
Citation: Negera, W.G.; Schwenker,

F.; Debelee, T.G.; Melaku, H.M.;

Feyisa, D.W. Lightweight Model for

Botnet Attack Detection in Software

Defined Network-Orchestrated IoT.

Appl. Sci. 2023, 13, 4699.

https://doi.org/10.3390/

app13084699

Academic Editor: Dimitris Mourtzis

Received: 14 March 2023

Revised: 3 April 2023

Accepted: 4 April 2023

Published: 7 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Lightweight Model for Botnet Attack Detection in Software
Defined Network-Orchestrated IoT
Worku Gachena Negera 1, Friedhelm Schwenker 2 , Taye Girma Debelee 3,4,* , Henock Mulugeta Melaku 1

and Degaga Wolde Feyisa 3

1 Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa 445, Ethiopia;
worku.gachena2@gmail.com (W.G.N.); henockmulugeta26@gmail.com (H.M.M.)

2 Institute of Neural Information Processing, University of Ulm, 89069 Ulm, Germany
3 Ethiopian Artificial Intelligence Institute, Addis Ababa 40782, Ethiopia; degagawolde@gmail.com
4 Department of Electrical and Computer Engineering, Addis Ababa Science and Technology University,

Addis Ababa 16417, Ethiopia
* Correspondence: tayegirma@gmail.com

Abstract: The Internet of things (IoT) is being used in a variety of industries, including agriculture,
the military, smart cities and smart grids, and personalized health care. It is also being used to control
critical infrastructure. Nevertheless, because the IoT lacks security procedures and lack the processing
power to execute computationally costly antimalware apps, they are susceptible to malware attacks.
In addition, the conventional method by which malware-detection mechanisms identify a threat
is through known malware fingerprints stored in their database. However, with the ever-evolving
and drastic increase in malware threats in the IoT, it is not enough to have traditional antimalware
software in place, which solely defends against known threats. Consequently, in this paper, a
lightweight deep learning model for an SDN-enabled IoT framework that leverages the underlying
IoT resource-constrained devices by provisioning computing resources to deploy instant protection
against botnet malware attacks is proposed. The proposed model can achieve 99% precision, recall,
and F1 score and 99.4% accuracy. The execution time of the model is 0.108 milliseconds with 118 KB
size and 19,414 parameters. The proposed model can achieve performance with high accuracy while
utilizing fewer computational resources and addressing resource-limitation issues.

Keywords: botnet; IoT; SDN; SDN-enabled IoT: detection; lightweight model; deep learning;
traditional machine learning

1. Introduction

In the realm of computing, digitization and intervention of AI in different sectors has
offered many benefits [1–6]. As a result, according to Li and Al Rushdan [7,8], countries’ re-
liance on digitalization, software-defined networks (SDNs), and the IoT have intensified [9].
The main issue we are dealing with in the age of digitization is cybersecurity. Many sectors
of the digital economy can be affected by cyberattacks, which can occasionally result in
irreparable harm. They may be responsible for things like electrical blackouts, attacks on fi-
nancial institutions involving extortion, theft, and fraud, malfunctions of military hardware,
and leaks of classified information. These might also result in the theft of valuable personal
data that includes sensitive medical information. They may also bring down the systems,
which might cause serious negative impacts. According to the Outpost24study, more than
3800 large enterprises faced data breaches in 2019 that resulted in significant impact, as
stated in [10]. Despite all of these attacks, there has not been a great deal of awareness
about system security, and there have not been many high-quality research findings leading
to solutions that can effectively stop malware attacks, according to Pandey et al. [11].

The Internet of things (IoT) is a network of physical objects or devices with integrated
electronics, software, and network connectivity that enables these things to gather, occa-

Appl. Sci. 2023, 13, 4699. https://doi.org/10.3390/app13084699 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084699
https://doi.org/10.3390/app13084699
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5118-0812
https://orcid.org/0000-0002-0876-2021
https://orcid.org/0000-0002-0467-8121
https://orcid.org/0000-0002-9887-881X
https://doi.org/10.3390/app13084699
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084699?type=check_update&version=1

Appl. Sci. 2023, 13, 4699 2 of 18

sionally process, and exchange data, according to Suresh [12,13]. The administration of
vital infrastructure, agriculture, the military, smart grids and cities, and personal healthcare
are just a few of the many applications and services for which the IoT can be used [13].
However, the IoT is vulnerable to malware attacks because it lacks security mechanisms due
to limited computational resources to run antimalware applications, low storage capacity,
and the fact that it is always connected to the Internet [14]. The IoT is impacted by botnet
malware assaults, including Mirai and Prowli attacks. As an alternative, some botnets have
been developed to launch a variety of cyberattacks, including identity/data theft (data
exfiltration), in which infected machines are used to create and send phony emails, email
spam, log keys, and propagate malware.

IoT orchestration with SDN leverages the underlying IoT resource-constrained de-
vices through the provision of computing resources to deploy instant protection for IoT
gadgets [15]. Software-defined networking [16] (SDN) is anticipated to be a crucial enabler
for next-generation networks, the so-called 5G, which will need to combine both IoT ap-
plications and conventional human-based services. In this context, SDN enables a global
orchestration of IoT to (a) transport the huge amount of data generated at the terminals,
sensors, machines, nodes, etc., to any distributed computing node, edge, or core data center,
(b) allocate computing, storage, and network resources, and (c) process the collected data
(big data) and make the proper decisions (cognition).

The conventional way by which malware-detection mechanisms identify a threat is
through known malware fingerprints stored in their database. For instance, an antiviral
engine checks the presence of the malware fingerprint in a file against known malware
fingerprints stored in the antivirus database. However, with the ever-evolving and drastic
increase in malware threats, it is not enough to have traditional antimalware software in
place, which solely defends against known threats. Active protection must be integrated
into IoT systems to effectively defend against evolving strains of malware, also known as
zero-day threats. Accordingly, nowadays, frameworks that integrate machine learning have
been proposed [17–20]. Sarker et al. [17], in their survey paper, indicated that cybersecurity
has massively shifted the technology and its operation. They also claimed that machine
learning is paving the way toward a better solution.

The SDN has brought a new approach to the domain of communication networks.
It allows network engineers and administrators to install, control, manage, and modify
networks. In the SDN network, the gateway is directly connected to the internal network,
where all security mechanisms are either installed in the application layer (controlled by
the controller for traffic forwarding to the appropriate security device) or installed in the
controller layer. Another main difference from a traditional network is that the controller
controls every node in the network and can block the nodes’ traffic or forward it to a
specific path.

