Whw − Xi) i f f

(
Wh f

)
> f (Whw)

i f rand ≤ 0.5

∆Xi = cos
(
δnew

i
)
×
(

Wh f − Xi

)
− sin

(
δnew

i
)
× (Whw − Xi) i f rand > 0.5

(38)

Xnew
i = Whj − ∆Xi (39)

4. ITFWO for Various OPF Problems

The TFWO and ITFWO are used on the IEEE 30 bus test system to optimize eight
various types of OPF problem, the generation size is 400 for two algorithms TFWO (with
NWh = 3 and Npop = 45) and ITFWO (with NWh = 3 and Npop = 45). Test network information
shown in [80], as shown in Figure 2 and also in Table 1.
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Table 1. ITFWO’s simulation optimal results.

Optimal Values
Case:

1 2 3 4 5 6

PG1 177.1347 102.6206 176.3672 139.9997 198.7625 122.3638
PG2 48.7297 55.5463 48.7697 55.0000 44.8823 52.4055
PG5 21.3767 38.1105 21.6725 24.0139 18.4464 31.4755
PG8 21.2495 35.0000 22.2509 34.9996 10.0000 35.0000
PG11 11.9308 30.0000 12.2195 18.4412 10.0001 26.7264
PG13 12.0000 26.6523 12.0006 17.6877 12.0000 21.0223
VG1 1.0838 1.0698 1.0420 1.0744 1.0813 1.0728
VG2 1.0606 1.0576 1.0227 1.0572 1.0579 1.0572
VG5 1.0337 1.0359 1.0156 1.0313 1.0306 1.0327
VG8 1.0382 1.0438 1.0076 1.0392 1.0371 1.0409
VG11 1.0996 1.0831 1.0480 1.0876 1.0998 1.0380
VG13 1.0514 1.0573 0.9874 1.0674 1.0642 1.0252
T6–9 1.0708 1.0862 1.0694 1.0247 1.0445 1.0972
T6–10 0.9185 0.9000 0.9000 0.9580 0.9700 0.9499
T4–12 0.9768 0.9900 0.9415 1.0015 0.9959 1.0349
T28–27 0.9739 0.9750 0.9710 0.9725 0.9780 1.0048
QC10 2.6779 4.7116 4.9366 4.8400 4.7709 2.9093
QC12 1.2768 0.1325 1.5448 0.0025 1.1157 0.2184
QC15 4.2837 4.4642 4.9993 3.0309 4.3867 3.8418
QC17 5.0000 5.0000 0.0019 4.9531 5.0000 5.0000
QC20 4.3330 4.2529 4.9985 4.8425 4.2343 4.9969
QC21 4.9993 5.0000 4.9996 5.0000 5.0000 4.9998
QC23 3.3775 3.2605 4.9995 2.1931 3.2950 4.3332
QC24 4.9997 5.0000 4.9998 4.9996 4.9999 5.0000
QC29 2.6234 2.5530 2.6538 2.5168 2.5933 2.6286

Cost ($/h) 800.4787 859.0009 803.8167 646.4799 832.1611 830.1598
Emission (t/h) 0.3663 0.2289 0.3639 0.2835 0.4379 0.2531

Power losses (MW) 9.0214 4.5297 9.8804 6.7421 10.6913 5.5935
V.D. (p.u.) 0.9087 0.9275 0.0941 0.9199 0.8625 0.2969

4.1. Basic OPF Solutions

Table 1 shows ITFWO’s simulation optimal results for six types of basic OPF with-
out RPSs.

