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Abstract: We used statistical methods to study the classification of high-potassium glass and lead–
barium glass and analyzed the correlation between the chemical composition of different types of
glass samples. We investigated the categorization methodology of glass cultural relics, conducted a
principal component analysis on the chemical composition data of the glass, and developed a case-
specific clustering algorithm (K-Means++) to further categorize the glass cultural relics. K-Means++
was developed to reduce the sensitivity of a traditional K-Means clustering algorithm, by choosing
the next clustering center with probability inversely proportional to the distance from the current
clustering center. Then we verified the validity of the six subcategories we defined by inertia and
silhouette score and evaluated the sensitivity of the clustering algorithm. We obtained a robustness
ratio that maintained over 0.9 in the random noise test and a silhouette score of 0.525 in the clustering,
which illustrated significant divergence among different clusters and showed the result is reasonable.
With our proposed algorithm and classification result, a more comprehensive understanding of glass
relics can be gained.

Keywords: K-Means++ clustering; principal component analysis; machine-learning classification

1. Introduction

Glass has long been recorded among Chinese historical materials, but research on
ancient Chinese glass started late. There is a lack of research on the weathering and
composition of ancient silicate glass, and most of it is from the perspective of dynasty
replacement. The cultural and artistic forms of glass and the laws of its own operation and
development are studied in terms of cultural exchange and chemical analysis. Few scholars
have systematically established mathematical models and used intelligent algorithms to
qualitatively and quantitatively predict the original composition and subclassification
methods of weathered silicate glass.

Machine-learning algorithms play an important role in the exploration of ancient
cultures nowadays, helping in the search for statistical insight and classification. Data
measurements and statistical analyses of the chemical compositions of ancient cultural relics,
looking for statistical rules and classifying the types of cultural relics, can provide a reliable
basis for identifying the types of ancient cultural relics and tracing the history of ancient
cultural relics from a statistical perspective. In the most basic way, ancient glass cultural
relics discovered in China are mainly divided into two categories: high-potassium and
lead–barium glass. This is because in the process of making these glasses, people needed
to add many kinds of auxiliary solvents into the main part, SiO2. Commonly seen in the
southeast of China, the high-potassium glass usually has plant ash as its auxiliary solvent,
which is rich in potassium (in the form of K2O), while the lead–barium glass is located
elsewhere in China, rich in PbO and BaO [1,2]. As time went by, some of the glass relics were
weathered and their chemical compositions changed accordingly. Wang Chengyu’s [3]
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in-depth study on the mechanism of weathering has certain reference significance for
component prediction. Zhao Fengyan, et al. [4] classified the chemical composition of
glassware by nondestructive analysis of pXRF. However, the existing chemical research
methods cannot accurately and reasonably classify according to the composition of glass.
Therefore, we consider introducing machine learning to solve practical problems by using
classification models and intelligent algorithms. Intelligent algorithms have been widely
used in scientific research in the field of materials in recent years, such as for the construction
and application of the database of ancient Chinese unearthed glass beads studied by Feng
Bailing [5] and the summary by Zhang Liyan [6] of the main theoretical basis, simulation
process, and application status of each simulation method by using seven simulation
methods of glass composition properties, but there are few methods that shed light on the
specific field of glass relics. Li Jiangang [7] conducted glass defect detection based on deep
learning, but there is still a gap in the use of machine learning to study the weathering and
subclassification of ancient glass at home and abroad [8].

In this paper, we first study the classification rules of high-potassium glass and lead–
barium glass by statistical methods and try to recover the original proportion of chemical
elements of weathered points, i.e., their chemical composition before being weathered, by
statistical methods. After that, we conduct the subcategorization based on dimensionality
reduction by PCA and make an evaluation. The K-Means++ clustering model is established
using three principal components, and the rationality and sensitivity of the model are tested.

The rest of this paper is organized as follows: In Section 2, the classification law of
high-potassium glass and lead–barium glass are studied based on sample data. Section 3
proposes the K-Means++ clustering algorithm and establishes the classification model. In
Section 4, the validity of the model is analyzed. Section 5 analyzes the model sensitivity.
Section 6 discusses limitations of the study and future work. The conclusions are provided
in Section 7.

2. Classification Law of High-Potassium Glass and Lead–Barium Glass
2.1. Sample Data Acquisition and Exploratory Spatial Data Analysis
2.1.1. Data Overview

The data were acquired from a private archaeology database, which contains the
results of chemical composition detection of 58 glass cultural relics in total. Because two
parts of one glass relic (for example, the inside and outside of a glass vase) may have
significant differences in chemical composition, 11 glass relics underwent detection on two
different points. Therefore, the data mainly consisted of 69 data points collected from 58
glass relics.