According to Li et al. [21], IoT orchestration with SDN can lessen the security suscep-
tibility of IoT devices. These SDN-enabled frameworks can enhance the potential of the
underlying highly dynamic and heterogeneous environment of the IoT network. Deploying
the malware-detection module on the control plane of the SDN has several benefits. First,
the control plane represents the core centralized intelligence of the SDN and maintains the
global view of the entire underlying network. Moreover, all the forwarding decisions are
made in the control plane. Secondly, the resource-constrained IoT devices can simply be
leveraged from the additional computational task. Furthermore, it allows the use of the
antimalware system in a highly manageable and scalable way. Finally, it can be customized
and extended to any commercial SDN controller [15].

Machine learning approaches, as opposed to the traditional rule-based programming
approach, learn from the dataset gathered from prior experiences to tackle complicated
issues. This procedure is completed by using machine learning techniques, including super-
vised, unsupervised, and reinforcement learning. For instance, Shahzana Liaqat et al. [15]
proposed a hybrid deep learning-driven SDN-enabled Internet of medical things (IoMT)
malware-detection module to be deployed on the control plane of the SDN.

Appl. Sci. 2023, 13, 4699 3 of 18

In this article,

• we discuss an IoT and SDN network orchestration for better security and the vulnera-
bility holes even with the SDN networks,

• we perform a systematic review of the related work to identify the gaps in the previous
work done on the same public datasets that we used to propose a new approach that
performs better depending on different criteria,

• we reimplement already existing traditional machine learning algorithms and pre-
trained deep learning models to observe their performance in terms of model evalua-
tion parameters, memory requirement, and computational time requirements, and

• we propose a lightweight deep learning approach that has higher performance in
terms of accuracy, precision, recall, F1 score, less computational time, and fewer
memory requirements.

The paper is structured as follows. The related works and previous studies on this topic
are presented in Section 2. In Section 3, the dataset, employed approach, and evaluation
metrics are covered. In Section 5, the experimental results and comparison to the existing
approach are discussed.

2. Related Works

Cybersecurity applications vary in context. Network security, application security,
information security, and operational security are the four areas of cybersecurity application.
The security and privacy of the relevant data are handled by the information security and
the processes of handling and protecting data assets are the responsibility of operational
security [22].

There are several types of cybersecurity incidents, and malware represents one of the
many types of cybersecurity incidents that are intentionally designed to cause damage to a
computer network, server, IoT network, or SDN-IoT orchestrated network [23–25]. As a
result of cybersecurity challenges, both industry and academia have focused on the devel-
opment and deployment of machine learning-based malware detection frameworks [18,19].

In the past few years, several traditional machine learning algorithm-based approaches
have been proposed and deployed as intrusion-detection mechanisms. Many scholars have
employed and assessed a random forest (RF), an ensemble-type classical machine learning
technique, to defend SDN-managed IoT networks from botnet attacks like distributed
denial of service (DDoS), and denial of service (DoS) [26–28]. The detection and mitigation
of DoS and DDoS attacks using automated feature extraction from network flow traffic were
suggested by Sarica et al. [26]. The RF classifier was trained by using a dataset consisting
of six classes created by IoT devices: benign (normal traffic), DDoS, port scanning, fuzzing,
DoS, and DDoS was deployed at the SDN application layer. The RF-based model performed
very well at distinguishing between regular traffic and botnet attacks like DoS and DDoS.
The model’s normal traffic recognition performance was 99.67%, 96.75%, 92.92%, and
94.80%, respectively, in terms of accuracy, precision, recall, and F1 score. Similarly, the
model’s precision, recall, and F1 score in detecting the DoS attack were 97.77%, 99.12%, and
98.44%, respectively. The model also performed well in detecting the DDoS attack type,
with an F1 score of 97.93%, a precision of 97.29%, and a recall of 98.58%.

The extreme gradient boosting (XGBoost) machine learning algorithm was another
approach applied in botnet infection in SDN-enabled IoT networks [29] that uses CICDoS2019,
NSL-KDD, and CAIDA-DDoS datasets to train and test the model. The XGBoost was then
trained for binary classes to categorize network traffic as a DDoS assault or regular [29] activity
by using a variety of attributes that offers the best descriptive information. The accuracy,
precision, recall, and F1 score are the model-evaluation parameters used in the authors’ work.
As a consequence, the model’s accuracy, precision, recall, and F1 score in the real-time IoT
managed on SDN reached more than 99.98%. Similar to this, Swami et al. [30] have suggested
AdaBoost-based DDoS attack detection in an SDN-based network, and the model’s accuracy,
precision, recall, and F1 score were each 99.99%, 100%, 99.98%, and 99.99%.

Appl. Sci. 2023, 13, 4699 4 of 18

Even though traditional machine learning methods have been applied in the past
few years as intrusion-detection techniques with very good performance, they have also
demonstrated some drawbacks. This approach requires considerable feature engineering to
produce the best features. That means it is dependent on feature extraction, using signatures
of the already known malware both during the training and after deployment. As a result,
it is still important to solve the critical difficulties of prompt real-time monitoring, detection,
and adaptability to new assaults. In addition, it requires larger memory space, higher
computational resources, and more computational time. This makes it not the best choice
to deploy the models on IoT devices. However, studies show that deep learning-based
approaches, such as deep reinforcement learning algorithms, have demonstrated efficiency
in real-time monitoring of undetected attacks in SDN-IoT networks [31,32].

Tang et al. [33] suggested a straightforward deep neural network that contains three
hidden layers and 12, six, and three neurons with six input and two output dimensions
to identify network probing and DoS botnet attacks. In this study, an NSLKDD dataset
was used to train and test the proposed model. The model performance using common
evaluation metrics was promising, even though it is less compared to the traditional
machine learning approaches. The model’s performance was 75.75% accuracy, 83.0%
precision, 75% recall, and a 74.0% F1 score.

Similar to the study by Tang et al. [33], Narayanadoss et al. [34] suggested a straightfor-
ward deep neural network architecture with two hidden layers, each containing 25 neurons
to detect DDoS attacks in IoT networks for vehicles that used the SDN-based environment.
There are 50 neurons in the input layer, and one neuron in the output layer can detect
an attack on the network. Iperf3 was utilized by Narayanadoss et al. [34] to produce the
normal and abnormal traffic for the model training and testing dataset. Variable scenarios
are used to test the model’s performance, including ones with different numbers and speeds
of moving vehicles. The model was evaluated on 35 different cars, and its performance for
those 35 cars ranges from 85% to 87% in terms of accuracy, recall, precision, and F1 score.

