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Abstract: This research presents a geometric analysis of Sun-assisted low-energy lunar transfers and
several convenient tools that enable the systematic trajectory design in the framework of the planar
bicircular restricted four-body problem. By analogy with the patched conic approximation approach
for high-energy transfers, a Sun-assisted low-energy trajectory is divided into three legs. Two interior
legs, departing and arriving, are located inside the Earth–Moon region of prevalence and designed
in the Earth–Moon circular restricted three-body problem, whereas the exterior leg lies outside the
region of prevalence and is calculated in the Earth–Moon–Sun bicircular restricted four-body model.
The whole trajectory is obtained by smoothly patching the three legs on the boundary of the region of
prevalence. The arrival conditions are met by targeting a specific point in the L2 lunar gateway. The
interior legs are easily adjustable to the four-body dynamics. The database of planar lunar transfer
trajectories can be used to select an initial guess for the multiple-shooting procedure of designing a
three-dimensional Sun-assisted lunar transfer in high-fidelity dynamical models.

Keywords: low-energy transfer; weak stability boundary transfer; ballistic lunar transfer; bicircular
restricted four-body problem; circular restricted three-body problem; region of prevalence

1. Introduction

The Moon and its vicinity are of great interest for both science and space exploration.
In recent years, the world’s major space agencies have been jointly involved in the research
and development of a habitable lunar orbital station named the Lunar Orbital Platform-
Gateway (LOP-G) [1]. The station is planned to be used as a communication hub, a
science laboratory, a short-term habitation module, and a holding area for rovers and other
robotic vehicles. The design of fuel-efficient transfers between a low-Earth parking orbit
and the near-lunar space is one of the cornerstones for the rapid development of lunar
infrastructure.

The first steps in the research of lunar transfer’s feasibility and characteristics have
been made by the Soviet scientist Vsevolod Egorov in the early 1950s. His Ph.D. thesis
contains the fundamental results about direct flights to the Moon: Egorov was the first
who answered the questions on the minimum initial speed for a spacecraft to reach the
Moon, the existence and basic properties of free-return trajectories, and the sensitivity of a
lunar transfer trajectory to initial conditions [2]. Egorov’s results played a crucial role in
the first lunar missions. Sample trajectories to the Moon, distinguished by a short time of
flight (several days) and hyperbolic arrival velocities, were designed by the patched conic
approximation method; they require a significant cost to insert a spacecraft into a desired
orbit around the Moon and are thus called high-energy trajectories.

When we replace the patched conic approximation with the circular restricted three-
body problem (CR3BP), more efficient transfer trajectories—low-energy trajectories—emerge.
The smart use of gravity of the primary and secondary celestial bodies enables considerable
fuel savings compared to conventional high-energy transfer trajectories with translunar
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injection (TLI) and lunar orbit insertion (LOI) impulsive maneuvers. The price for such
efficiency is an appreciably increased time of flight: a low-energy transfer takes months
instead of days.

The first example of a low-energy Earth–Moon transfer trajectory was given by Charles
Conley in 1968 [3]. He rigorously proved the existence of such trajectories and revealed
their important feature of ballistic capture when no insertion maneuver is required for
a spacecraft to be captured by the Moon’s gravity. The Keplerian energy (with respect
to the Moon) is no longer the first integral in the CR3BP and naturally changes its sign
from positive to negative as the spacecraft approaches the near-Moon region. One may
distinguish interior and exterior ballistic capture, depending on from which libration point
neck, L1 or L2, the spacecraft dives into the Moon’s Hill sphere. The former effect has
been successfully leveraged in 2003 in the celebrated SMART-1 low-thrust mission [4]. The
latter effect was demonstrated even earlier, in 1990, when Belbruno and Miller designed a
rescue trajectory with exterior capture for the Japanese Hiten mission [5] (the very term
of ballistic capture seems to be coined by Belbruno in the late 1980s). In the following
paper [6], the same authors investigated the role of the Sun’s gravity perturbation more
deeply, raising the perigee of a transfer trajectory. Ivashkin compared such a perturbing
effect with the second impulse in a classic three-impulse bielliptic transfer. He deduced
some analytical estimates useful for a better understanding of the mechanism of capture in
the Earth–Moon–Sun system [7].

Following Conley’s ideas, a number of researchers have developed numerical methods
of low-energy trajectory design based on the dynamical systems theory. Belbruno, who
gave in [6] the initial algorithmic definition of a weak stability boundary (WSB) as a boundary
of the region in the configuration space where the orbital motion around one of the celestial
bodies is stable, later formalized this concept: the weak stability boundary of a given body
is a set in the phase space that is located in the intersection of a certain Jacobi integral
manifold and the region bounded by the hypersurface of zero Keplerian energy [8,9]. In
contrast to capture by executing an LOI maneuver, ballistic capture is temporary. It is also
referred to as weak.

To design a low-energy transfer trajectory in the three-body (Earth–Moon) or four-
body (Earth–Moon–Sun) system, many numerical techniques have been developed that
are based on searching for heteroclinic connections between the invariant manifolds of
(quasi)periodic orbits around the L1 and/or L2 libration points [10–13]. In the planar
CR3BP, using the tools of Poincaré and Keplerian maps, researchers have revealed the
chaotic nature of the ballistic capture phenomenon and its intrinsic link with both the WSB
and resonant orbits. Moreover, the resonance hopping theory has been developed [8,9,14–17];
convincing evidence has been discovered that there exists a close connection between the
WSB set and invariant manifolds of libration point orbits [18,19].