For each glass relic, its ornamentation, color, and type (high-potassium/lead–barium)
were recorded, and for each detection point, its weathering degree (unweathered, weath-
ered, severely weathered) and 14 chemical compositions were recorded. The 14 chemical
compositions were SiO2, Na2O, K2O, CaO, MgO, Al2O3, Fe2O3, CuO, PbO, BaO, P2O5, SrO,
SnO, and SO2. The first three lines of the data are shown in Table 1.

Table 1. The first three lines of the data.

Relic
No. Ornamentation Type Color Weathering Detection

Point SiO2 CaO MgO Fe2O3 PbO . . . Sum

01 C high-potassium blue–green unweathered 01 69.33 6.32 0.87 1.74 97.61
02 A lead-barium light green weathered 02 36.28 2.34 1.18 1.86 47.43 99.89

03 A high-potassium blue–green unweathered 03position1 87.05 2.01 0.25 100
03position2 61.71 5.87 1.11 2.16 1.41 98.88

Because the chemical detection method in archaeology may produce a slight error,
which makes the sum of the 14 compositions deviate from 100%, we regard a sum between
85% and 105% as reasonable. Based on this, we dropped two data points which have the
sum 79.47% and 71.89%, respectively, and 67 data points remained for further processing.
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2.1.2. Exploratory Data Analysis

Based on the chemical composition of the artifact samples and other testing means,
the high-potassium glass and lead–barium glass were classified from a total of 67 data
samples (including ornamentation, color, weathering degree, the proportion of the main
components, etc.). The data distribution of sample color and the data distribution of color
based on type are shown in Figure 1.
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The samples are marked 01–67, including 18 high-potassium and 49 lead–barium sam-
ples. To see how much information the basic data provided, a Kendall correlation coefficient
matrix was established to initially observe the correlations among the four qualitative vari-
ables, and a correlation diagram was drawn, as shown in Figure 2. Additionally, because in
the later section we recover the original chemical compositions of weathered points, we
took a brief look at the linear relationship between weathering degree and other variables
(including 3 qualitative variables and 14 continuous variables) by linear regression. This
aimed to provide insight into how well we could do to discover the nonlinear clusters and
distinguish weathered data from unweathered data using other variables. In the regression
result shown in Figure 3, we obtained adjusted an R-squared value of 0.75. In Figure 4, we
can see the positive/negative correlations between weathering degree and certain chemical
compositions. From the model diagnostics graph shown in Figure 5, we conclude that there
is a nonlinear relationship (from Residuals vs. Fitted), the residual is statistically normally
distributed (from Normal Q-Q), heterogeneity appears in the model (from Scale–Location),
and there are no global outliers in the data (from Residuals vs. Leverage).
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2.2. Analysis of Classification Laws Based on Sample Data

It is necessary to explore the classification pattern of high-potassium and lead–barium
glass, thus enabling the further classification of subcategories in terms of chemical com-
position content. In order to explore the relationship between the proportion of chemical
components and the division of main categories (high potassium, lead and barium), we
used the supervised learning algorithm KNN to construct a K-nearest neighbor graph
between sample points, which proved well that K2O content and (PbO + BaO) content were
the key indicators for distinguishing the main categories.

Semantically, “high-potassium glass” should be glass with a high potassium oxide
content (noted as K2O below), while “lead–barium glass” is glass with a high content
of lead oxide (PbO) and barium oxide (BaO). It can be assumed that if the K2O content
and the (PbO + BaO) content of the glass cultural relics are taken as two dimensions, a
clear demarcation line can be drawn under the plane right-angle coordinate system. We
validated this idea based on 67 data samples by the KNN (K-Nearest Neighbor) algorithm
of supervised learning.

The KNN algorithm is a method to classify each record in a dataset, which is a typical
supervised learning algorithm. The process of a KNN algorithm classifying one new point
is as follows: the distances between this point and all marked points are calculated, from
which n_neighbors points with the closest distance are selected. The category with the
largest proportion of these n_neighbors points is the classification of the new point [9–12].