The ensemble of DNNs with a decision tree (DNN-DT) was proposed by Al-Abassi
et al. [35] as a means of detecting malware in industrial control systems. The N-DNN
model’s classification output was combined by using a supervector and a fusion activation
function; then, a DT classifier was given the concatenated vector to detect assaults from
the combined representation. Industrial control system (ICS) datasets were used to train
and test the proposed model, and the results demonstrate that DNN with DT ensembles
performs better at malware identification than other classifiers including RF, DNN, and
AdaBoost. As a result, the system had a 99.67% accuracy rate, a 97% precision rate, a
99% recall rate, and a 99% F1 score. However, it was challenging to assess the system’s
performance in real time given cascaded and stacked machine learning models with a lack
of computational complexity.

Assis et al. [36] have proposed a 1D convolutional neural network (CNN) model, with
a 3D tensor to store IP flow traffic data that is one second long, to identify distributed DoS
attacks in SDN-enabled IoT networks. The model architecture has flattened and dropout
layers were placed after a stack of two Conv1D and MaxPooling1D layers in the proposed
architecture. The fully connected layer then completes a categorization of all models
globally. CICDDoS 2019 datasets and an author-simulated dataset were used to train and
test the proposed model. On the simulated dataset, the proposed CNN model achieved
an average detection performance of 99.9% for accuracy, precision, recall, and F1 score.
However, there were 200 hosts connected by six switches that were used to generate this
simulated dataset. Therefore, it is possible that the simulated SDN environment will not be
sufficient to test the suggested CNN model’s defense against DDoS attacks.

CNN and LSTM were merged as part of the hybrid technique by Ullah et al. [37]. The
CNN was used as a feature extractor to feed the LSTM model in the suggested hybrid
strategy at its pooling layer. In terms of accuracy, precision, recall, and F1 score, the
suggested framework performed with reported accuracy, precision, recall, and F1 score
levels of 99.92%, 99.85%, 99.94%, and 99.91%, respectively. S. Khan et al. have also presented

Appl. Sci. 2023, 13, 4699 5 of 18

a hybrid CNN-LSTM model for malware detection in an SDN-enabled network for the
IoMT [38]. It is a good idea to have a backup plan in place, especially if one has a great deal
of valuable data to access. The proposed hybrid model’s respective accuracy, precision,
recall, and F1 score were 99.96%, 96.34%, 99.11%, and 100% for malware detection.

3. Materials and Methods

The overall framework of the proposed approach is presented in Figure 1. The pro-
posed framework consists of raw datasets and associated preprocessing, designing the CNN
model by using predefined IoT devices constraints, and finally validation and testing the
built model. The detail of framework will be discussed in detail in the following subsections.

Figure 1. Proposed lightweight model architecture for SDN-IoT orchestrated botnet detection.

Appl. Sci. 2023, 13, 4699 6 of 18

3.1. Dataset

The dataset used in this work consists of five classes that were gathered via various
IoT device-targeting assaults [39], as shown in Table 1. DoS, DDoS, port scanning, OS
fingerprinting, and fuzzing are the five attack types listed in Table 1. The dataset contains
six different classes, including the normal classes, with size distributions expressed in
megabytes and percentage shares of each class within the dataset. The following is a de-
scription of each attack type and additional details of the dataset is given in Tables 1 and 2.

• Denial of Service: DoS assaults employed the Hping3 tool. Attacks on the server or
one of the IoT devices were launched by a single malicious host both with and without
the use of faked IP addresses. Using faked IP addresses drains the resources of the
controller and switches by causing each attack packet to launch the implementation
of a new flow rule. Both SYN flood and UDP flood assaults were carried out. All
possible mixtures of the four different packet transmission rates (4000, 6000, 8000, and
10,000) and payload sizes (0, 100, 500, and 1000 bytes) were employed.

• Distributed DoS: One of the most prevalent botnet attacks on IoT networks with SDN
support is the DDoS attack. It is an attack that reduces the availability of systems by
using their resources. The network’s computational resources are depleted by DDoS
attacks, which largely make use of communication protocols that might have been
used by authorized users [40]. The identical scenarios that were employed for DoS
were also applied to DDoS.

• Port scanning: Port scanning assaults made use of the Nmap tool. The server or
one of the IoT devices was the target of an assault initiated by a rogue host. The first
1024 ports are examined by default when using Nmap; however, users can additionally
define a range of ports to scan. We checked all of the port numbers and the first
1024 ports (0 to 65,535).

• OS fingerprinting: The OS fingerprinting assault made use of Nmap. In order to find
open ports during this assault, the attacker first runs a quick port scan. The attacker
then uses these ports to carry out the assault. As a result, we launched an assault that
was only directed at the server using one rogue host.

• Attacks that involved fuzzing employed the Boofuzz program. By providing random
data until the target fails, this attack aims to identify the victim’s vulnerabilities. By
using one of the malicious hosts, we conducted FTP and HTTP fuzzing attacks on the
server. For HTTP and FTP connections, our fuzzes produced random values for the
input fields and are aware of the anticipated input format. For instance, the random
request URL and HTTP version data were fuzzed with HTTP methods like get, head,
post, put, delete, connect, options, and trace.

Table 1. Datasets category and its distribution in size and percentage.

Category Size (M) Share in %

Normal 2.67 8.84

DoS 0.49 1.67

DDoS 0.18 0.60

Port Scanning 22.44 74.23

OS and Service Detection 3.39 11.20

Fuzzing 1.05 3.48

Appl. Sci. 2023, 13, 4699 7 of 18

Table 2. Dataset features and their description.

Feature Type Description

srcMAC Source MAC address

dstMAC Destination MAC address

srcIP Source IP address

dstIP Destination IP address

srcPort Source port number

dstPort Destination port number

last_seen Last time flow was active

Protocol Textual representation of transaction protocol

proto_number Numerical representation of protocol

Dur Flow duration

Mean Average duration of flows

Stddev Standard deviation of flows

Min Minimum duration of flows

Max Maximum duration of flows

Pkts Total number of packets matched with flow
rules

Bytes Total number of bytes matched with flow rules

Spkts Source-to-destination packet count

Dpkts Destination-to-source packet count

Sbytes Source-to-destination byte count

Dbytes Destination-to-source byte count

Srate Source-to-destination packets per second

Drate Destination-to-source packets per second

TnBPSrcIP Total number of bytes per source IP

TnBPDstIP Total number of bytes per destination IP

TnP_PSrcIP Total number of packets per source IP

TnP_PDstIP Total number of packets per destination IP

TnP_PerProto Total number of packets per protocol

TnP_Per_Dport Total number of packets per dport

N_IN_Conn_P_SrcIP Number of inbound connections per source IP

N_IN_Conn_P_DstIP Number of inbound connections per
destination IP

Attack 0 for Normal traffic, 1 for Attack Traffic

Category Attack category

The original dataset is provided in CSV format. However, the study recommends a
method in which the model incorporates information from images. Once tabular data has
been translated into pictures, the pipeline developed for this project will allow the model
to perform categorization. This section will therefore include a description of the technique
in Algorithm 1, which is used to transform tabular data into images.