4.1.1. Type 1: Total Fuel Cost

This type of OPF has been given in Equation (40):

J =
NG
∑

i=1
(αi + biPGi + ciP2

Gi) + λV
NL
∑

i=1
(VLi −VLlim

i )
2
+ λS

NTL
∑

i=1
( Si − Slim

i )
2

+ λQ
NG
∑

i=1
( QGi −Qlim

Gi )
2
+ λP( PG1 − Plim

G1 )2
(40)

Optimization results has been given in Table 1, the illustrate that the objective function
by ITFWO is 800.4787 ($/h) that is better in comparison to the recent methods in the
papers in Table 2 such as MICA-TLA [82], MGBICA [83], SFLA-SA [84], HFAJAYA [85],
TS [86], MSA [80], IEP [87], SKH [88], MRFO [89], GWO [56], ARCBBO [90], MHBMO [29],
PSOGSA [91], ABC [92], MFO [80], AGSO [51], FA [85], DE [93], JAYA [94], EP [95], PP-
SOGSA [96], AO [97], MPSO-SFLA [48], FPA [90] and TFWO. The convergence trends of
the algorithms for this type have been given in Figure 3.
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Table 2. The optimal results for Type 1.

Method Fuel Cost ($/h) Emission (t/h) Power Losses (MW) V.D. (p.u.)

SFLA-SA [84] 801.79 - - -
HFAJAYA [85] 800.4800 0.3659 9.0134 0.9047

TS [86] 802.29 - - -
MSA [80] 800.5099 0.36645 9.0345 0.90357
IEP [87] 802.46 - - -

SKH [88] 800.5141 0.3662 9.0282 -
MRFO [89] 800.7680 - 9.1150 -
GWO [56] 801.41 - 9.30 -

ARCBBO [90] 800.5159 0.3663 9.0255 0.8867
MHBMO [29] 801.985 - 9.49 -
PSOGSA [91] 800.49859 - 9.0339 0.12674

ABC [92] 800.660 0.365141 9.0328 0.9209
MFO [80] 800.6863 0.36849 9.1492 0.75768

AGSO [51] 801.75 0.3703 - -
MGBICA [83] 801.1409 0.3296 - -

FA [85] 800.7502 0.36532 9.0219 0.9205
DE [93] 802.39 - 9.466 -

JAYA [94] 800.4794 - 9.06481 0.1273
EP [95] 803.57 - - -

MICA-TLA [82] 801.0488 - 9.1895 -
PPSOGSA [96] 800.528 - 9.02665 0.91136

AO [97] 801.83 - - -
MPSO-SFLA [48] 801.75 - 9.54 -

FPA [80] 802.7983 0.35959 9.5406 0.36788
TFWO 800.7494 0.3702 9.2996 0.9015
ITFWO 800.4787 0.3663 9.0214 0.9087
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Figure 3. Optimization process for Type 1.

4.1.2. Type 2: Including the Power Loss and the Fuel Cost

For this type of OPF problem, the network losses and the fuel cost are considered as
the objective function, Equations (16) and (17), as given in Equation (44):
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J4 =
NG
∑

i=1
αi + biPGi + ciP2

Gi + φp
NTL
∑

i=1

NTL
∑

j = 1
j 6= i

Gij V2
i + BijV2

j − 2Vi Vj cos δij + λP( PG1 − Plim
G1 )2

+ λS
NTL
∑

i=1
( Si − Slim

i )
2
+ λQ

NG
∑

i=1
( QGi −Qlim

Gi )
2
+ λV

NL
∑

i=1
(VLi −VLlim

i )
2

(41)

where, the amount of φp has been choosen 40 [80].
The achieved optimal variables by ITFWO has been given in Table 1. In addition,

the optimization processes of the problem have been given in Figure 4. The achieved
best objective functions by ITFWO are 859.0009 ($/h) and 4.5297 (MW). By testing the
simulation optimal results in Table 3, the amount of the optimization function that has been
achieved via ITFWO is better in comparison to the other methods.
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Table 3. The optimization results for Type 2.