First, the values of the two independent input variables K2O and (PbO + BaO) were
calculated for the 67 samples. Among the 67 samples, 70% were randomly selected as
the training set and 30% as the test set, taking n_neighbors = 5 to obtain a 100% correct
classification rate, as shown in Figure 6 (both training and testing data are plotted in
the figure).
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To further determine the correctness of this classification criterion, the proportion
of the training set was reduced to 50% and the other 50% selected as the test set, taking
n_neighbors = 5, and we still obtained a 100% correct classification rate.

From this, we can infer statistically that the classification of high-potassium glass and
lead–barium glass is precisely binary clustering according to the K2O, (PbO + BaO) content.

3. K-Means++ Subclass Classification
3.1. Prediction of the Chemical Composition Content before Weathering on Weathered Samples

The weathering of glass products will lead to significant changes in their composition,
so it is necessary to predict the composition content before weathering based on the
weathering point detection data. We chose to use the similarity between glass products to
predict the chemical composition of specific glass products when they are not weathered.

Because the present compositions of weathered data deviate from their original com-
positions, we cannot compare the similarities using given chemical compositions directly.
As an alternative, we chose to conduct a principal component analysis first, using only
unweathered data so that the unimportant compositions would be eliminated. Second, we
applied PCA to weathered data, and the principal components (PCs) obtained in this way
would be irrelevant to the weathering degree.

First, the original data were tested for validity, and only unweathered samples were
selected, from which we had 35 data points [13–15]. The 14 chemical content compositions
of these data were taken into PCA. The percentage of variance explained by each orthogonal
index was analyzed, and the first four items were [0.72766864 0.15677105 0.05843352
0.02400202], and the first three items were taken as new PCs (for explained variance greater
than 0.05), which were noted as PC1, PC2, and PC3.

PCA process:

• Use 35 unweathered samples, with 14 chemical compositions, as matrix X (35 × 14).
• Calculate the eigenvalue decomposition: XTX = QΣQT.
• Choose the largest 3 eigenvalues and their eigenvectors, form matrix P (14 × 3).
• Calculate PCs for unweathered data: Y = XP.
• Use 32 unweathered samples, with 14 chemical compositions, as matrix X1 (32 × 14).
• Calculate PCs for weathered data: Y1 = X1P.

After that, this PCA model was applied to calculate the PCs of the weathered samples.
The PC matrix obtained in this way is significantly less related to weathering because when
constructing the model, no factors related to weathering are introduced, and when using the
model to calculate the factor values of weathered samples, it is equivalent to making it as
reductive as possible for the unweathered samples, in line with the prediction requirements.

For the definition of similarity, we used the Euclidean distance to measure the similar-
ity. Due to the large number of chemical components and the fact that some components are
impurities, we first used the principal component analysis to perform the dimensionality
reduction of the chemical content, which also ensured that some impurities in the glass
products (such as strontium oxide, which is less than 0.01 in all glasses) can be ignored
sufficiently as to not affect the subsequent prediction results [16–18].

Based on the above definition of “relevance” and comparative analysis, the three PCs
were used as indicators of similarity for prediction, as follows: similarity of glass products
a and b,

Similaritya,b =

√
(PC1a − PC1b)

2 + (PC2a − PC2b)
2 + (PC3a − PC3b)

2, (1)

For all weathered points, the n points that were most similar to them were taken, and
the content prediction of this point was obtained by taking the similarity between the n
points and this point as the weight and weighting the average of the chemical composition
content of the n points. For the selection of n, we tried = 3, 4, 5, and found that the difference
between the predicted values was less than 5%. Thus, the three cases could be regarded as
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equivalent within the error tolerance, and the prediction results were obtained by taking
n = 4.

3.2. K-Means++ Algorithm

Next, we performed the subclass classification based on high-potassium glass and
lead–barium glass. In the absence of a priori knowledge of the subclass classification criteria
and no real labels for reference, we first chose to use the unsupervised clustering algorithm
K-Means for modeling and analysis, using the three PCs obtained in the PCA section as
three feature variables in the clustering.

The K-Means algorithm at random uniformly selects K points as the center of mass at
initialization, and in each iteration, calculates the distance from each point to the K centers
of mass, divides the samples into the clusters corresponding to the closest center of mass,
and at the same time, calculates the mean value of all samples within each cluster and
updates the center of mass of the cluster using this mean value, until the position change
of the center of mass is less than the specified threshold (default 0.0001) or the maximum
number of iterations is reached [19–22]. Because the classification of glass products is not
related to weathering, it was necessary to eliminate the influence of weathering on chemical
composition and classification and to select the PCA obtained above. The three-factor index
was used as the factor parameter of the sample.