Appl. Sci. 2023, 13, 4699 8 of 18

Algorithm 1 Dataset conversion from CSV file format to PNG image format.

1: f = open(x) . Read the CSV file (X)

2: Convert (f, delimiter = ’,’) . Convert the CSV into NumPy array of uint16

3: h, w = rgb565array.shape . Pick up image dimensions and represent colors in 16 bits

4: numpy.zeros([height, width, 3]) . Make an array of matching for (RGB) with 24-bit

colors

5: for row ∈ height do . Read each row value

6: for col ∈ width do . Read each column value

7: rgb565 = rgb565array[row, col] . Pick up rgb565 value and split into rgb888

8: red = ((rgb565 >> 11) & 0x1f) << 3 . Pick the red colors

9: green = ((rgb565 >> 5) & 0x3f) << 2 . Pick the green colors

10: blue = ((rgb565) & 0x1f) << 3 . Pick the rest color which is the blue one

11: rgb888array[row, col]=red, green, blue . Populate result array

12: Save(rgb888array, ‘png’) . Save result as PNG

13: end for

14: end for

An array of uint16 values is formed in NumPy after reading the CSV file. Create a
Numpy array called rgb888array and then fill it with 0 values. With rows and columns,
the array should resemble tabular data, but instead of having just one channel, it should
have three: red, green, and blue. Then, while iterating over the rgb888array, the red, green,
and blue values are calculated for each element by using the bit shift and AND boolean
operation.

By first shifting the binary format left by 11, bitwise ANDing it with hexadecimal 0x1F,
and then shifting the result left by 3, the red channel is determined. By first shifting the
binary format left by 5, bitwise ANDing it with hexadecimal 0x3F, and then moving the
result left by 2, the green channel is calculated. By bitwise ANDing hexadecimal 0x1F, the
blue channel is determined. The output is then shifted left by three bits. The methods in
Algorithm 2 will be used to divide the resulting RGB image into 28 × 28-sized images.

Algorithm 2 Split the PNG image into 28 × 28-sized images.

1: img = read(x) . read the image (x) from file

2: for r ∈ range(0, img.shape[0], 28) do . read each 28 pixels from the width and store it

on r

3: for c ∈ range(0, img.shape[1], 28) do . read each 28 pixels from height and store it

on c

4: write(dst, f name, r + 28, c + 28) . save those pixels on destination folder with

filename

5: end for

6: end for

3.2. Proposed Approach

Object detection [41], time-series data categorization [2,42], and medical image analy-
sis [43] are only a few of the tasks for which a deep learning architecture has been deployed.
Most of these designs use models with numerous layers, producing extremely deep models.

Appl. Sci. 2023, 13, 4699 9 of 18

Wider models are produced when multiscale architecture is employed. Thus, it is crucial to
develop a model that accurately reflects how the model operates. The way we construct
the deep learning architecture has an impact on the depth/width of the model and the
number of parameters that need to be learned. Overfitting can happen when a model
has many parameters, while underfitting can happen when a model has few parameters.
A gradient vanishing or gradient explosion may also happen when a model’s depth is
raised, according to Hanin [44]. As a result, developing a model that perfectly matches the
computer resource limitation without compromising classification performance requires a
lot of trial and careful thought.

In this study, the SDN dataset is classified into six groups by using a lightweight deep
learning architecture. In addition to having a limited number of parameters and requiring
little time to run, the model also has a very low memory requirement. These characteristics
enable the model to utilize the available computational resource effectively. The lightweight
deep learning model’s development method is described in Algorithm 3.

Algorithm 3 Designing a constraint-based lightweight model for IoT devices.

1: _Z: Initialization of hyper-parameters

2: if Number of Convolutional layers is fixed then

3: Assign an appropriate number of pooling layers

4: Assign an appropriate number of batch normalization

5: Assign an appropriate size of a kernel

6: Build lightweight Model

7: end if

8: Evaluate the appropriateness of lightweight Model

9: if Lightweight Model is not underfit || overfit then

10: Fine-tune the lightweight-Model

11: Go to _Z

12: else

13: Go to _W

14: end if

15: _W: Evaluate-performance of lightweight Model

16: if Acc & R & P & F1 ≥ state-of-the-art-result then

17: Check memory-requirement of lightweight ≤ IoT-devices

18: Check computational resources are upto-IoT devices

19: Check computational time is minimum

20: if Lightweight Model satisfied IoT devices constraints then

21: Save Model & Model weights

22: Go to _Z

23: end if

24: end if

As presented in Algorithm 3, for less memory space and computational time require-
ments, three different lightweight architectures (3 × 3, 5 × 5, and 3 × 3–5 × 5 that vary
in the size of kernels are proposed, and the 3 × 3–5 × 5 model architecture is depicted in
Figure 2. These three models come in two variations, one with batch normalization (BN),
and the other without. The proposed 3 × 3 and 5 × 5 architectures with the final BN have

Appl. Sci. 2023, 13, 4699 10 of 18

Input→CONV2D→ACT→BN→CONV2D→ACT→BN→MAXPOOL→CONV2D→ACT
→BN→CONV2D→ACT→BN→GAP→FC layers. The input size is (28, 28, 3), which indi-
cates that the input image contains RGB channels and dimensions of 28 in both width and
height. In the 3× 3 architecture, the size of the feature map after the first, second, third, and
fourth Conv2D layers is (14, 14, 16), (12, 12, 16), (9, 9, 32), and (7, 7, 32), respectively. It is (14,
14, 16), (10, 10, 16), (5, 5, 32), and (1, 1, 32) for the 5 × 5 architecture. The difference in the
feature map is due to the kernel size difference, which can be calculated with Equation (1).

The other proposed modification to this architecture is the removal of BN just before
the global average pooling (GAP). The size of the kernels used is the only distinction
between the 3 × 3 and 5 × 5 architectures. While a kernel of size 3 is used in the 3 × 3
architecture, a kernel of size 5 is utilized in the 5 × 5 architecture. The third model put
forth in this study is a combination of the 3 × 3 and 5 × 5 designs. With the employment of
the 3 × 3 and 5 × 5 in parallel, the output from the GAP layer is concatenated to produce
128 features.

The preliminary step in designing a lightweight model is to reduce the number of
filters used in the architecture. The first and second CONV2D layer has a filter number
of 16, while the third, and fourth CONV2D layers use a filter number of 32. Secondly,
MaxPool with two kernel sizes is used only once after the second Conv2D layer. The third
method to reduce the required number of parameters is using GAP instead of flattening
the layer. For instance, using flatten for the (7, 7, 32) feature map will result in around
1568 output neurons, whereas GAP will only result in 32 neurons, which is significantly
less than what would be produced with flattening. One dense layer and the final output
layer come after the pooling of the global averages. Since there is no parameter to tune at
the global average pooling layer, overfitting is prevented, which gives it an advantage over
the flattening layer [45].