Method Fuel Cost ($/h) Emission (t/h) Power Losses (MW) V.D. (p.u.) J4

MSA [80] 859.1915 0.2289 4.5404 0.92852 1040.8075
QOMJaya [98] 826.9651 - 5.7596 - 1402.9251

SpDEA [99] 837.8510 - 5.6093 0.8106 1062.223
MOALO [100] 826.4556 0.2642 5.7727 1.2560 1057.3636

MJaya [98] 827.9124 - 5.7960 - 1059.7524
EMSA [101] 859.9514 0.2278 4.6071 0.7758 1044.2354

TFWO 859.2999 0.2292 4.5600 0.9207 1041.6999
ITFWO 859.0009 0.2289 4.5297 0.9275 1040.1889
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4.1.3. Type 3: Including the Voltage Deviation (V.D.) and Fuel Cost

In this type of OPF problems has been considered Fcost and V.D. in order to increase
service and security indexes at buses as follows:

J5 =
NG
∑

i=1
αi + biPGi + ciP2

Gi + φv
NL
∑

i=1
|VLi − 1.0 |+ λP( PG1 − Plim

G1 )2

+ λS
NTL
∑

i=1
( Si − Slim

i )
2
+ λQ

NG
∑

i=1
( QGi −Qlim

Gi )
2
+ λV

NL
∑

i=1
(VLi −VLlim

i )
2

(42)

where, the amount of φv has been choosen 100 [80].
The best setting for control parameters has been achieved by ITFWO has been given

in Table 1. Moreover, the simulation solutions of the methods have been given in Table 4,
ITFWO has significantly decreased this multiobjective OPF. In addition, the optimization
processes of the problem with the studied methods have been in Figure 5.

Table 4. The optimization results for Type 3.

Method Fuel Cost ($/h) Emission (t/h) Power Losses (MW) V.D. (p.u.) J5

SSO [102] 803.73 0.365 9.841 0.1044 814.1700
SpDEA [99] 803.0290 - 9.0949 0.2799 831.0190

MFO [80] 803.7911 0.36355 9.8685 0.10563 814.3541
MPSO [80] 803.9787 0.3636 9.9242 0.1202 815.9987

DA-APSO [103] 802.63 - - 0.1164 814.2700
MNSGA-II [104] 805.0076 - - 0.0989 814.8976
MOMICA [104] 804.9611 0.3552 9.8212 0.0952 814.4811
PSO-SSO [102] 803.9899 0.367 9.961 0.0940 813.3899

TFWO [1] 803.416 0.365 9.795 0.101 813.5160
EMSA [101] 803.4286 0.3643 9.7894 0.1073 814.1586
PSO [102] 804.477 0.368 10.129 0.126 817.0770

BB-MOPSO [104] 804.9639 - - 0.1021 815.1739
TFWO 804.1210 0.3640 10.0753 0.0979 813.9110
ITFWO 803.8167 0.3639 9.8804 0.0941 813.2267
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4.1.4. Type 4: Piecewise OPF Problem

The fuel cost features for the network generators linked at first and second buses are
modeled via a piecewise OPF problem because of various fuel types shown by:

fi(PGi) =

n f

∑
k=1

αi,k + bi,kPGi + ci,kP2
Gi (43)

where ai,k, ci,k, bi,k, are factors for the objective function of ith unit for kth fuel type; nf is the
number of fuel types for ith generator.

The OPF problem for this type is modeled via Equation (44).

J2 =
NG
∑

k=1
αi,k + bi,kPGi + ci,kP2

Gi + λV
NL
∑

i=1
(VLi −VLlim

i )
2
+ λS

NTL
∑

i=1
( Si − Slim

i )
2

+ λQ
NG
∑

i=1
( QGi −Qlim

Gi )
2
+ λP( PG1 − Plim

G1 )2
(44)

Optimization results are in Table 1, which indicate that the objective function via the
ITFWO is 646.4799 ($/h). The best objective function achieved by ITFWO is compared
to the optimal solutions achieved via optimization methods in Table 5 such as IEP [87],
LTLBO [38], FPA [80], MFO [80], SSA [105], SSO [22], MSA [80], MDE [93], GABC [106] and
TFWO, and shows that ITFWO has the lowest objective function in comparison to the other
methods. The convergence trends of the problem are given in Figure 6.