When aerospace engineers refer to a WSB trajectory, they mean a Hiten-like low-energy
trajectory starting from near-Earth orbit and exploiting the solar gravitational perturbation
to ensure exterior ballistic capture by the Moon. Such a trajectory was utilized in NASA’s
GRAIL mission in the period 2011–2012 [20] and, more recently, in the missions of CAP-
STONE [21] and Danuri [22]. Depending on the final lunar orbit, a transfer trajectory may
or may not include a large LOI impulse. In the latter case, a transfer can be reasonably called
ballistic, though the term of ballistic lunar transfer (BLT) is often applied to any trajectory of
this sort, no matter the magnitude of the required LOI impulse. Moreover, in our opinion,
neither the name WSB nor BLT reflects the gravity of the Sun’s effect, the key feature of
such transfer trajectories that singles them out from other low-energy transfers. So, we
would like to coin the term of Sun-assisted lunar transfer (SALT). A SALT trajectory may be
viewed as a special case of the broader class of WSB trajectories (for example, it is natural
to consider SMART-like transfer trajectories to be included in the WSB class as well). SALT
trajectories can be ballistic or thrust-augmented, as in the cases of recently launched Lunar
IceCube [23] and EQUULEUS [24] missions.
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The simplest dynamical model capturing the crucial Sun’s gravity perturbation effect is
the bicircular restricted four-body problem (BR4BP), an extension of CR3BP where the Sun
is also assumed to revolve in a distant circular orbit around the Earth–Moon barycenter. As
the extensive global search for optimal two-impulse transfers in the planar BR4BP model
clearly demonstrates, it is SALT trajectories that achieve the maximum fuel efficiency,
especially if an intermediate lunar flyby is employed [25–27]. Intensive research on the
development and application of SALT design techniques is now actively ongoing, primarily
with periodic and quasiperiodic lunar libration point orbits as a transfer destination [28–34].

To this moment, all the existing techniques of designing a SALT trajectory rely on direct
numerical optimization procedures. When possible, the invariant manifold geometry can be
employed (e.g., by using the Poincaré periapsis map) to obtain a good initial guess for such a
procedure. The major obstacle to the regular convergence of the procedure from some initial
guess is due to the fact that the initial and final legs of a lunar transfer trajectory obey the fast
near-Earth/near-Moon dynamics, which causes extreme sensitivity to boundary conditions.
The same issue for high-energy trajectories was successfully resolved with the patched conic
approximation that decouples the design of a sensitive trajectory leg in the close vicinity of a
flyby body. The aim of this research is to develop a similar methodology and, by applying
it, to perform the analysis and classification of SALT trajectories. Leveraging the concept
of the Earth–Moon region of prevalence, we assemble a SALT trajectory from the three legs:
departing and arriving, designed in the Earth–Moon CR3BP, and the exterior leg, calculated
in the Sun–Earth CR3BP or directly in the Earth–Moon–Sun BR4BP.

The structure of the paper is as follows. First, we outline the CR3BP and BR4BP models,
together with the patched three-body approximation of the four-body dynamics. After that,
the procedure of planar SALT trajectory design is described in detail. All three trajectory
legs are separately examined. Along the way, we also analytically prove the quadrant rule, a
well-known property of Sun-assisted lunar transfers. The geometric analysis of the designed
SALT trajectories is conducted, and the distinct patterns are revealed that can help to select a
good initial guess when designing a SALT trajectory in complex dynamical models.

2. Dynamical Models

Let us first introduce the dynamical models utilized in this study: the circular restricted
three-body problem, the bicircular four-body problem, and the patched three-body model.

2.1. Circular Restricted Three-Body Problem

The circular restricted three-body problem model describes the orbital motion of a body
of negligible mass (e.g., the spacecraft) in the gravitational field of two primaries (in our case,
the Earth and the Moon) revolving with a constant angular velocity in circular orbits around
their center of mass C. We denote by mE and mM the masses of the major primary (the Earth)
and the minor primary (the Moon), respectively. The CR3BP equations of motion are usually
written in the rotating reference frame with the origin at C: the x-axis connects the primaries
and points toward the minor primary, the z-axis is directed along the angular momentum of
the primaries, and the y-axis completes the right-handed system (Figure 1).

Figure 1. Rotating reference frame in the Earth–Moon circular restricted three-body problem.
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In the CR3BP, it is convenient to use a dimensionless system of units: the masses of the
bodies are normalized so that mE = 1− µ and mM = µ, where µ = mM/(mE + mM) is
the CR3BP mass parameter, the angular velocity of the rotating frame is normalized to one,
and the distance between mE and mM is normalized to 1. The dimensionless gravitational
constant G is also identically equal to 1. For the Earth–Moon system, the corresponding
units of distance, velocity and time are adopted as follows:

DU = 384402km,

VU = 1.0245441823km/s,

TU = 4.3425137728days,

(1)

and the CR3BP mass parameter µ = 0.0121505845. In this system of units, the two primaries
are at fixed positions [−µ, 0, 0] and [1−µ, 0, 0] along the x-axis. The equations of spacecraft
motion are written in the nondimensional form as

ẍ− 2ẏ =
∂Ω3

∂x
,

ÿ + 2ẋ =
∂Ω3

∂y
,

z̈ =
∂Ω3

∂z
,

(2)

where

Ω3(x, y, z) =
x2 + y2

2
+

1− µ

r1
+

µ

r2
+

µ(1− µ)

2
(3)

is the effective potential. The distances r1 and r2 from the spacecraft to mE and mM can be
expressed by the formulas r2

1 = (x + µ)2 + y2 + z2, r2
2 = (x− 1 + µ)2 + y2 + z2.