The spatial size of the output volume in each layer is calculated by using input size
W1 (W2 will be the output volume), filter size F, stride S, and the amount of zero padding
P based on the following Equation (1) as indicated in [46]:

W2 =
W1− F + 2P

S
+ 1. (1)

The second convolution layer receives the output of the first convolution as an input.
We can calculate the output of the next convolution layer by using the above equation.
In the first layer, W1 is a 28 × 28 × 3 color image is given to the model, and this spatial
volume will be changed after the first convolution. The initial size of filter F is 3 × 3,
stride S is 2, and the same padding, based on the above Equation (1). The final result
is ((28 − 3 + 2(1))/2) + 1 = 14.5. This is not an integer value so the libraries convert this
number into 14. Therefore, the next convolution output value is 14 × 14 × 3,

P =
F− 1

2
, (2)

where P is padding and F is the filter (kernel).
By using Equation (2), we can determine the kernel or filter size as indicated in Equation (3):

F = 2P + 1. (3)

In the first convolutional layer, we have zero padding of 1 and by using Equation (3)
we can get filter size F = 2(1) + 1 = 3. Therefore, the filter is 3 × 3. The reason that we are
using a smaller kernel is that if we use a larger kernel, we may start losing details in some
smaller features (where 3× 3 would detect them better). In other words using smaller-sized
convolution helps to identify much smaller features that are used to distinguish between
the input image and the probability of losing an important feature is much less because the
size of our dataset is very small.

Appl. Sci. 2023, 13, 4699 11 of 18

Figure 2. Proposed lightweight deep learning architecture 3 × 3_5 × 5-based convolution without
batch normalization before the GAP.

Appl. Sci. 2023, 13, 4699 12 of 18

3.3. Evaluation Metrics

In a classification task, a true positive (TP) is a pixel that is correctly predicted to
belong to the given class based on the ground truth, whereas a true negative (TN) is a pixel
that is correctly classified as not belonging to the given class. On the other hand, a false
positive (FP) is a result where the model wrongly predicts that a pixel does not belong to
a specific class. In addition, a false negative (FN) result occurs when the model forecasts
the pixel as wrongly belonging to a particular class. Similar to this, for classification jobs,
TP stands for a pixel that is accurately detected as not belonging to the specified class,
whereas TN stands for a pixel that is correctly projected to do so based on the ground
truth. A false positive (FP), on the other hand, is a result in which the model mistakenly
forecasts a pixel as not belonging to a specific class. A false negative (FN) is a result where
the model forecasts the class wrongly as belonging to a particular class. Consequently, we
defined the following assessment criteria from the literature while keeping in mind various
performance indicators utilized in classification.

Accuracy(Acc) gauges a model’s propensity for properly classifying all classes or
pixels, whether they are positive or negative:

Acc =
TP + TN

TP + TN + FP + FN
. (4)

Recall (R) measures how accurately the positive predictions made by the machine learn-
ing model match the actual data. It provides information on the proportion of classes/pixels
that were annotated in our ground truth and were incorporated in the model’s prediction:

R =
TN

TP + FN
. (5)

The frequency with which the model predicts the right class/pixel is measured by
precision (P), also known as the positive predictive value (PPV). It accurately reports the
percentage of favorable results that the model predicted:

P =
TP

TP + FP
. (6)

The most widely used metric that combines precision and recall is the F1 score. It
stands for the two’s harmonic mean:

F1score = 2
P ∗ R

(P + R)
. (7)

4. Experimental Results and Discussion

In this section, the results of the 3 × 3, and 5 × 5 CNN models, the fused 3 × 3–5 × 5
CNN models, and other classical machine learning models will be presented and discussed
one after the other. The result discussed in this section is obtained with batch size, epoch,
and initial learning rate of 32, 150, and 0.001, respectively. Categorical cross-entropy loss
is the function used to determine classification loss with the Adam optimizer. The 3 × 3
model achieved 97.8% accuracy, 98% precision, 98% recall, and 0.98 F1 score as presented in
Table 3. Its running time, memory requirement, and the number of parameters are 0.113 sec,
235 KB, and 47,622 respectively. Removing the final BN will increase the accuracy to 99.2%.
The precision, recall, and F1 score increase to 99%. The other effects of removing the BN
layer are a decrease in running time, the number of parameters, and memory requirement.
In the same manner, the performance for 5 × 5 , and 3 × 3–5 × 5 architectures presented
in Table 4 and Table 5 respectively, improves upon removing the final BN layers. The
3 × 3–5 × 5 architecture has identical performance in terms of F1 score, recall, accuracy,
and precision. However, its running time and memory requirement increase significantly,
although the loss decreases. The comparison of the proposed architecture is found in
Figures 3 and 4.

Appl. Sci. 2023, 13, 4699 13 of 18

Figure 3. Comparison of the three proposed lightweight models in terms of accuracy.

Figure 4. Comparison of the three proposed lightweight models in terms of loss.

In comparison to the one with batch normalization, the performance of 3 × 3 without
BN is better. With F1 scores of 0.93 and 0.94 for the OS fingerprinting, and port scanning
attack and 0.99 for both classes in the network without BN, there has been a significant
increase in the detection of these attacks while removing the BN. For the network archi-
tecture of 5 × 5, and 3 × 3–5 × 5, the detection of OS fingerprinting and port scanning
attacks follows the patterns we saw in the 3 × 3 architecture. Removal of the BN has also
increased the detection of these attacks, with F1 scores of 0.97 for attack detection in the
network with BN and 0.99 for both in the network without BN. The 5 × 5 architecture has
the lowest test loss of all of the suggested architectures with a loss of 0.008, and the 3 × 3
architecture comes in second with a loss of 0.01 points. The 3 × 3–5 × 5 architecture’s loss,
however, has the highest value at 0.011.

Table 3. The 3 × 3 with and withoutbatch normalization before the global average pooling.

Attack Type/Label
With Batch Normalization before GAP Without Batch Normalization before GAP

Precision (%) Recall (%) F1 Score Precision (%) Recall (%) F1 Score

DDoS 100 100 1.00 99 100 0.99

DoS 100 98 0.99 100 99 0.99

Fuzzing 100 100 1.00 100 100 1.00

Normal 100 100 1.00 100 100 1.00

OS Fingerprinting 100 88 0.93 100 98 0.99

Port Scanning 89 100 0.94 98 100 0.99

Average 98 98 0.98 99 99 0.99

Appl. Sci. 2023, 13, 4699 14 of 18

Table 4. The 5 × 5 with and without batch normalization before the global average pooling.