The weakness of K-Means lies in its initialization. Because the probability of choosing
any data point as the center of mass is equal, there is a significant chance that several close
points are simultaneously selected as centers, which means that in the later process of
iteration, these points are highly likely to be divided into different clusters. However, if two
points are close to each other in the context of feature variables, they should be in the same
cluster for unsupervised learning. Therefore, we considered improving the initialization
strategy and developing K-Means++.

Since K-Means is more sensitive to initial values, the algorithm was improved. After
setting the probability of each sample point becoming a cluster center to be inversely
proportional to the distance from the current cluster center, the more distant the sample
point is from the existing cluster center, the more likely it is to be selected as the next cluster
center. In the mathematical formulation, we denoted the set of existing cluster centers as S,
and the probability of choosing x as the next cluster center is

p(x) =
min
a∈S

D(x, a)

∑x min
a∈S

D(x, a)

in which D(x, a) = Similarityx,a
2.

In other words, K-Means++ is most likely to select the point which is far from all the
existing cluster centers. In this way, the initialization will guarantee enough divergence
(in the sense of distance) among different clusters, which improves the effectiveness of
clustering and the convergence rate.

The algorithm was tested and found to be significantly less sensitive, so the improved
algorithm was named K-Means++. All 67 samples were classified into six classes using the
K-Means++ algorithm, and the classification results are shown in Figure 7 and Table 2. By
contrast, the classification result of K-Means is shown in Figure 8.

In order to see the improvement in the sensitivity of K-Means++, we compared K-
Means++ with K-Means in the classification results, i.e., we ran both algorithms 1000 times
in clustering the 67 samples. Initially, we obtained a result for both algorithms, as shown in
Figures 7 and 8. Every time, we got a classification result with six cluster centers, and we
recorded the accumulated difference among these six centers from the initial six centers
(represented by the absolute difference of center distance). The larger the accumulated
difference is, the more volatile the classification is and the more sensitive the algorithm is.
From Figure 9, we can see that the accumulated difference of K-Means++ increases more
slowly than that of K-Means, which verifies the sensitivity improvement.
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Table 2. Results of K-Means++ clustering for all samples.

Clustering Name Sample

0 08 *, 08 Severe weathering point, 11, 20, 24, 26, 26 Severe weathering point.

1 01, 03 Part 2, 04, 05, 06 Part 1, 06 Part 2, 13, 14, 16

2 02, 19, 30 Part 1, 30 Part 2, 34, 36, 38, 41, 43 Part 2, 49, 50, 51 Part 1, 52, 56, 57, 58

3 03 Part 1, 07, 09, 10, 12, 18, 21, 22, 27

4
23 unweathered point, 25 unweathered point, 28 unweathered point, 29 unweathered point, 31, 32,
33, 35, 37, 42 unweathered point 1, 42 unweathered point 2, 44 unweathered point, 45, 46, 47, 48, 49
unweathered point, 50 unweathered point, 53 unweathered point, 55

5 39, 40, 43 Part 1, 51 Part 2, 54, 54 Severe weathering point

* The number (for example, 08) represents the glass relic sample. If two different points are detected in one glass
relic, the description following the number distinguishes them (for example, 08 and 08 Severe weathering point;
03 Part 1 and 03 Part 2).
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K-Means++:
Initialization: Select 6 cluster centers µ

(0)
1 ,µ(0)

2 , · · ·µ(0)
6 one by one, using p(x) =

min
a∈S

D(x, a)

∑x min
a∈S

D(x, a) .

Define error function J(c,µ) = ∑n
i=1
∣∣∣∣xi−µci

∣∣∣∣2, where ci is the cluster which xi belongs to.
Iterate until J(c,µ) converges (or reaches the iteration time limit):
For i = 1, 2, ..., n:

ci = argmin
k
||xi − µk||2

For k = 1, 2, ..., 6:
µk = mean

ci=µk
xi

4. Model Validity Analysis

Whether the division into parent classes is satisfied is an intuitive indicator of model
validity. The subclass classification relies on the chemical composition content, which
makes the samples in the same subclass highly similar with respect to some chemical
compositions. In order to better reflect this similarity, linear regression can be used to
explore the composition characteristics of each subclass as another criterion for subclass
classification. The contour coefficient of the clustering results is a measure of whether the
cluster is reasonable and valid [23]. In this paper, we mainly analyzed the reasonableness
of the K-Means++ clustering model from the above three aspects.

