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Abstract: This systematic review evaluated current in vivo research on regenerating critical-sized
mandibular defects and discussed methodologies for mandibular bone tissue engineering. Out of the
3650 articles initially retrieved, 88 studies were included, and all studies that used a scaffold reported
increased bone formation compared to negative controls. Combining scaffolds with growth factors
and mesenchymal stem cells improved bone formation and healing. Bone morphogenic proteins were
widely used and promoted significant bone formation compared to controls. However, discrepancies
between studies exist due to the various methodologies and outcome measures used. The use of
scaffolds with bioactive molecules and/or progenitor cells enhances success in mandibular bone
engineering. Scaffold-based mandibular bone tissue engineering could be introduced into clinical
practice due to its proven safety, convenience, and cost-effectiveness.

Keywords: bone regeneration; growth factors; mandible; mesenchymal stem cells; scaffold; tissue
engineering

1. Introduction

The reconstruction of mandibular bone defects following traumatic injuries, postopera-
tive defects from tumor removal, or infection treatment is the most common reconstructive
procedure in oral and maxillofacial surgery. Due to the significant impact of the craniofa-
cial area on patients’ well-being and quality of life, the proper reconstruction of defects
represents a significant challenge for surgeons [1]. The reconstruction or augmentation of
craniofacial bones is one of the most frequent surgical procedures in oral and maxillofacial
surgery. Special consideration of mandible reconstruction exists in cases of critical-sized
defects where a high quantity of bone is lost and intrinsic regeneration is not possible [1].

Standard bone augmentation procedures comprise the clinical use of autografts, allo-
grafts, and xenografts. Alloplastic materials, such as titanium load-bearing plates, were
widely used as reconstruction plates to reestablish mandibular segmental defects. Still,
numerous studies on titanium reconstruction plates have reported high failure rates of
up to 52% due to the resorption and infection of the bone [1]. Microvascular bone grafts
harvested from the fibula, scapula, radial bone, and iliac crest are currently used as standard
grafts to reconstruct extensive mandibular bone defects. However, the use of autografts
is complex and requires a second surgical intervention, causing donor-site morbidity and
possible graft rejection [1]. To overcome these limitations, extensive research on bone
tissue engineering (BTE) using bioactive and biocompatible bone substitutes has been
performed in recent years. The techniques for mandibular BTE should be adjusted to
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certain features that are unique to mandible physiology. Firstly, materials for regeneration
may come into contact with saliva and intraoral pathogens, leading to inflammation and
infection. Secondly, materials used for mandibular BTE must withstand significant forces
of mastication (200–400 N). Thirdly, the BTE of the mandible should restore the contour
of the bone in order to ensure proper patients’ appearance. Fourthly, the restored bone
should be available for dental implant placement. Techniques for mandibular bone tissue
engineering may be categorized into scaffolds, bioactive substances, and cell therapy [2].