Attack Type/Label
With Batch Normalization before GAP Without Batch Normalization before GAP

Precision (%) Recall (%) F1 Score Precision (%) Recall (%) F1 Score

DDoS 98 100 0.99 100 99 0.99

DoS 100 98 0.99 98 100 0.99

Fuzzing 100 100 1.00 100 100 1.00

Normal 100 100 1.00 100 100 1.00

OS Fingerprinting 100 94 0.97 100 97 0.99

Port Scanning 95 100 0.97 97 100 0.99

Average 99 99 0.99 99 99 0.99

Table 5. The 3 × 3–5 × 5 with and without batch normalization before the global average pooling.

Attack Type/Label
With Batch Normalization before GAP Without Batch Normalization before GAP

Precision (%) Recall (%) F1 Score Precision (%) Recall (%) F1 Score

DDoS 100 98 0.99 100 98 1.00

DoS 98 100 0.99 100 100 1.00

Fuzzing 100 100 1.00 100 100 1.00

Normal 100 100 1.00 100 100 1.00

OS Fingerprinting 100 80 0.89 100 94 0.97

Port Scanning 84 100 0.91 95 100 0.97

Average 97 96 0.96 99 99 0.99

We found that the performance of our proposed model has improved in terms of
computational resource requirements and classification accuracy when compared to the
performance of the current state-of-the-art models. While SVM and XG-Boost perform
similarly to our method in terms of accuracy, the proposed CNN models perform signifi-
cantly better in terms of running time and memory requirements. NB, LR, and KNN have
the shortest running times, as shown in Table 6; however, they perform poorly in terms of
classification when compared to the suggested model. Figure 5 communicates the running
time result of each model visually, and we can see that the proposed model achieves a lower
running time compared to SVM and XG-boost. Similarly, from Figure 6 we can observe that
the precision, recall, F1 score, and accuracy of the proposed models are better compared to
the existing model.

Figure 5. Comparison of models in terms of run time.

Appl. Sci. 2023, 13, 4699 15 of 18

Table 6. Comparison of the proposed approach with previous works in terms of size, running time,
and a number of parameters.

Model Architecture Loss Size (KB) Number of
Parameters Time (Milliseconds)

NB - 3.65 - 0.0010

LR - 2.29 - 0.0030

KNN - 327 - 0.0030

SVM - 6000 - 1.500

XGB - 2700 - 0.140

RF (10 initially selected features) - 2700 - 0.140

RF (10 best-selected features) - 2700 - 0.140

VGG-16 - 512.43 MB in millions in minutes

VGG-19 - 542.34 MB in millions in minutes

Inception-V3 - 91.55 MB in millions in minutes

3 × 3 with_BN 0.051 122 19542 0.1130

3 × 3 withou_ BN 0.023 118 19414 0.1080

5 × 5 with_BN 0.031 240 48982 0.1080

5 × 5 without_BN 0.022 237 48854 0.1073

3 × 3_5 × 5 with_BN 0.011 349 68070 0.1230

3 × 3_5 × 5 without_BN 0.014 342 67814 0.1170

Figure 6. Comparison of models in terms of accuracy, precision, recall, and F1 score.

As presented in Table 6, our proposed model has fewer parameters compared to
pre-trained models and less model size compared to both pre-trained models and tradi-
tional machine learning techniques, which makes the proposed model be installed and
perform well in low computational resource machines like IoT devices. Similarly, from
the experimental result, we found that our proposed model outperforms both pre-trained
models and traditional machine learning algorithms in terms of precision, recall, F1 score
and accuracy as indicated in Table 7. Besides, the proposed approach can identify any
malware on the devices in milliseconds.

Appl. Sci. 2023, 13, 4699 16 of 18

Table 7. Comparison of the proposed method with previous work on SDN datasets for 10-IoT devices.

Method Precision (%) Recall (%) F1 Score Accuracy (%)

NB 67 71 0.65 74

LR 91 91 0.91 91

KNN 91 91 0.91 91

SVM 98 98 0.98 98

XGB 99 99 0.99 99

RF (10 initially selected features) 97.86 97.87 0.9786 -

RF (10 best selected features) 97.82 97.82 0.9781 -

VGG-16 74 70 0.69 81

VGG-19 80 75 0.73 74

Inception-V3 88 86 0.85 84.1

3 × 3 with_BN 98 98 0.98 97.8

3 × 3 withou_ BN 99 99 0.99 99.2

5 × 5 with_ BN 99 99 0.99 98.8

5 × 5 without_ BN 99 99 0.99 99.4

3 × 3—5 × 5 with_ BN 97 96 0.96 98.1

3 × 3–5 × 5 without_ BN 99 99 0.99 99.0

5. Conclusions

Beyond conventional computing systems, the SDN and IoT have made it feasible to
connect to a variety of sensors and electronic equipment. Such botnet assaults as DoS,
DDoS, fuzzing, Boofuzz, OS fingerprinting, port scanning, etc. still pose a threat to these
networks. These attacks may disrupt a number of economic sectors, and on rare occasions
they may even cause irreversible damage. Attacks can be detected quickly via computer-
assisted botnet detection, which can help to mitigate their consequences. For real-time
botnet attack detection, a number of conventional machine learning techniques have been
put forth and assessed. Nevertheless, the majority of these methods necessitate intensive
feature engineering, which makes them dependent on feature extraction from known
malware signatures both during training and after deployment. Therefore, it is still crucial
to find solutions for the crucial challenges of quick detection, ongoing monitoring, and
adaptability to new threats. It is not a viable solution for deploying models on IoT devices
because it also uses significantly more processing resources and takes much longer to
compute. If there is any amount of training data available, deep learning models are
well known for their robustness in the classification task and their ability to address these
problems. They also do not need feature engineering because they can extract patterns
on their own without assistance from a human. We therefore suggested lightweight deep
learning in this study for the identification of five botnet attacks: DoS, DDoS, fuzzing,
Boofuzz, OS fingerprinting, and port scanning. The lightweight model is achieved by
carefully designing a deep learning model architecture with four convolutional layers, a
few filters, and global average pooling thereafter. The proposed method offers increased
classification performance, a short operating time, and reduced memory needs. As future
research work, we recommend focusing on enhancing the model’s interpretability and
explainability to pinpoint crucial features that significantly influence model predictions.

Author Contributions: Conceptualization, W.G.N.; methodology, W.G.N.; validation, F.S., T.G.D.,
H.M.M., and D.W.F.; writing—original draft preparation, W.G.N.; writing—review and editing,
W.G.N., F.S., T.G.D., H.M.M., and D.W.F. All authors have read and agreed to the published version
of the manuscript.