It is well known that the CR3BP system (2) has an energy integral of motion, the Jacobi
integral

J(x, y, z, ẋ, ẏ, ż) = 2Ω3(x, y, z)− (ẋ2 + ẏ2 + ż2). (4)

As a result, every CR3BP solution in the 6D phase space belongs to the 5D integral
manifold J = {[x, y, z, ẋ, ẏ, ż] ∈ R6|J(x, y, z, ẋ, ẏ, ż) = J̃} of level J̃. The planar motion
is reproduced by setting z ≡ 0. Each planar solution lies on a three-dimensional Jacobi
integral manifold in the four-dimensional phase space of the planar CR3BP.

2.2. Bicircular Restricted Four-Body Problem

The bicircular restricted four-body problem extends the Earth–Moon circular restricted
three-body problem by incorporating the Sun’s gravitational perturbation. In the framework
of the BR4BP model, the Sun is assumed to revolve in a circular orbit of radius L� 1 around
the Earth–Moon center of mass in the same plane as the Moon does. The direction to the Sun
in the CR3BP rotating reference frame is determined by θS—the phase of the Sun (Figure 2).
The equations of spacecraft motion in the BR4BP model have the same nondimensional
form as in the CR3BP if we modify the effective potential by adding

ΩS(x, y, z, t) =
GmS
r3(t)

− GmS
L2 (x cos θS(t) + y sin θS(t)), (5)

where GmS = 3.289005596145305× 105 is the dimensionless Sun’s gravitational parameter,

r3(t) =
√
(x− L cos θS(t))2 + (y− L sin θS(t))2 + z2 (6)

is the distance from the spacecraft to the Sun. The phase of the Sun grows linearly over
time: θS(t) = θ0 + ωS(t− t0). For L = 389.17, which approximately corresponds to the
ratio of the Sun–Earth and Earth–Moon distances, the rotation rate of the Sun is determined
as follows:
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ωS =

√
1 + mS

L3 − 1 ≈ −0.9253. (7)

By analogy with the CR3BP, the planar case is derived by setting z ≡ 0.

Figure 2. Rotating reference frame in the Earth–Moon–Sun bicircular restricted four-body problem.
The figure is drawn for the planar case (the z-coordinate is dropped), though also valid in the 3D case.

2.3. Patched Three-Body Approximation

The BR4BP is among the simplest suitable models to design SALT trajectories, but it
can be further simplified while still capturing the key dynamical effect of the Sun’s gravity.
The idea behind such a simplification is very similar to the patched conic approximation
approach for high-energy trajectories: the configuration space close to a planet and/or a
moon is encircled by the region of prevalence (RoP) of this planet–moon three-body system.
The dynamics in the RoP interior are well described by the planet–moon CR3BP model,
whereas outside the RoP, the BR4BP or the Sun–planet CR3BP model is applied (in case of
the Earth and the Moon, their barycenter usually performs the role of the minor primary).

The concept of the region of prevalence was first coined by Castelli [35] who defined
the Earth–Moon region of prevalence as a region in the configuration space bounded
by a closed curve of points where the error introduced in the right-hand sides of the
equations of motion would be the same independently of which body we neglect in the
Earth–Moon–Sun system, the Moon or the Sun. The region of prevalence is time-dependent:
it is parameterized by the Sun’s phase θS. The Earth–Moon RoP boundaries projected onto
the xy-plane are shown for different solar phases by colored closed curves (Figure 3). To
avoid time dependency, we define the mean-square averaged region of prevalence: its
stationary boundary is chosen to have a simple elliptical form (the bold orange curve in
Figure 3), with the principal axes parallel to the coordinate axes of the Earth–Moon rotating
reference frame. In the dimensionless system of units specified by Equation (1), the points
of this boundary in the xy-plane satisfy the equation

(x + c)2

a2 +
y2

b2 = 1, (8)

where a = 1.44, b = 1.05, c = −0.25. Further in the paper, the area with the boundary given
by Equation (8) is referred to simply as the Earth–Moon region of prevalence.
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Figure 3. Earth–Moon region of prevalence boundaries for different Sun phase angles and the
elliptical boundary of the mean-square averaged region of prevalence (bold orange).

3. Synthesis and Analysis of Planar SALT Trajectories

To design a SALT trajectory, the four-body dynamics should be considered. However,
when the spacecraft just departs the Earth or approaches the Moon, the Sun’s gravity
can be neglected and the Earth–Moon CR3BP describes the dynamics accurately enough.
Therefore, it seems reasonable to divide any SALT trajectory into three legs: the departing
and arriving legs inside the Earth–Moon region of prevalence (thus, designed in the Earth–
Moon CR3BP) and the exterior leg outside the RoP connecting the two interior legs. It is
this leg that should reflect the effect of the Sun’s gravity pull.

The most comprehensive analysis of the SALT trajectory design problem can be done
in the planar case where useful geometrical instruments are available, but before proceeding
to this analysis, let us prove one general result known as the quadrant rule.

3.1. The Quadrant Rule

Researchers numerically designing Sun-assisted low-energy transfers are familiar with
the property that the apogee of a SALT trajectory is located in either the second or the
fourth quadrant of the Sun–Earth rotating reference frame centered at the Earth, as shown
in Figure 4. Below, we explain this feature analytically.

In the patched three-body approximation, the perturbation due to the Sun’s gravity
can be estimated by analyzing the increment of the Jacobi integral of the Earth–Moon
three-body system along the exterior leg of a trajectory. Differentiating (4) in the BR4BP
dynamics gives

dJ
dt

= 2
(

∂Ω3

∂x
ẋ +

∂Ω3

∂y
ẏ +

∂Ω3

∂z
ż− ẋẍ− ẏÿ− żz̈

)
= −2

(
∂ΩS
∂x

+
∂ΩS
∂y

+
∂ΩS
∂z

)
or, equivalently,

dJ
dt

= 2
(

∂ΩS
∂θS

dθS
dt
− dΩS

dt

)
.