Scaffolds used as synthetic or autologous bone substitutes act as matrices mimicking
the artificial extracellular matrix (ECM) to promote bone healing until they are partially
or wholly replaced by newly formed bone [3]. Biomaterials are mainly categorized into
natural and synthetic materials. Synthetic materials are classified into polymers, bioceram-
ics, metals, and composite scaffolds. Numerous studies reported a range of advantages
and disadvantages for each scaffold type [4,5]. Natural polymeric scaffolds have excellent
biocompatibility and controlled biodegradation, but their weak mechanical properties
are their major drawback as bone scaffold materials [1]. Synthetic polymeric scaffolds
are biocompatible, biodegradable, easily fabricated into different shapes, and provide
mechanical support and a controlled degradation time. Their use in bone engineering
is limited because of their decreased mechanical strength due to their rapid degradation
in vivo and immune reaction to acidic degradation products [1]. Bioceramic scaffolds with
excellent biocompatibility and bioactivity are extensively used in bone tissue engineering.
They have high compressive strength and osteogenic properties but a low tensile strength
and toughness, fabrication hitches, brittleness, and slow resorption rate [2]. Metals have
been used in manufacturing biomimetic scaffolds, fixation plates, screws, pins, wires, and
stents. Biodegradable metals have a variety of properties that are essential for bone regen-
eration scaffolds, including biodegradability properties, mechanical strength, formability,
osteogenic capacity, and antibacterial properties. The term “biomimetic” refers to the pro-
cess of designing materials, structures, or systems that mimic natural biological processes
or structures. In the context of scaffolds for bone regeneration, biomimetic scaffolds are
designed to mimic the extracellular matrix (ECM) of natural bone tissue, both in terms of
its chemical composition and its physical structure [2]. Even though metallic materials are
not superior to other material combinations because of the increased number of failure
cases demanding revision procedures, they are still utilised in some developing countries
due to their reasonable cost and availability [6]. Composite scaffolds of bioceramics with
polymers have been extensively used as materials for bone repair studies. The natural bone
matrix is a combination of organic/inorganic composites; thus, the composite scaffolds
for bone regeneration are designed by combining the advantages of both components.
The most common composite scaffolds for bone substitution are bioceramic and polymer
scaffolds [4,5].

Bioactive molecules such as bone morphogenetic proteins (BMPs) promote bone
healing, usually in combination with a scaffold as a carrier. Several commercial products
are based on recombinant human bone morphogenetic proteins (rhBMPs) and are used
for alveolar bone augmentation, sinus lift procedures, and periodontal defects [7]. The
direct administration of growth factors into the bone defect is considered an excellent
strategy for bone tissue regeneration. The critical point when using bioactive molecules is
selecting a suitable scaffold carrier system to tailor the localized and sustained release of
these molecules [8]. Stem cells (SCs) therapy is an up-and-coming technique for BTE. In
BTE, SCs have been used due to their ability to produce and differentiate into osteoblasts.
SCs have several advantages, including the ability to differentiate directly into osteoblasts,
modulate immune responses, promote angiogenesis, and exhibit plasticity. [9]. Various
scaffolds are used to mimic native ECM for SCs seeding, providing a conducive framework
for the attachment and growth of cells [10]. The common sources from which SCs can be
obtained are bone marrow, dental pulp, embryo, and adipose tissue [10].
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1.1. Role of Scaffolds in BTE

The capacity of bone to regenerate represents a unique feature, influenced by various
factors, but spontaneous healing is not possible in cases of bone damage with a critical
shape [11]. Scaffolds are porous 3D structures that simulate native ECM features; thus,
their functions are similar to those of ECM in natural tissues. They are a fundamental
component of BTE, alongside SCs and growth factors, as their role is to provide structural
and mechanical support for tissue formation and regeneration [12]. By producing different
biophysical and chemical signals, scaffolds create a stimulative microenvironment for
multiple processes, including the adhesion, migration, proliferation, and differentiation
of osteoblast progenitors [13]. In such a functional three-dimensional space, bone devel-
opment can occur. They may also serve as a reservoir for various growth factors required
for successful bone regeneration. The main goal of scaffold-based tissue engineering is to
fabricate a biomimetic structure that can prompt the directed growth of cells toward an
organ-like formation [14].

1.2. Properties of an Ideal Scaffold for Bone Regeneration

Bone is a natural composite consisting of inorganic components, mainly calcium ap-
atite, and organic components, mainly collagen type I. Bone has a complex architecture to
withstand diverse mechanical, biological, and chemical functions. The specialized structure
involves the complex arrangement of macrostructures (proportion of medullar and cortical
bone), microstructures (arrangement of osteons and trabeculae), and nanostructures (colla-
gen fibers and apatite mineral crystals) [4,5,15,16]. Scaffolds are 3D structures that imitate
the in vivo environment and stimulate the formation of new tissue [12]. They promote SCs’
adhesion, proliferation, and differentiation by creating a suitable microenvironment [13].
Porous scaffolds with optimal 3D architecture serve as artificial bone ECM with osteocon-
ductive properties to promote bone healing. A scaffold should possess good biological
properties, including (Table 1):

• Biocompatibility;
• Mechanical stability;
• Architecture;
• Biodegradability;
• Bioactivity [4,5,15,16].