Appl. Sci. 2023, 13, 4699 17 of 18

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wube, H.D.; Esubalew, S.Z.; Weldesellasie, F.F.; Debelee, T.G. Text-Based Chatbot in Financial Sector: A Systematic Literature

Review. Data Sci. Financ. Econ. 2022, 2, 232–259. [CrossRef]
2. Feyisa, D.W.; Debelee, T.G.; Ayano, Y.M.; Kebede, S.R.; Assore, T.F. Lightweight Multireceptive Field CNN for 12-Lead ECG

Signal Classification. Comput. Intell. Neurosci. 2022, 2022, 8413294. [CrossRef] [PubMed]
3. Afework, Y.K.; Debelee, T.G. Detection of bacterial wilt on enset crop using deep learning approach. Int. J. Eng. Res. Afr. 2020, 51,

131–146. [CrossRef]
4. Biratu, E.S.; Schwenker, F.; Ayano, Y.M.; Debelee, T.G. A survey of brain tumor segmentation and classification algorithms.

J. Imaging 2021, 7, 179. [CrossRef]
5. Rufo, D.D.; Debelee, T.G.; Ibenthal, A.; Negera, W.G. Diagnosis of diabetes mellitus using gradient boosting machine (LightGBM).

Diagnostics 2021, 11, 1714. [CrossRef]
6. Waldamichael, F.G.; Debelee, T.G.; Ayano, Y.M. Coffee disease detection using a robust HSV color-based segmentation and

transfer learning for use on smartphones. Int. J. Intell. Syst. 2021, 37, 4967–4993. .: 10.1002/int.22747. [CrossRef]
7. Li, S.; Xu, L.D.; Zhao, S. The internet of things: a survey. Inf. Syst. Front. 2014. 17, 243–259. [CrossRef]
8. Al-Rushdan, H.; Shurman, M.M.; Alnabelsi, S.H.; Althebyan, Q. Zero-Day Attack Detection and Prevention in Software-Defined

Networks. In Proceedings of the 2019 International Arab Conference on Information Technology (ACIT), Al Ain, United Arab
Emirates, 3–5 December 2019; pp. 278–282.

9. Negera, W.G.; Schwenker, F.; Debelee, T.G.; Melaku, H.M.; Ayano, Y.M. Review of Botnet Attack Detection in SDN-Enabled IoT
Using Machine Learning. Sensors 2022, 22, 9837. [CrossRef] [PubMed]

10. Product Manager: Cyber Security in 2020 and beyond. Available online: https://outpost24.com/blog/Cyber-Security-in-2020
-and-beyond (accessed on 26 December 2022).

11. Pandey, A.K.; Tripathi, A.K.; Kapil, G.; Singh, V.; Khan, M.W.; Agrawal, A.; Kumar, R.; Khan, R.A. Trends in Malware Attacks; IGI
Global: Hershey, PA, USA, 2020; pp. 47–60. [CrossRef]

12. Suresh, P.; Daniel, J.V.; Parthasarathy, V.; Aswathy, R. A state-of-the-art review on the Internet of Things (IoT) history, technology,
and fields of deployment. In Proceedings of the 2014 International Conference on Science Engineering and Management Research
(ICSEMR), Chennai, India, 27–29 November 2014; pp. 1–8.

13. International Telecommunication Union. ITU Internet Report 2005: The Internet of Things; ITU: Geneva, Switzerland, 2005. Available
online: http://www.itu.int/osg/spu/publications/internetofthings/ (accessed on 14 October 2022).

14. Acarali, D.; Rajarajan, M.; Komninos, N.; Zarpelão, B.B. Modelling the Spread of Botnet Malware in IoT-Based Wireless Sensor
Networks. Secur. Commun. Netw. 2019, 2019, 3745619. [CrossRef]

15. Liaqat, S.; Akhunzada, A.; Shaikh, F.S.; Giannetsos, A.; Jan, M.A. SDN orchestration to combat evolving cyber threats in Internet
of Medical Things (IoMT). Comput. Commun. 2020, 160, 697–705. [CrossRef]

16. Thomas D. Nadeau, K.G. Sdn: Software Defined Networks: An Authoritative Review of Network Programmability Technologies; Oreilly
Media: Sebastopol, CA, USA, 2013.

17. Sarker, I.H.; Kayes, A.S.M.; Badsha, S.; Alqahtani, H.; Watters, P.; Ng, A. Cybersecurity data science: an overview from machine
learning perspective. J. Big Data 2020, 7, 1–29. [CrossRef]

18. Sethi, K.; Kumar, R.; Sethi, L.; Bera, P.; Patra, P.K. A Novel Machine Learning Based Malware Detection and Classification
Framework. In Proceedings of the 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber
Security, Oxford, UK, 3–4 June 2019. [CrossRef]

19. Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of malware: Research developments,
trends and challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [CrossRef]

20. Amin, F.; Abbasi, R.; Mateen, A.; Ali Abid, M.; Khan, S. A Step toward Next-Generation Advancements in the Internet of Things
Technologies. Sensors 2022, 22, 8072. [CrossRef] [PubMed]

21. Li, Y.; Su, X.; Ding, A.Y.; Lindgren, A.; Liu, X.; Prehofer, C.; Riekki, J.; Rahmani, R.; Tarkoma, S.; Hui, P. Enhancing the internet of
things with knowledge-driven software-defined networking technology: Future perspectives. Sensors 2020, 20, 3459. [CrossRef]
[PubMed]

22. Sung, A.; Abraham, A.; Mukkamala, S. Cyber-Security Challenges; Auerbach Publications: London, UK, 2005; pp. 125–164.
[CrossRef]

23. Sun, N.; Zhang, J.; Rimba, P.; Gao, S.; Zhang, L.Y.; Xiang, Y. Data-Driven Cybersecurity Incident Prediction: A Survey. IEEE
Commun. Surv. Tutor. 2019, 21, 1744–1772. [CrossRef]

http://doi.org/10.3934/DSFE.2022011
http://dx.doi.org/10.1155/2022/8413294
http://www.ncbi.nlm.nih.gov/pubmed/35978890
http://dx.doi.org/10.4028/www.scientific.net/JERA.51.131
http://dx.doi.org/10.3390/jimaging7090179
http://dx.doi.org/10.3390/diagnostics11091714
http://dx.doi.org/10.1002/int.22747
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.3390/s22249837
http://www.ncbi.nlm.nih.gov/pubmed/36560204
https://outpost24.com/blog/Cyber-Security-in-2020-and-beyond
https://outpost24.com/blog/Cyber-Security-in-2020-and-beyond
http://dx.doi.org/10.4018/978-1-7998-1558-7.ch004
http://www.itu.int/osg/spu/publications/internetofthings/
http://dx.doi.org/10.1155/2019/3745619
http://dx.doi.org/10.1016/j.comcom.2020.07.006
http://dx.doi.org/10.1186/s40537-020-00318-5
http://dx.doi.org/10.1109/cybersecpods.2019.8885196
http://dx.doi.org/10.1016/j.jnca.2019.102526
http://dx.doi.org/10.3390/s22208072
http://www.ncbi.nlm.nih.gov/pubmed/36298422
http://dx.doi.org/10.3390/s20123459
http://www.ncbi.nlm.nih.gov/pubmed/32575354
http://dx.doi.org/10.1201/9780849330452.ch6
http://dx.doi.org/10.1109/COMST.2018.2885561