Table 5. The optimization results for Type 4.

Optimizer Fuel Cost ($/h) Emission (t/h) Power Losses (MW) V.D. (p.u.)

IEP [87] 649.312 - - -
LTLBO [38] 647.4315 0.2835 6.9347 0.8896

FPA [80] 651.3768 0.28083 7.2355 0.31259
MDE [93] 647.846 - 7.095 -

GABC [106] 647.03 - 6.8160 0.8010
MFO [80] 649.2727 0.28336 7.2293 0.47024
SSA [105] 646.7796 0.2836 6.5599 0.5320
SSO [22] 663.3518 - - -
MSA [80] 646.8364 0.28352 6.8001 0.84479

TFWO 646.9958 0.2839 6.7999 0.9135
ITFWO 646.4799 0.2835 6.7421 0.9199
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4.1.5. Type 5: OPF Considering VPEs

In this situation, we included valve point loading effects (VPEs) on the generator’s
cost function by adding a sine part to the objective function of the units:

J3 =
NG
∑

i=1
αi + biPGi + ciP2

Gi +
∣∣ei sin

(
fi
(

Pmin
Gi − PGi

))∣∣+ λV
NL
∑

i=1
(VLi −VLlim

i )
2
+ λP( PG1 − Plim

G1 )2

+ λQ
NG
∑

i=1
( QGi −Qlim

Gi )
2
+ λS

NTL
∑

i=1
( Si − Slim

i )
2

(45)

where ei and fi are VPEs cost factors of ith unit.
The achieved optimal variables by ITFWO has been given in Table 1. Table 6 shows

the comparison of the ITFWO with recent modern methods. Based on Table 6, the optimum
objective function has been achieved by ITFWO is 832.1611 ($/h) which is better compared
to solutions of existing methods. The convergence trends of the objective function are
shown in Figure 7.

Table 6. The simulation solutions for Type 5.

Method Fuel Cost ($/h) Emission (t/h) Power Losses (MW) V.D. (p.u.)

PSO [49] 832.6871 - - -
HFAJAYA [85] 832.1798 0.4378 10.6897 0.8578

FA [85] 832.5596 0.4372 10.6823 0.8539
SP-DE [107] 832.4813 0.43651 10.6762 0.75042

TFWO 832.6795 0.4381 10.9230 0.8288
ITFWO 832.1611 0.4379 10.6913 0.8625
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4.1.6. Type 6: Considering the Losses, Voltage Deviation, Emissions and Fuel Cost

In this type, two main kinds of emission gases, SOX and NOX, have been considered,
and the OPF function is determined via Equation (46) to optimize Fcost and V.D., emission,
and Ploss.
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J6 =
NG
∑

i=1
αi + biPGi + ciP2

Gi + φp
NTL
∑

i=1

NTL
∑

j = 1
j 6= i

Gij V2
i + BijV2

j − 2Vi Vj cos δij + φv
NL
∑

i=1
|VLi − 1.0 |

+φemin
NG
∑

i=1

(
αi + βiPGi + γiP2

Gi + ξi exp(θiPGi)
)
+ λS

NTL
∑

i=1
( Si − Slim

i )
2

+ λQ
NG
∑

i=1
( QGi −Qlim

Gi )
2
+ λV

NL
∑

i=1
(VLi −VLlim

i )
2
+ λP( PG1 − Plim

G1 )
2

(46)

The amount of weights have been chosen as in [80] with φp = 22, φv = 21, and φe = 19.
The best setting for control parameters that has been achieved by ITFWO has been

given in Table 1. Moreover, the minimal objective function has been achieved by ITFWO
compared to the optimal solutions achieved by optimization methods in Table 7; it can be
seen that the optimum solution is 964.2606, which is suitable and better in comparison than
the achieved optimal solutions in the recent papers. Furthermore, the convergence trends
of the problem via the studied methods are given in Figure 8.