In order to promote natural bone healing, an equilibrium between the biological
properties of the scaffold, osteoprogenitor cells, and signaling molecules must exist [17,18].
The ideal 3D scaffold for bone regeneration should be composed of a biocompatible,
biodegradable material with similar mechanical properties to bone ECM to provide enough
mechanical support to the host cells [4,5,15,16]. Scaffolds should mimic the bone ECM
to facilitate the osteogenic host cells to deposit natural ECM and replace the scaffold
material. Thus, the rate of scaffold resorption should be controlled, complementing host
cells’ ingrowth. This is particularly important for bone regeneration, where mechanical
stability of the scaffold is expected, especially in the load-bearing areas [17,18]. The 3D
architecture of the scaffold should be highly porous with a high index of porosity (number
of interconnected pores/mm2) to allow for osteoprogenitor cell ingrowth and nutrient
migration [19]. The scaffold surface should also be optimized to promote cell attachment,
mainly its wettability and roughness. A high number of interconnected pores allows for
the diffusion of nutrients and oxygen into the avascular scaffold. The size of the pores is
essential, as well as the proportion of nano-, micro-, and macropores in the scaffold. Pores
greater than 300 nm promote osteogenesis due to the ingrowth of osteoprogenitor cells and
angiogenesis [19]. Micro- and nanopores with a size <10 nm increase the scaffold’s overall
surface, enabling protein attachment and improving cell–scaffold binding. The porous 3D
architecture of the scaffold allows for the incorporation of growth factors such as BMPs,
vascular endothelial growth factor (VEGF), transforming growth factor β (TGF-β), and
insulin-like growth factor 1 (IGF-1) [4,17].
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Table 1. Ideal properties of the scaffold to promote bone regeneration.

Scaffold Property Desirable Properties

Biocompatibility

• Non-toxic breakdown products;
• Non-inflammatory scaffold components;
• Without immune rejection;
• Non-carcinogenic.

Biodegradability

• Controlled degradation complementing tissue ingrowth and
allowing host cells to produce extracellular matrix;

• Sufficient support to the newly formed tissue;
• Degradable by host biological processes.

Mechanical stability

• Enough compressive, elastic and fatigue strength for osteogenic
cell migration;

• Scaffold material allows easy surgical manipulation;
• Material adaptive to the individual bone defect.

Bioactivity

• Scaffold material should interact and bind to the host tissuel
• Osteoconductive properties;
• Stimulation of cell ingrowth, attachment and differentiation;
• Stimulation of neoangiogenesis.

Architecture

• Macroporosity to allow cell migration and angiogenesis;
• Microporosity to increase surface area for cell–scaffold

connections;
• High porosity index and interconnected pores allow for

diffusion of nutrients and cell migration;
• Adequate pore size for osteogenic cells.

Surface of the scaffold
• Hydrophilicity and surface roughness of the scaffold surface

enhances protein adsorption and host cell binding.

Sterilibility • Sterilibility without loss of bioactivity.

The most significant advantage of scaffolds is their ease of production, enabling re-
searchers to modify numerous materials and combine them into composite grafts [17,18,20].
Thus, it is crucial that the scaffold material allows for easy surgical manipulation and is
composed of a material that is adaptive to the individual bone defect. The mechanical
properties of the scaffold should be comparable to the compressive strength of the cortical
bone (100–250 MPa) to withstand physiological mechanical forces on the bone [20].