Appl. Sci. 2023, 13, 4699 18 of 18

24. McIntosh, T.; Jang-Jaccard, J.; Watters, P.; Susnjak, T. The Inadequacy of Entropy-Based Ransomware Detection; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 181–189. [CrossRef]

25. Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [CrossRef]
26. Sarica, A.K.; Angin, P. Explainable security in SDN-based IoT networks. Sensors 2020, 20, 7326. [CrossRef]
27. Park, Y.; Kengalahalli, N.V.; Chang, S.Y. Distributed security network functions against botnet attacks in software-defined

networks. In Proceedings of the 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Verona, Italy, 27–29 November 2018; pp. 1–7.

28. Thorat, P.; Dubey, N.K. SDN-based machine learning powered alarm manager for mitigating the traffic spikes at the IoT
gateways. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies
(CONECCT), Bangalore, India, 2–4 July 2020; pp. 1–6.

29. Alamri, H.A.; Thayananthan, V. Bandwidth control mechanism and extreme gradient boosting algorithm for protecting software-
defined networks against DDoS attacks. IEEE Access 2020, 8, 194269–194288. [CrossRef]

30. Swami, R.; Dave, M.; Ranga, V. Detection and analysis of TCP-SYN DDoS attack in software-defined networking. Wirel. Pers.
Commun. 2021, 118, 2295–2317. [CrossRef]

31. Dake, D.K.; Gadze, J.D.; Klogo, G.S.; Nunoo-Mensah, H. Multi-agent reinforcement learning framework in sdn-iot for transient
load detection and prevention. Technologies 2021, 9, 44. [CrossRef]

32. Uğurlu, M.; Doğru, İ.A. A survey on deep learning based intrusion detection system. In Proceedings of the 2019 4th International
Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 11–15 September 2019; pp. 223–228.

33. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep learning approach for network intrusion detection in soft-
ware defined networking. In Proceedings of the 2016 international conference on wireless networks and mobile communications
(WINCOM), Fez, Morocco, 26–29 October 2016; pp. 258–263.

34. Narayanadoss, A.R.; Truong-Huu, T.; Mohan, P.M.; Gurusamy, M. Crossfire attack detection using deep learning in software
defined its networks. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur,
Malaysia, 28 April–1 May 2019; pp. 1–6.

35. Al-Abassi, A.; Karimipour, H.; Dehghantanha, A.; Parizi, R.M. An ensemble deep learning-based cyber-attack detection in
industrial control system. IEEE Access 2020, 8, 83965–83973. [CrossRef]

36. de Assis, M.V.; Carvalho, L.F.; Rodrigues, J.J.; Lloret, J.; Proença Jr, M.L. Near real-time security system applied to SDN
environments in IoT networks using convolutional neural network. Comput. Electr. Eng. 2020, 86, 106738. [CrossRef]

37. Ullah, I.; Raza, B.; Ali, S.; Abbasi, I.A.; Baseer, S.; Irshad, A. Software defined network enabled fog-to-things hybrid deep learning
driven cyber threat detection system. Secur. Commun. Netw. 2021, 2021, 1–15. [CrossRef]

38. Khan, S.; Akhunzada, A. A hybrid DL-driven intelligent SDN-enabled malware detection framework for Internet of Medical
Things (IoMT). Comput. Commun. 2021, 170, 209–216. [CrossRef]

39. AlperKaan35/SDN-Dataset. Available online: https://github.com/AlperKaan35/SDN-Dataset (accessed on 1 July 2021).
40. Wang, S.; Gomez, K.; Sithamparanathan, K.; Asghar, M.R.; Russello, G.; Zanna, P. Mitigating ddos attacks in sdn-based iot

networks leveraging secure control and data plane algorithm. Appl. Sci. 2021, 11, 929. [CrossRef]
41. Guo, J.M.; Yang, J.S.; Seshathiri, S.; Wu, H.W. A light-weight CNN for object detection with sparse model and knowledge

distillation. Electronics 2022, 11, 575. [CrossRef]
42. Ayano, Y.M.; Schwenker, F.; Dufera, B.D.; Debelee, T.G. Interpretable Machine Learning Techniques in ECG-Based Heart Disease

Classification: A Systematic Review. Diagnostics 2022, 13, 111. [CrossRef] [PubMed]
43. Abdou, M.A. Literature review: efficient deep neural networks techniques for medical image analysis. Neural Comput. Appl.

2022, 34, 5791–5812. [CrossRef]
44. Hanin, B. Which neural net architectures give rise to exploding and vanishing gradients? Adv. Neural Inf. Process. Syst. 2018, 31.

[CrossRef]
45. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
46. Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2018, arXiv:1603.07285v2.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-030-36802-9_20
http://dx.doi.org/10.1016/j.jcss.2014.02.005
http://dx.doi.org/10.3390/s20247326
http://dx.doi.org/10.1109/ACCESS.2020.3033942
http://dx.doi.org/10.1007/s11277-021-08127-6
http://dx.doi.org/10.3390/technologies9030044
http://dx.doi.org/10.1109/ACCESS.2020.2992249
http://dx.doi.org/10.1016/j.compeleceng.2020.106738
http://dx.doi.org/10.1155/2021/6136670
http://dx.doi.org/10.1016/j.comcom.2021.01.013
https://github.com/AlperKaan35/SDN-Dataset
http://dx.doi.org/10.3390/app11030929
http://dx.doi.org/10.3390/electronics11040575
http://dx.doi.org/10.3390/diagnostics13010111
http://www.ncbi.nlm.nih.gov/pubmed/36611403
http://dx.doi.org/10.1007/s00521-022-06960-9
http://dx.doi.org/10.48550/arXiv.1801.03744

	Introduction
	Related Works
	Materials and Methods
	Dataset
	Proposed Approach
	Evaluation Metrics

	Experimental Results and Discussion
	Conclusions
	References