Table 7. The optimization results for Type 6.

Method Fuel Cost
($/h)

Emission
(t/h)

Power Losses
(MW) V.D. (p.u.) J6

MODA [108] 828.49 0.265 5.912 0.585 975.8740
MOALO [100] 826.2676 0.2730 7.2073 0.7160 1005.0512

J-PPS2 [108] 830.8672 0.2357 5.6175 0.2948 965.1201
MNSGA-II [104] 834.5616 0.2527 5.6606 0.4308 972.9429

SSO [102] 829.978 0.25 5.426 0.516 964.9360
MSA [80] 830.639 0.25258 5.6219 0.29385 965.2907

J-PPS3 [108] 830.3088 0.2363 5.6377 0.2949 965.0228
PSO [102] 828.2904 0.261 5.644 0.55 968.9674
MFO [80] 830.9135 0.25231 5.5971 0.33164 965.8080

J-PPS1 [108] 830.9938 0.2355 5.6120 0.2990 965.2159
BB-MOPSO [104] 833.0345 0.2479 5.6504 0.3945 970.3379

TFWO 830.9726 0.2539 5.6305 0.2994 965.9551
ITFWO 830.1598 0.2531 5.5935 0.2969 964.2606
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4.2. OPF with PV and WT Units
4.2.1. Type 7: Considering the Total Cost

The optimization function is to optimize the total generation cost determined by
Equation (47) as follows:

J7 =
NG
∑

i=1
αi + biPGi + ciP2

Gi +

(
NV
∑

i=1
F cos t(PVi)

)
+

(
NW
∑

i=1
F cos t(WTi)

)
λP( PG1 − Plim

G1 )2 + λS
NTL
∑

i=1
( Si − Slim

i )
2
+ λV

NL
∑

i=1
(VLi −VLlim

i )
2
+ λQ

NG
∑

i=1
( QGi −Qlim

Gi )
2

(47)

The best setting for control parameters that achieved by ITFWO are given in Table 8,
with the highly minimized power generation cost in Type 7 compared to the basic TFWO.
Furthermore, the convergence trends of the problem via the studied methods are shown in
Figure 9.

Table 8. The optimization results for Type 7.

Variables TFWO ITFWO

PG1 (MW) 134.90791 134.90791
PG2 28.6365 27.873
Pws1 43.8208 43.3921
PG3 10 10
Pws2 36.991 36.6362
Pss 34.9256 36.3708

VG1 (p.u.) 1.0722 1.0722
VG2 0.954 1.0572
VG5 1.0996 1.0351
VG8 1.04 1.0397
VG11 1.1 1.0999
VG13 1.0815 1.055

QG1 (MVAR) 13.2357 −1.94508
QG2 −20 13.2188
Qws1 35 23.1987
QG3 34.7168 35.0261
Qws2 29.5148 30
Qss 25 17.5088

Fuelvlvcost ($/h) 441.0225 438.4895
Wind cost ($/h) 246.6480 243.9527
Solar cost ($/h) 94.6478 99.5521
Total Cost ($/h) 782.3182 781.9943
Emission (t/h) 1.76205 1.76224

Power losses (MW) 5.8819 5.7801
V.D. (p.u.) 0.53921 0.46395

4.2.2. Type 8: Considering the Total Cost with Carbon Tax

Carbon tax (Ctax) has been imposed on any unit amount of liberated greenhouse
gases for modelling investment in greener kinds of power such as solar and wind. The
evolutionary function of emissions has been modeled in [27]:

CE = CtaxE (48)

J8 = J7 + CtaxE (49)

Ctax had been considered to be $20 per tonne in [27].
According to the optimal results shown in Table 9, it is clear that the ITFWO achieves

highly stable and quality optimal results in comparison with TFWO.
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Table 9. The optimization results for Type 8.