Hence, we have

∆J = −2∆ΩS + 2
∫

∂ΩS
∂θS

dθS. (9)
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It is convenient to write ΩS and its derivative ∂ΩS/∂θS in the Sun–barycenter frame
with the x′-axis directed along the line connecting the Sun and the Earth–Moon barycenter
(Figure 5). Note that we retain the prime notation for the axes of this frame: the only
difference from the Sun–Earth rotating reference frame of Figure 4 is a slight displacement
of the origin from the Earth’s center to the Earth–Moon barycenter. If we introduce the
polar coordinates x′ = ρ cos α, y′ = ρ sin α in the Cx′y′ plane and make use of the relations
r2 − z2 = x2 + y2 = x′2 + y′2 = ρ2, x = −ρ cos(θS + α), y = −ρ sin(θS + α), Equation (6)
is simplified to

r3 =
√

L2 + r2 + 2Lρ cos α.

Substituting in Equation (5) and taking into account ρ/L ≤ r/L� 1 yields

ΩS =
GmS√

L2 + r2 + 2Lρ cos α
+

GmS
L2 ρ cos α ≈ GmS

L
− GmS

2L3 r2 +
3GmS

2L3 ρ2 cos2 α.

Finally, the partial derivative of ΩS with respect to θS equals minus the partial deriva-
tive with respect to α:

∂ΩS
∂θS

= −∂ΩS
∂α
≈ 3

2
GmS

L3 ρ2 sin 2α. (10)

Figure 4. Examples of planar SALT trajectories in the BR4BP with the departing (red), arriving (green)
and exterior (black) legs patched on the boundary of the Earth–Moon region of prevalence. The
orbit of the Moon is marked by the dashed gray line. The apogee of every SALT trajectory in the
Earth-centered Sun–Earth rotating frame is located in the 2nd or 4th quadrant.

To reduce the spacecraft’s orbital energy and ensure ballistic capture, the Sun’s grav-
itational perturbation should lead to the positive increment of the Earth–Moon Jacobi
integral. The predominant contribution to such an increment is due to the integral term
in Equation (9): the spacecraft spends many weeks near the apogee of a SALT trajectory
where ρ2 ' 10. In order for the integral∫

∂ΩS
∂θS

dθS =
∫

∂ΩS
∂θS

ωS dt
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to be positive, the partial derivative (10) should be negative. This is equivalent to the in-
equality sin 2α < 0 valid for either the second or the fourth quadrant of the Sun–barycenter
reference frame.

Figure 5. Earth–Moon and Sun–barycenter rotating reference frames Cxy and Cx′y′. The radius
vector of the spacecraft in the Sun–barycenter frame is described by the polar angle α.

So, using simple considerations, we have proven analytically the well-known quadrant
rule observed by researchers when numerically designing SALT trajectories. Note that so
far we did not assume a Sun-assisted transfer trajectory to be planar.

The quadrant rule will be useful for us later for the purpose of analyzing the features
of designed SALT trajectories.

3.2. The L2 Lunar Gateway

It is convenient to design a SALT trajectory in reverse order, starting with the arriving
leg. At this phase of flight, exterior ballistic capture happens: the spacecraft “dives” into
the L2 neck of the zero-velocity surface. In the planar Earth–Moon CR3BP, the integral
manifold J ( J̃) for low-energy values of J̃ (that is, 3 < JL3 ≤ J̃ ≤ JL2; see also Appendix A.1
about the critical values of the Jacobi integral) is divided into two non-overlapping parts by
the stable invariant manifold of the planar Lyapunov orbit with the same value of J̃ [3,36],
and ballistic capture can occur in a planar SALT trajectory only if its arriving leg belongs to
the interior of the corresponding two-dimensional stable manifold tube (Figure 6).

In the (x, ẋ) plane, manifold trajectories, when crossing the Earth–Moon RoP boundary,
form a closed curve limiting the L2 lunar gateway (Figure 7). Let G denote a set of inner
points of the gateway. For any point [xP, ẋP] of the gateway, the corresponding coordinate
yP may be found from the condition of belonging to the RoP boundary; after that, ẏP is
determined by the energy constraint J(xP, yP, ẋP, ẏP) = J̃. The closer J̃ to JL2, the smaller
the lunar gateway, shrinking to a single point at J = JL2 ≈ 3.184 (see Figure 8). Thus,
inserting the spacecraft into any circumlunar orbit with J > 3.184 is impossible without
additionally performing a lunar orbit insertion maneuver.

The numerical propagation of any initial condition [xP, yP, ẋP, ẏP] in the CR3BP model
generates a ballistic capture trajectory (Figure 6) passing by the Moon at a selenocentric
distance rπ , with the argument of perilune ωπ (in the planar case, it stands for the angle
between the Cx axis of the Earth–Moon rotating reference frame and the Moon–perilune
line). The points corresponding to a specified value of rπ can be grouped in a single
gradient-colored contour line. Figure 9 shows such a line for rπ = 3141 km on the L2 lunar
gateway with J = 3.06. The color along the line indicates the ωπ value for the associated
ballistic capture trajectory. If we want the arriving leg to have specific values of rπ and
ωπ , the corresponding gateway point should be targeted. If the Jacobi integral value of the
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desired (nominal) lunar orbit is greater than JL2, the spacecraft has to enter a gateway with
J . JL2 and then perform an LOI burn.