Previous systematic reviews of the literature concluded that preclinical in vivo stud-
ies demonstrated the clinical potential of scaffolds as an alternative to autogenous bone
grafting [21,22]. Boysuni et al. [21] performed a systematic review investigating the re-
sults of mandibular BTE in animal studies. This review reported a constant increase in
the frequency of publications regarding mandibular BTE, reflecting the growing interest
in the field. Despite promising results in bone regeneration, clinical translation is still
impossible due to a lack of understanding of the biological interplay between scaffolds,
biomolecules, exogenous cells, and host immune reactions. In addition, a qualitative and
quantitative comparison of outcomes between the animal and clinical studies was impos-
sible due to the significant differences between the studies regarding the methodology,
definition of critical-sized defects, follow-up period, and evaluation of outcomes. Still,
there is much controversy regarding defining what constitutes a critical-sized defect. In
general, a “critically-sized” defect is regarded as one that would not heal spontaneously
despite surgical stabilization and requires further surgical intervention, such as autologous
bone grafting [12]. Differences among studies using the same animal models for mandibu-
lar bone defects allow for an objective comparison of outcomes. The clinical evaluation
of scaffolds for mandibular bone regeneration is limited to case reports or single-center
case series with limited follow-up periods and questionable results. This review aimed to
evaluate current research on the regeneration of mandibular defects and discuss the further
development of mandibular BTE methodologies, focusing on a better understanding of the
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clinical use of different scaffold types in the BTE process to overcome mandibular defects.
Furthermore, the goal was to compare the result of scaffold-based BTE in conjunction with
various SCs and growth factors in bone reconstruction to aid reconstructive surgeons in
determining the most suitable scaffolds for mandibular bone reconstruction.

2. Materials and Methods

The systematic review of the BTE concepts for the reconstruction of critical-size
mandibular defects was conducted according to the guidelines of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement.

2.1. Hypothesis

Hypothesis 0 (H0). There is no significant difference between the various scaffold types, stem cells
(SCs), and growth factors in bone reconstruction for critical-sized mandibular defects.

Hypothesis 1 (H1). There is a significant difference between the various scaffold types, SCs, and
growth factors in bone reconstruction for critical-sized mandibular defects.

2.2. Research Question

The research question for this review was: “What are the characteristics and the
results of the existing studies on the use of biomimetic scaffolds in the reconstruction of
critical-sized mandibular bone defects?”.

2.3. Search Strategy

In November 2022, electronic searches were conducted in the following databases:
PubMed (National Library of Medicine), Web of Science (Clarivate Analytics), and Scopus
(Elsevier). These comprised both MeSH and free-text terms. The following search strategy
was applied: ((“bone tissue engineering” [MeSH Terms] OR (“tissue” [All Fields] AND
“engineering” [All Fields] AND “mandible” [All Fields]) OR “bone tissue engineering” [All
Fields]) OR (“tissue scaf-folds” [MeSH Terms] OR (“tissue” [All Fields] AND “scaffolds”
[All Fields]) OR “tissue scaffolds” [All Fields] OR (“tissue” [All Fields] AND “scaffold”
[All Fields]) OR “tissue scaffold” [All Fields]) OR (“mandible reconstruction” [MeSH
Terms AND “engineer-ing” [All Fields]] OR (“reconstructive” [All Fields] AND “surgical”
[All Fields] AND “pro-cedures” [All Fields]) OR “mandible reconstruction” [All Fields]
OR “reconstruction” [All Fields]) OR (“bone morphogenetic proteins” [MeSH Terms] OR
(“bone” [All Fields] AND “morphogenetic” [All Fields] AND “proteins” [All Fields]) OR
“bone morphogenetic pro-teins” [All Fields] OR (“bone” [All Fields] AND “morphogenetic”
[All Fields] AND “pro-tein” [All Fields]) OR “bone morphogenetic protein” [All Fields]) OR
(“bone marrow cells” [MeSH Terms] OR (“bone” [All Fields] AND “marrow” [All Fields]
AND “cells” [All Fields]) OR “bone marrow cells” [All Fields]) OR (“intercellular signaling
peptides and proteins” [MeSH Terms] OR (“intercellular” [All Fields] AND “signaling”
[All Fields] AND “peptides” [All Fields] AND “proteins” [All Fields]) OR (“growth” [All
Fields] AND “factors” [All Fields]) OR “growth factors” [All Fields])) AND ((“mandible”
[MeSH Terms] OR “mandible” [All Fields]) OR ((“mandible” [MeSH Terms] OR “mandible”
[All Fields] OR “mandibular” [All Fields]) AND (“critical sized defect” [All Fields]) AND
defect [All Fields])). The retrieved references were exported to the EndNote software 20.5
(Windows) (Clarivate Analytics, Philadelphia, PA, USA) to identify the duplicates.