Variables TFWO ITFWO

PG1 (MW) 123.73211 123.23758
PG2 33.6227 32.2873
Pws1 46.3179 45.6242
PG3 10 10
Pws2 38.9983 38.4356
Pss 36.01 39.0957

VG1 (p.u.) 1.0701 1.0697
VG2 1.0567 1.0562
VG5 1.0356 1.0352
VG8 1.0615 1.0997
VG11 1.0982 1.0983
VG13 1.0503 1.0511

QG1 (MVAR) −3.04844 −3.18412
QG2 10.9594 10.7783
Qws1 22.2316 22.2315
QG3 40 40
Qws2 30 30
Qss 15.5342 15.8684

Fuelvlvcost ($/h) 431.9829 426.2436
Wind cost ($/h) 262.4784 258.0072
Solar cost ($/h) 98.3979 108.3925
Total Cost ($/h) 792.8592 792.6434
Emission (t/h) 0.90197 0.87689

J8 810.8986 810.1812
Power losses (MW) 5.2811 5.2804

V.D. (p.u.) 0.45991 0.46169
Carbon tax ($/h) 18.0394 17.5378
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Furthermore, the convergence trends of the problem via the studied methods are
shown in Figure 10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 25 
 

VG13  1.0503 1.0511 
QG1 (MVAR) −3.04844 −3.18412 

QG2  10.9594 10.7783 
Qws1  22.2316 22.2315 
QG3 40 40 
Qws2  30 30 
Qss  15.5342 15.8684 

Fuelvlvcost ($/h) 431.9829 426.2436 
Wind cost ($/h) 262.4784 258.0072 
Solar cost ($/h) 98.3979 108.3925 
Total Cost ($/h) 792.8592 792.6434 
Emission (t/h) 0.90197 0.87689 

J8 810.8986 810.1812 
Power losses (MW) 5.2811 5.2804 

V.D. (p.u.) 0.45991 0.46169 
Carbon tax ($/h) 18.0394 17.5378 

 
Figure 10. Optimization process for Type 8. 

4.3. Discussions 
This part illustrates the optimal results of the studied methods achieved for various 

OPF problems to indicate ITFWO’s effectiveness, such as indexes Time (simulation time) 
Max (maximum), Mean (average), Min (minimum), and standard deviation (Std.) of the 
various problems shown in Table 10 for the eight types. According to Table 10, the optimal 
solutions of ITFWO are more suitable than the optimal solutions of the basic TFWO. These 
comparisons show the optimization power of ITFWO to optimize the various complex 
OPF problems; ITFWO is also able to discover a near-optimum solution in an adequate 
running time. The effectiveness and importance of any algorithm should decide on three 
terms: solution quality, computational efficiency, and robustness. The obtained values of 
the objective function for each case are shown in the summarized result. The best values 
of the objective functions are achieved for the majority of test cases and compared to ex-
isting techniques. The obtained values of the objective function are superior to the recent 
technique as well as previous techniques, and even obtained cost is better than for hybrid 
and developed based techniques; the comparisons are shown in Tables 2 to 9. The results 

Figure 10. Optimization process for Type 8.

4.3. Discussions

This part illustrates the optimal results of the studied methods achieved for various
OPF problems to indicate ITFWO’s effectiveness, such as indexes Time (simulation time)
Max (maximum), Mean (average), Min (minimum), and standard deviation (Std.) of the
various problems shown in Table 10 for the eight types. According to Table 10, the optimal
solutions of ITFWO are more suitable than the optimal solutions of the basic TFWO. These
comparisons show the optimization power of ITFWO to optimize the various complex
OPF problems; ITFWO is also able to discover a near-optimum solution in an adequate
running time. The effectiveness and importance of any algorithm should decide on three
terms: solution quality, computational efficiency, and robustness. The obtained values of
the objective function for each case are shown in the summarized result. The best values
of the objective functions are achieved for the majority of test cases and compared to
existing techniques. The obtained values of the objective function are superior to the recent
technique as well as previous techniques, and even obtained cost is better than for hybrid
and developed based techniques; the comparisons are shown in Tables 2–9. The results of
the proposed approach are very competitive compared with notable results from previous
research. So, from the comparisons, ITFWO is superior in terms of solution quality. In
comparison with TFWO, a convergence characteristic of ITFWO that it is smoother and
achieved convergence in fewer generations. The Std. results of Tables 2–10 show the
enhanced ability of ITFWO to achieve superior quality solutions, in a computationally
efficient and robust way. Furthermore, the proposed ITFWO provided a suitable balance
between exploration and exploitation in the search space, which has led to finding the
global optima in the presence of a large number of local optimum solutions. In summary,
the improved mechanism of the proposed ITFWO has many advantages over the other
methods—such as faster convergence characteristics, a lower standard deviation and
simpler implementation.
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Table 10. The optimal solutions to show the optimization power of the TFWO and ITFWO algorithms.