Figure 6. Sample ballistic capture trajectory with the closest lunar approach of 1403 km (rπ = 3141 km)
at a point with ωπ = 83.5 deg. The Jacobi integral value equals J = 3.06 along the capture trajectory.

Figure 7. L2 lunar gateway G in the (x, ẋ) plane. The region is formed by stable manifold trajectories
of the J = 3.06 planar Lyapunov orbit when crossing the Earth–Moon RoP boundary.
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Figure 8. Nested L2 lunar gateways for different Jacobi integral levels: J = 3.06, J = 3.10, J = 3.15.

Figure 9. L2 lunar gateway for J = 3.06 with the rπ = 3141 km perilune distance contour line marked.
Targeting point P results in the trajectory shown in Figure 6 (the argument of perilune ωπ = 83.5 deg).

To estimate a perilune impulse required to insert the spacecraft in a nominal lunar
orbit with J > JL2, one can use the approximate expression J ≈ 3 (1− µ) + 2Wz − 2E for
the Jacobi integral via the osculating elements in the Moon-centered inertial frame (see
Appendix A.2). Here, Wz is the z-component of the orbital angular momentum and E is the
Keplerian energy of the spacecraft’s capture orbit around the Moon. For the planar motion,
this expression can be rewritten in terms of the perilune distance rπ and the spacecraft
velocity at perilune Vπ as J = 3 (1 − µ) ± 2rπVπ − V2

π + 2µ/rπ (the inertial spacecraft
velocity relative to the Moon is assumed). The sign of the second term shows whether the
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orbit is direct or retrograde. Thus, the required LOI burn at perilune can be determined
from the quadratic equation

∆J = ±2rπ∆Vπ − 2Vπ∆Vπ − (∆Vπ)
2, (11)

where ∆J = Jnom− Jarr is the Jacobi integral increment (the difference between its values for
a nominal orbit and for the arriving leg). Among the two negative roots, we are interested
in the one with the least magnitude ∆V = |∆Vπ |. Such a magnitude is given by the formula

∆V = Vπ ∓ rπ −
√
(Vπ ∓ rπ)2 − ∆J. (12)

This estimate of the LOI burn magnitude, though accurate enough, can be further
improved when adapting the trajectory to more realistic dynamical models.

3.3. Exterior Leg Backward Propagation

Once a point of some L2 lunar gateway is selected, the exterior leg can be reconstructed
directly in the BR4BP by propagating the point backward in time until the trajectory re-
enters the Earth–Moon RoP (or until the predefined maximum propagation time, set to
250 days in this work, is reached). The Sun’s phase at the beginning of the propagation is
to be specified.

To demonstrate the abundance of SALT trajectories, we restrict ourselves to just a single
contour line, the one shown in Figure 9. Propagating more than a thousand points along the
contour line with 1500 different values of the Sun’s phase in the [0, 2π] interval, we obtained
almost 287 thousand potential exterior legs (about 14% of the propagated trajectories). Their
phase states at crossing the Earth–Moon RoP boundary can be visualized on the (x, ẋ) plane
(Figure 10). As earlier, the y-coordinate is readily retrieved from Equation (8), then ẏ can be
recovered from the Jacobi integral value at the RoP re-entry, which is indicated by the color.
The lower this value, the more pronounced was the solar gravity perturbation effect along the
exterior leg. Meanwhile, we do not display the points with J > 2.47 because such exterior
legs cannot be in principle patched with any departing leg: the corresponding launch energy
C3, according to Equation (A19) from Appendix A.2, appears to be less than −2.17 km2/s2,
which is not enough for the spacecraft to reach the Moon and/or exit the Earth–Moon region
of prevalence (after the TLI burn, the apogee distance would be less than 367,000 km).

Figure 10. Earth–Moon RoP re-entry conditions for candidate exterior legs. The color reflects the
Jacobi integral value at re-entry. The points with J > 2.47 are not displayed because it is unfeasible to
patch the associated exterior legs with any departing leg.
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3.4. Translunar Injection Maneuver Design

To calculate the departing leg, one has to select the translunar injection burn magnitude
and the point at a given low-Earth parking orbit where the TLI impulse is applied. The
range the impulse magnitude should belong to is defined by the Jacobi integral range of
candidate exterior legs. For example, in the 200 km parking orbit, the TLI burn ensuring
J ∈ [0.95, 2.41] has a magnitude between 3.13 km/s and 3.20 km/s. The location of
performing the TLI burn in the parking orbit can be parameterized by, say, the phase angle
θ, counting from the x-axis of the Earth–Moon rotating frame. Alternatively, the angle
α, counted from the x′-axis of the Sun–barycenter frame, may be used. These angles are
related to each other by the expression θ = α + θS − π mod 2π (see Figure 5). Note that
both angles can be more conveniently defined with respect to the geocentric (rather than
barycentric) rotating frame and the above relationship still keeps valid—the angles simply
decrease by the same amount, whereas the solar phase θS almost does not change (see
Appendix B). Below, this convention is assumed.

We have propagated more than a hundred thousand potential departing legs by taking
different values of the TLI burn magnitude and phase (from the estimated interval and from
[0, 2π], respectively). A departing leg was considered patched with some candidate exterior
leg if, leaving the Earth–Moon RoP, it has almost the same phase state (the norm difference of
10−2 was tolerated). As a result, we succeeded in patching more than 3000 pairs of exterior and
departing legs. The corresponding “survived” points of Figure 10 are displayed in Figure 11.

Figure 11. Earth–Moon RoP re-entry conditions corresponding to the exterior legs successfully
patched with a departing leg. The color reflects the Jacobi integral value at re-entry.