4.1. Comparison Verification with Parent Classes

A more intuitive indicator is to verify that the division of subclasses satisfies the
division of the parent classes (i.e., high-potassium vs. lead–barium). The statistical results
of the K-Means++ clustering algorithm are shown in Table 3.

Table 3. Results of clusters by parent class obtained by K-Means++ clustering algorithm.

Clustering Name High-Potassium Lead–Barium

0 0 7
1 9 0
2 0 16
3 9 0
4 0 20
5 0 6

It can be found that although the six subclasses were divided without introducing
any parent variables and clustering was performed only by relying on the dimensionality
reduction factor of chemical content, the samples of the same subclass all belonged to the
same parent class. This indicates that the clustering results obtained by this method have a
certain degree of validity.

4.2. Significance Test of Linear Regression

Subclass classification relies on chemical composition content, which makes samples
within the same subclass highly similar with respect to some chemical compositions. To
better represent this similarity, linear regression can be used to explore the compositional
characteristics of each subclass, using different subclasses within the same parent class as de-
pendent variables and the chemical composition content of each sample before weathering
(including predicted values for weathered samples) as independent variables [24].

Before the component regression, the subclass numbers need to be adjusted so that
the subclasses belonging to the same parent class have consecutive serial numbers. This is
because there is a difference in component content between the parents themselves, and
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we need to explore the subclasses based on the difference in parent content, rather than
regressing the subclasses directly without a priori knowledge.

For the six clusters of the K-Means++, the component regression was performed, and
the results are shown in Figure 10. It can be seen that there are many chemical components
with significant results, such as SiO2, Na2O, CaO, etc., which means that we can use the
chemical component as one criterion for subclass classification.
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Analyzing the composition table, we can clearly see that the two subclasses of the
“high-potassium” parent class 1.3 differ significantly in Ca2O content, so the subclasses
are named “high-potassium high-calcium” and “high-potassium low-calcium” classes. At
the same time, we can clearly see that the two subclasses 0.2 of the parent class “Pb-Ba”
differ significantly in the content of CuO. The value for subclass 0 is significantly higher
than the mean value; subclass 2 has a value significantly lower than the mean value, and
that of subclass 4, 5 is close to the mean value. The difference in the content of subclass
4 and 5 is reflected in Ca2O. Therefore, the subclasses were named “lead–barium high-
copper”, “lead–barium low-copper”, “lead–barium medium-copper low-calcium”, and
“lead–barium medium-copper high-calcium”. The details of the subclasses are shown in
Table 4.

Table 4. Subclass results obtained by the K-Means++ clustering algorithm.

Subclass Name Subclass Number

Lead–barium high-copper 0
High-potassium and calcium 1

Lead–barium low-copper 2
High-potassium and low-calcium 3

Lead–barium mid-copper low-calcium 4
Lead–barium mid-copper high-calcium 5
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4.3. Silhouette Coefficient and Square Sum of Error

The contour coefficient refers to a method that reflects the consistency of the data
clustering results and can be used to assess the degree of dispersion among clusters after
clustering. For a sample u belonging to cluster Ci, we denote d (u, v) as the distance
between u and v, defined as

a(u) =
1

|Ci| − 1 ∑v∈Ci,u 6=v d(u, v), b(u) = min
k 6=i

1
|Ck|∑v∈Ck

d(u, v). (2)

We define the contour coefficient of u as s(u) = b(u)−a(u)
max{a(u),b(u)} , lying between −1 and 1.

If s(u) of a sample is close to 1, it means the sample is reasonably clustered; if it is close to
−1, it means it should be classified into other clusters. If the silhouette is close to 0, it means
the sample is on the boundary of two clusters. The mean value of all sample contours is
called the silhouette coefficient, which is a measure of whether the clustering is reasonable
and valid.