Searches were limited to studies in the English language. The reference lists of the
articles identified from the initial search were screened for further relevant studies. No
restrictions were imposed on the date or the type of publication.

2.4. Eligibility Criteria

Only full-text papers that reported original data from in vivo studies on the regenera-
tion of mandibular critical size defects in animal models were included. Animal in vivo
studies presenting macroscopical, histological, or histomorphometric data on the amount
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of bone-defect bridging, bone ingrowth, results of biomechanical testing, histological or
histomorphometric data of scaffold degradation, and radiographic evidence of restoration
of mandibular continuity were included. The following inclusion criteria were applied:
1. research papers presenting in vivo animal data; 2. critical-sized defects; 3. reconstructive
technique clearly described; 4. follow-up and healing period clearly stated; 4. the animal
model used clearly described; 5. clearly presented data on bone regeneration and the
methods for the evaluation of bone growth. Conference abstracts, review papers, letters to
the editor, opinion pieces, and studies on animal or human tissues in vitro were excluded.
Papers investigating periodontal regeneration, dental implants’ osseointegration, distrac-
tion osteogenesis, autologous bone grafts or free flaps, and treatment of fracture healing
were also excluded.

2.5. Data Extraction

Retrieved references were read for titles and abstracts by all authors. If the title/abstract
met the inclusion criteria, the article was included for a full article reading. If the full text
of the article was not available, the paper was not included. After the evaluation of full
texts, the references that met the eligibility criteria were included. All authors performed
the quality assessment and evaluated the published data. Any disagreements in judgment
were resolved by a final discussion. If the published data were insufficient, the study
was excluded. The data extracted for review included: study characteristics and setting
(sample size, design, animal species, type and mechanism of bony defect), method of bone
engineering (scaffolds, bioactive factors, and cell therapy), and outcome measures.

3. Results

A total of 3872 articles were initially identified using the search algorithm. After the
screening of the titles and abstracts, 265 full texts were retrieved, and a total of 88 studies
were included (Figure 1) [22–109]. An overview of the included trials is depicted in
Supplementary Table S1.
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3.1. Study Design

The review included studies with critical-size mandibular defects. Regeneration
modalities were categorized into tissue scaffolds, cell therapies, and bioactive substances.
Most studies comprised a combination of these modalities (Figure 2). Most reported a
combined use of scaffold with bioactive substances. Animal models included dogs, mini-
pigs, non-human primates (nHPs), swine, rabbits, rats, sheep, and mice, which were used
in 15, 7, 6, 2, 23, 26, 8, and 1 study, respectively (Table 2).
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Figure 2. Diagram indicating the number of studies that investigated each component of the regener-
ative triad (bioactive molecules, scaffolds, and cells).

Table 2. Overview of the animal models.