3.5. Classification and Features of Patched SALT Trajectories

Let us classify and characterize the patched SALT trajectories we obtained. They all can
be grouped into three categories, depending on the existence and type of an intermediate
lunar flyby on the departing leg. Sample trajectories of each type are shown in Figure 12.
The first type is comprised of SALT trajectories not approaching the Moon closer than
60,000 km on the departing leg (no flyby). The other two types of trajectories (which
amount to 14% of the whole database of patched SALT trajectories) include a lunar flyby.

For a second-type SALT trajectory (see Figure 13), the spacecraft crosses the x-axis
in front of the Moon (when observing from the Earth) and has a positive orbital angular
momentum wz in the rotating frame at the moment of flyby. We will thus further refer to
such a flyby as direct (note that in [31,33] it is called a trailing side flyby). On the contrary, a
SALT trajectory of the third type (Figure 14) includes a retrograde flyby (a leading side flyby
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in [31,33])—the spacecraft crosses the x-axis behind the Moon and has a negative orbital
angular momentum. As can be readily deduced from Equation (A12) of Appendix A.2,
the orbital angular momentum in the rotating frame wz is related to its inertial-frame
counterpart Wz at an arbitrary moment by the simple expression Wz = wz + r2

2. Particularly,
at the moment of flyby, we have Wz = wz + r2

π . If the flyby distance rπ � 1, then Wz ≈ wz.

Figure 12. Three types of SALT trajectories: (I) without any intermediate lunar flyby, (II) with a direct
lunar flyby, (III) with a retrograde lunar flyby. The Moon’s orbit is marked by the dashed gray line.

Figure 13. Sample departing leg with a direct lunar flyby. The orbital angular momentum with respect
to the Moon in the rotating frame is positive; the spacecraft crosses the x-axis in front of the Moon.

It is convenient that the initial conditions (the launch energy C3 and the TLI burn
phase) for the patched SALT trajectories almost do not depend on a specific low-Earth
parking orbit and can be visualized in a single chart (Figure 15). Excluding transfers with
an extra revolution around the Earth before an intermediate lunar flyby, one can conclude
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that SALT trajectories of the second or third type require executing the TLI maneuver at a
point in the parking orbit in which phase θ0 is in the range of 215 . . . 295 deg. The lower
part of this range (215 . . . 225 deg) corresponds to second-type trajectories, while the TLI
burn phase of third-type trajectories is bounded between 235 deg and 295 deg. As expected,
no-flyby trajectories do not exhibit any pattern in θ0 and require a launch energy of at least
−0.8 km2/s2 (the TLI impulse of about 3.19 km/s in the 200 km parking orbit). Including
an intermediate flyby allows one to reduce the launch energy as low as up to −2.1 km2/s2.

Figure 14. Sample departing leg with a retrograde lunar flyby. The orbital angular momentum relative
to the Moon in the rotating frame is negative; the spacecraft crosses the x-axis behind the Moon.

For all three types of SALT trajectories, the initial Sun–Earth–spacecraft geometry
is predictably crucial. It is expressed the most in terms of the TLI burn polar angle α0
relative to the Sun–Earth line. The majority of trajectories with a direct lunar flyby demand
this angle to be approximately either 130 deg or 310 deg (see Figure 16). The former case
corresponds to fourth quadrant trajectories, whereas the latter is for second quadrant
trajectories. The burn angle for trajectories with a retrograde flyby is about 60 deg (for
second quadrant trajectories) or close to 240 deg (for fourth quadrant trajectories). The
pattern is even more pronounced for no flyby trajectories: one can observe almost identical
parts of the distribution, shifted by 180 deg with respect to each other and having peaks at
160 deg and 340 deg (Figure 17).

Since the TLI burn phase θ0 for second-type and third-type trajectories should belong
to a certain range (it is especially narrow for trajectories with a direct flyby), no wonder that
the Sun’s initial phase θS, 0 = θ0 − α0 + π mod 2π also tends to be grouped around some
values. For example, two distinct peaks of second-type trajectories are located at 95 deg
and 275 deg (Figure 18). When speaking of the transfer duration, most of the first-type
trajectories complete a low-energy transfer in less than 3 months (see Figure 19). Trajectories
with a direct flyby exhibit almost the same performance, with those with a smaller C3 being
slower. Finally, trajectories with a retrograde flyby generally require more time, from
4 to 6 months (Figure 20).

3.6. Adaptation to More Complex Dynamical Models

Patched SALT trajectories are easily adaptable to the BR4BP model. When a single
midcourse correction is allowed to be performed at the apogee of a SALT trajectory, the
standard multiple-shooting procedure appears to work very well: a trajectory can be
rapidly adapted by adjusting only the TLI impulse magnitude and phase and possibly
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adding a small apogee trajectory correction maneuver (TCM). The departure and arrival
times (or, equivalently, the solar phase values at the departure/arrival epochs) are allowed
to be fixed.

Figure 15. Initial conditions (the launch energy C3 and the TLI burn phase) corresponding to the
three types of SALT trajectories: without an intermediate flyby (blue), with a direct lunar flyby (light
blue), or with a retrograde lunar flyby (red).

Figure 16. Distribution of spacecraft polar angle values at the moment of TLI burn execution for SALT
trajectories including a lunar flyby. Two distinct peaks at about 130 deg and 310 deg correspond to the
4th and 2nd quadrant trajectories with a direct flyby. The burn angle for retrograde flyby trajectories can
be either close to 60 deg (2nd quadrant trajectories) or about 240 deg (4th quadrant trajectories).
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Figure 17. Distribution of spacecraft polar angle values at the moment of TLI burn execution for
SALT trajectories without an intermediate lunar flyby. Two peaks at about 160 deg and 340 deg
correspond to the 4th and 2nd quadrant trajectories. The pattern is repeated almost exactly when
shifting by 180 deg.