The square sum of errors inertia is defined as the sum of squares of the distances
between all samples and the center of mass of the cluster to which they belong, and the
optimal number of classifiers should be taken at the point where the deformation of inertia
is most intense. For the optimal number of classifications for K-Means++ clustering, two
evaluation metrics (inertia and silhouette coefficient) are used. The traversal is performed
for the possible number of classifications n = 2, 3, ..., 19, 20, varying the number of clusters k,
using the silhouette_score function implemented in the python sklearn library for validation
and plotting the curve of inertia and silhouette coefficient, as shown in Figures 11 and 12.
From the square sum of errors image and the silhouette_score image, it is best to be divide
the data into six categories.
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5. Model Sensitivity Analysis

For a certain type of glass artifact, the randomness associated with the production pro-
cess or prolonged exposure to the environment may cause some change in the proportions
of the various chemical components, but the change is relatively minor to the extent that it
should not affect our determination of that glass category. We consider such perturbations
as noise added to the sample data [25]. Since the sample of data in this study is small and
estimates of noise are highly susceptible to overfitting, it is useful to assume that the prior
probability distribution of the noise is F = N (0, 0.0001), i.e., a Gaussian distribution with
mean 0 and standard deviation 0.01. For any x ∈ F,

P(−σ < X < σ) =
∫ σ

−σ
f(t)dt = 0.682, (3)

where f(t) is the probability density function of the distribution F. There is about a 68.2%
probability that the noise lies in the thousandths interval and has a small effect on the
weight of the chemical composition.

The process of a random noise test is as follows: The number of random tests is initially
set T = 100. In the i’th (1 ≤ i ≤ T) test, all original unweathered samples are added with
noise sampled by the above prior distribution to obtain the noise-containing sample data,
and the prediction labels are obtained by the clustering algorithm. The number of samples
for which the predicted labels are the same as the original predicted labels after adding
noise is counted and is denoted as ti. At the end of T times of testing, it is calculated that
(N is the number of samples)

Random noise test ratio =
∑T

i=1 ti

N× T
. (4)

As a measure, its value ranges from [0, 1], and the closer to 1, the better the noise
immunity of the model.

The K-Means++ clustering algorithm was tested 10 times for random noise and aver-
aged to obtain a random noise test ratio = 0.980, indicating that the model is insensitive to
noise under the current noise prior distribution.

To further investigate the relationship between model sensitivity and noise standard
deviation, we used the following equation:

σ = 0.01 + 0.00474t, 0 ≤ t < 20. (5)

The result of increasing the standard deviation in the above random noise test for the
K-Means++ model reveals the robustness of K-Means++. Compared with the K-Means
algorithm, when σ increases from 0.01 to 0.1, the clustering accuracy of K-Means++ remains
significantly higher and shows a smaller variance, which illustrates the performance
improvement of K-Means++. The random noise test ratio with σ is shown in Figure 13.
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6. Limitations and Future Work
6.1. Size of Glass Relics Data

The data sample contained 67 effective samples, which is relatively small compared to
typical machine-learning tasks in big data. However, it should be noted that unlike general
regression tasks, a small dataset works for a clustering algorithm because we divided the
67 samples into only six subcategories, which is acceptable and free from the overfitting
problem. In the K-Means++ algorithm, because there are no parameters to be learned and
the first cluster center is chosen uniformly at random, we can safely say that K-Means++
performs equally well on each size of data, as long as the number of clusters is significantly
smaller than the size of the data.

6.2. Potential Improvement of K-Means++

Since K-Means++ has a more complicated process during initialization, it on average
requires a significant amount of time for the first step, especially when the dataset is large.
The time complexity of initialization is O(mn), where m is the number of cluster centers
and n is the number of total data points. Also, it certainly needs more space to store the
probability vector in every iteration, with space complexity O(n). These are the extra costs
using K-Means++.

However, when it comes to optimization problems, we know that a good initialization
significantly contributes to a fast convergence. The same logic applies to K-Means++.
Although K-Means++ costs more time during initialization, it has a theoretically faster
convergence rate. Related experiments may be conducted using a large dataset to highlight
the convergence improvement in a future study.

7. Conclusions

Based on the KNN, we constructed the K-nearest neighbor graph between the sample
points. According to the K2O content and (PbO +BaO) content, the main class of the sample
was divided, and the principal component analysis was used to find the weathering-
independent principal components to establish the relationship between the weathered
sample and the unweathered sample, based on the improved K-Means++ algorithm model.
The samples were then divided into subclasses. Before modeling, we pre-processed the
color visualization in data processing, which highlighted the obvious effect and improved
the efficiency of the data analysis. Despite the small number of samples, we still obtained
ideal classification results. K-Means++ clustering algorithm has a good performance
regarding the subclassification of glass cultural relics based on chemical contents, and the
model evaluation verified this according to the comparison with parent classes, validation
metrics, and noise test. We obtained a robustness ratio which maintained over 0.9 in the
random noise test and a silhouette score of 0.525 in the clustering, which illustrated a
significant divergence among different clusters and showed the result is reasonable.
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