Type Method Min Mean Max Std. Time (s)

1
TFWO 800.7494 800.9724 801.3421 0.47 24
ITFWO 800.4787 800.5890 800.6625 0.15 27

2
TFWO 646.9958 647.3823 647.5492 0.61 26
ITFWO 646.4799 646.5597 646.6483 0.19 22

3
TFWO 832.6795 832.9914 833.4756 0.52 27
ITFWO 832.1611 832.2704 832.37921 0.12 25

4
TFWO 1041.6999 1041.9880 1042.3729 0.35 25
ITFWO 1040.1889 1040.2974 1040.3582 0.18 28

5
TFWO 813.9110 814.3185 814.7001 0.44 28
ITFWO 813.2267 813.4023 813.5199 0.21 23

6
TFWO 965.9551 966.4769 966.9814 0.52 24
ITFWO 964.2606 964.4160 964.5976 0.23 24

7
TFWO 782.3182 782.5711 782.8745 0.43 29
ITFWO 781.9943 782.1624 782.3004 0.25 33

8
TFWO 810.8986 811.1852 811.5639 0.39 31
ITFWO 810.1812 810.3045 810.4496 0.16 27

5. Conclusions

This study suggested a novel modified ITFWO algorithm for optimizing various
complex OPF problems such as piecewise quadratic and quadratic objective functions,
total cost while considering emissions, and losses and valve point effects in the IEEE
30-bus network with PV and WT units while satisfying security, physical and feasibility
limits. Firstly, the various complex OPF problems have been illustrated as real-world
optimization problems with different limits in a typical network. OPF with the various
complex cost functions has been efficiently solved through the proposed ITFWO method
whose computational efficiency, robustness and applicability have been also evidenced.
ITFWO has efficiently fulfilled the objective to discover near-global optimal or optimum
solutions of the non-linear test functions of the typical power network more effectively than
previous optimal solutions and confirms the optimization power of the ITFWO method
in comparison with the other optimization techniques based on the result quality for
the various complex OPF problems. An equation of this nature cannot be solved using
conventional methods, such as the equal consumed energy increase ratio law, when the
constraint is complex and the cost function is not convex. In terms of solving such problems,
the proposed ITFWO provides a feasible and effective reference scheme. It is found that
the proposed ITFWO provides the lowest minimum of total cost among all the heuristic
optimization techniques and confirms its capability in yielding a suitable balance between
exploitation and exploration with better performance in terms of efficiency and robustness.

It has been found that the proposed ITFWO algorithm performs better than the other
algorithms. This algorithm beats the original TFWO and a lot of other optimization
algorithms in recent papers. In light of the ITFWO’s success in solving various OPF
problems, it should also be applicable to other optimization problems. As part of our future
studies, we will use the proposed algorithm to solve problems related to micro-grid power
dispatch, global optimization of overcurrent relays, and dust control systems. Furthermore,
ITFWO can solve complex hydrothermal scheduling, dynamic OPF, and optimal reactive
power dispatch (ORPD). The author is particularly interested in the field of intelligent
control of industrial dust in environmental protection, which is one of the areas of future
research he plans to pursue.
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