Figure 18. Distribution of solar phase angles at the moment of TLI burn execution for SALT trajectories
with a lunar flyby. Two distinct peaks at about 95 deg and 275 deg correspond to the 2nd and 4th
quadrant trajectories with a direct flyby. For retrograde flyby trajectories, the pattern is not so clear,
but small peaks around 140 deg and 350 deg values could be identified.
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Figure 19. Distribution of the total transfer duration for SALT trajectories without a lunar flyby.

Figure 20. Distribution of the total transfer duration for SALT trajectories including a lunar flyby.

Three examples of SALT trajectories before and after adaptation for each type of
Sun-assisted transfers are depicted in Figures 21–23. In all the examples, the TLI burn
magnitude changes by at most several m/s and its phase shift is in the order of a couple of
degrees. The apogee correction maneuvers vary from 0.6 m/s for the second-type (direct
flyby) trajectory to 34.5 m/s for the third-type (retrograde flyby) trajectory.
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Figure 21. A sample SALT trajectory of the first type (no flyby): the patched three-body approximation
(thin) and upon adaptation to the BR4BP (bold). The segments of the adapted trajectory corresponding
to the departing, arriving, and exterior legs, are colored the same (red, green, and black, respectively).
In the course of adaptation, the TLI impulse has increased from 3193 m/s to 3194 m/s. The burn
phase has changed from 97.35 deg to 103.01 deg. The apogee TCM of 12.7 m/s has been added.

Figure 22. A sample SALT trajectory of the second type (with a direct lunar flyby): the patched
three-body approximation (thin) and upon adaptation to the BR4BP (bold). As earlier, the adapted
trajectory segments corresponding to the departing, arriving, and exterior legs, are colored the same
(red, green, and black, respectively). Upon adaptation, the TLI burn has increased from 3163 m/s to
3166 m/s. The burn phase has changed from 221.84 deg to 221.43 deg. The apogee TCM of 0.6 m/s
has been added.
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Figure 23. A sample SALT trajectory of the third type (with a retrograde lunar flyby): the patched
three-body approximation (thin) and upon adaptation to the BR4BP (bold). As earlier, the adapted
trajectory segments corresponding to the departing, arriving, and exterior legs, are colored the same
(red, green, and black, respectively). Upon adaptation, the TLI burn has decreased from 3149 m/s to
3147 m/s. The burn phase has changed from 296.84 deg to 293.88 deg. The apogee TCM of 34.5 m/s
has been added.

Converting a planar SALT trajectory to a three-dimensional transfer trajectory in
a high-fidelity ephemeris model is a separate problem beyond the scope of this paper.
However, the remark can be made that such a numerical procedure is almost always based
on some sort of multiple-shooting method. While for trajectories in the three-dimensional
BR4BP model the shooting is essentially straightforward [33], the adaptation of planar
trajectories is involved. It often demands additional steps: to first generate an intermediate
quasi-planar trajectory in the ephemeris model [37] or to gradually deform a trajectory (the
homotopic approach).

4. Conclusions and Future Work

The proposed methodology of dividing a planar SALT trajectory into several parts
with different dynamics is analogous to the patched conic approximation concept for
high-energy trajectories. It appears fruitful in classifying SALT trajectories, identifying
basic features (TLI burn magnitudes and phases, initial solar phase values, etc.), and
quantifying the perturbing effect due to the Sun’s gravity to rigorously prove the quadrant
rule. The L2 lunar gateway is a convenient tool for targeting specific capture conditions.
In the next step of the study, we will examine several gateways with other Jacobi integral
values in order to fully understand the behavior of SALT trajectories of all three types. It
opens the road to the semianalytical design of planar SALT trajectories: by properly setting
the departure parameters, one will be able to generate an excellent initial guess from which
the multiple-shooting procedure could rapidly converge to a planar BR4BP trajectory with
the desired characteristics.

The numerically observed similarity of planar and spatial SALT trajectories (in terms of
their geometric shapes and principal parameters) gives us a reasonable hope that most of the
results obtained in the planar case could be transferred (or naturally extended) to the spatial
BR4BP model. Ideally, a unified multiple-shooting method and the general rules of choosing
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the initial conditions should be developed for both planar and spatial SALT trajectories. The
transition from the BR4BP to the ephemeris model would then be a simple final step.
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TCM Trajectory correction maneuver
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Appendix A. Jacobi Integral Properties

Appendix A.1. Critical Values at Libration Points

Upon substituting the effective potential (3) to Equation (4), the Jacobi integral is
expressed in the CR3BP rotating reference frame as

J = x2 + y2 + 2
1− µ

r1
+ 2

µ

r2
+ µ(1− µ)− v2 (A1)

where v2 = ẋ2 + ẏ2 + ż2. The L1 and L2 critical values of the Jacobi integral are retrieved
by substituting v = 0, y = 0, and

x = 1− µ− rL1,

r1 = 1− rL1,

r2 = rL1

(A2)

or, respectively,
x = 1− µ + rL2,

r1 = 1 + rL2,

r2 = rL2,

(A3)
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which gives

JL1 = r2
L1 + 2

µ

rL1
+ (1− µ)

(
1− 2rL1 +

2
1− rL1

)
, (A4)

JL2 = r2
L2 + 2

µ

rL2
+ (1− µ)

(
1 + 2rL2 +

2
1 + rL2

)
, (A5)

where rL1 and rL2 are the distances from the minor primary to the L1 and L2 libration points.
They are usually represented as the series

rL1 = ν− ν2

3
− ν3

9
+ . . . , (A6)

rL2 = ν +
ν2

3
− ν3

9
+ . . . (A7)

in powers of ν = (µ/3)1/3. For the Earth–Moon mass parameter µ = 0.0121505845, we
have rL1 = 0.1504817239, rL2 = 0.1674209156, JL1 = 3.2003463727, JL2 = 3.1841646540.

For the L3 libration point, the notation rL3 stands for its distance to the major primary.
It can be estimated using the series

rL3 = 1− 7
12

µ + . . . (A8)

Considering
x = −µ− rL3,

r1 = rL3,

r2 = 1 + rL3,

(A9)

we get

JL3 = r2
L3 + 2

1− µ

rL3
+ µ

(
1− 2rL3 +

2
1 + rL3

)
. (A10)

For µ = 0.0121505845, this expression is evaluated as JL3 = 3.0241500974.
The L4 and L5 critical values of the Jacobi integral are both identically equal to 3, which is

easily checked by substituting x = 1/2− µ, y = ±
√

3/2, r1 = r2 = 1, v = 0 to Equation (A1).

Appendix A.2. Expressions in Terms of Osculating Elements

It may be useful to express the Jacobi integral via the osculating elements relative to
one of the two primaries. To do this, we need to change the state variables by transforming
to the inertial frame centered at the primary of interest, with its axes instantaneously parallel
to the CR3BP rotating frame axes. For instance, the inertial coordinates (X, Y, Z, Ẋ, Ẏ, Ż)
relative to the minor primary are related to the rotating frame coordinates as follows:

x = 1− µ + X, y = Y, z = Z, (A11)

ẋ = Ẋ + Y, ẏ = Ẏ− X, ż = Ż. (A12)

Therefore, x2 + y2 = X2 + Y2 + (1− µ)2 + 2X(1− µ) and v2 = V2 + 2YẊ − 2XẎ +
X2 + Y2, where V2 = Ẋ2 + Ẏ2 + Ż2. Substituting to Equation (A1) yields

J = 2Wz − 2E + (1− µ)

(
1 + 2X +

2√
(1 + X)2 + Y2 + Z2

)
. (A13)

Here we denote by Wz = XẎ−YẊ the Z-component of the orbital angular momentum
and E = V2/2 − µ/r2 is the Keplerian energy relative to the minor body. When the
spacecraft is close to this body,
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J ≈ 3 (1− µ) + 2Wz − 2E (A14)

up to second-order terms. If necessary, Wz and E can be expressed via the osculating values
of semimajor axis, eccentricity, and inclination: Wz =

√
µa(1− e2) cos i, E = −µ/2a.

When the spacecraft is far from the minor primary, it is better to introduce the inertial
frame centered at the major primary. Keeping the same notation (X, Y, Z, Ẋ, Ẏ, Ż) for such
a frame and doing similar derivations gives

J = 2Wz − 2E + µ

(
1− 2X +

2√
(1− X)2 + Y2 + Z2

)
. (A15)

This time, Wz =
√
(1− µ)a(1− e2) cos i, E = −(1− µ)/2a and the orbital elements

should be taken with respect to the major body. Neglecting the terms of first order in µ, we
arrive at the well-known Tisserand formula

J ≈ 2Wz − 2E ≈ 1/a + 2
√

a(1− e2) cos i. (A16)

In the important case when the major body is the Earth and a departure impulse is
applied in a low-Earth parking orbit of geocentric radius rp = R⊕ + hp, the Tisserand
formula becomes too inaccurate and should be replaced by

J ≈ 3µ + 2Wz − 2E = 3µ + 2rp(Vp + ∆V) cos i− (Vp + ∆V)2 +
2(1− µ)

rp
, (A17)

where Vp =
√
(1− µ)/rp and ∆V is the departure impulse magnitude. Using this equation,

the launch energy

C3 = 2E = (Vp + ∆V)2 − 2(1− µ)

rp
(A18)

can be expressed through J as

C3 ≈ 3µ− J + 2Wz ≈ 3µ− J + 2rp

√
3µ− J +

2(1− µ)

rp
cos i. (A19)

The resulting value is almost insensitive to a specific choice of the parking orbit altitude
hp: a good estimate of C3 can be even obtained by substituting the Earth’s radius R⊕ in
place of rp.

Appendix B. Relationship between Sun–Earth and Sun–Barycenter Frames

The Earth–Moon barycenter is shifted from the Earth’s center of mass by the distance
of µ ·DU ≈ 4670.7 km. Applying the law of sines to the triangle formed by this vector and
the geocentric and barycentric spacecraft position vectors, we have

sin ∆θ

∆x
=

sin θB
R⊕ + hp

, (A20)

where ∆x = µ ·DU ≈ 4670.7 km, ∆θ = θB − θG is the difference between the barycentric
and geocentric spacecraft phases, and hp is the parking orbit altitude. The solar phase
θS does not depend on the choice of the frame’s origin: the difference is on the order of
arcseconds. From the relations

αB = θB − θS + π,

αG = θG − θS + π,
(A21)
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we conclude that the difference ∆α = αB − αG is the same:

∆α = ∆θ = arcsin
(

∆x sin θB
R⊕ + hp

)
. (A22)

The maximum difference for hp = 200 km equals to arcsin (4670.7/6571) ≈ 45.3 deg,
which, obviously, cannot be neglected. Hence, the frame’s origin should be specified so
that the TLI burn phase and polar angle can be understood correctly.
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