Animals Number of Studies
(%)

Critical-Sized Defect
(mm)

Mean (SD)

Follow Up (Weeks)
Mean (SD) References

Rats 26 (29.5) 4.76 (0.3) 10.1 (5.8) [24,30,39–41,49–54,56–58,60–
62,65,77,80,83,87,91,95,99,104]

Rabbits 23 (26.1) 17.2 (5.3) 12.4 (4.1) [22,23,25–29,32,33,44,59,69,71,75,
76,79,85,98,100–102,105,108]

Dogs 15 (17) 25.3 (7.8) 27.1 (24.5) [31,37,38,46,67,78,81,82,86,88,90,
96,97,106,107]

Sheep 8 (9.1) 34.3 (4.6) 22.1 (16.3) [47,64,72–74,84,89,94]

Mini-pigs 7 (8) 33.5 (6.9) 34.6 (12.9) [34,35,48,63,92,93,109]

nHPs * 6 (6.8) 29.1 (12.2) 43.2 (34.5) [45,55,66,68,70,103]

Swine 2 (2.3) 24.3 (5.6) 10.0 (4.4) [36,43]

Mice 1 (1.1) 10.0 4.0 [42]

* nHPs—non-human primates.

The duration of follow-up (the time at which the mandibles were analyzed for bone
regeneration—either using radiographic imaging of the animal or at the time of sacrifice)
varied widely depending on the animal model used (Table 2). The size of the critical defect
was not uniform, not even within a single animal model.

The diagnostic modalities used for characterizing the new bone formation included
micro-CT examination, histology, radiography, immunohistochemistry, real-time PCR,
fluorescence microscopy, biomechanical testing, and scanning electron microscopy (Table 3).
The most common diagnostic modalities used were micro-CT or other X-ray modalities
(computed tomography) and histological analysis.
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Table 3. Overview of diagnostic modalities used to characterize new bone formation.

Characterization Approach Number of Studies (%) References

Micro-CT 35 (39.8) [24,27,30,33,35,39–41,43–45,47,49–51,62,65,69,76–80,83–
86,88,90,93,99–102,107]

Histology 79 (89.8) [22,23,25–39,41–46,48–73,75–87,90–92,94–107]

Radiography 38 (43.2) [22,23,25,26,28,32,34,35,37–39,43,46,48,56,60–63,65–
68,70,71,75,79,89,91–94,97,98,102,103,105,106]

Immunohistochemistry 28 (31.8) [30,35,36,41,46–50,52,57,60,61,64,67,72,73,76,83,86,88,92,
93,96,97,101,102,106]

RT-PCR 1 (mRNA quantification) 6 (6.8) [23,57,80,88,92,106]

Fluorescence microscopy 4 (4.5) [53,54,72,109]

Biomechanical testing 11 (12.5) [24,28,37,38,42,63,73,74,92,102,103]

SPECT 2 1 (1.1) [109]

SEM 3 10 (11.3) [37,38,59,64,82,83,86,90,107,108]

CBCT 4 4 (4.5) [36,59,71,96]

1 RT-PCR—reverse transcriptase polymerase chain reaction; 2 SPECT—single-photon-emission computed tomog-
raphy; 3 SEM—scanning electron microscopy; 4 CBCT—cone beam computed tomography.

3.2. Scaffolds

Scaffolds were used in 81 studies, either as the primary variable of investigation or
as delivery vectors for bioactive molecules and cell seeding (Table 4). Most studies used
synthetic 3D porous scaffolds of a synthetic polymer, such as beta-tricalcium phosphate,
PLGA, PCL, or their combination, to create composite scaffolds.

Table 4. Overview of scaffold types used for mandibular bone regeneration.

Scaffold Number of Studies (%) References

Natural polymers

Hyaluronic-acid-based 3 (3.4) [52,53,77]

Collagen 23 (26.1) [22,24,39,45,52,54,55,63–65,68,72–74,79–81,88,90,97,100–102]

Chitosan-based 6 (6.8) [49,59,76,87,99,100]

Synthetic polymers

PLGA 1 15 (17) [26,33,35,36,40,41,43,46,47,50,51,66,70,103,108]

PLA-based 3 (3.4) [32,60,96]

PDLLA/CaCO3
2 2 (2.3) [56,57]

<PEI 3 1 (1.1) [36]

PCL 4 7 (8) [27,59,82,85,98,106,107]

PTFE membrane 5 1 (1.1) [94]

PU 6 1 (1.1) [93]

Bioceramics

βTCP-based 7 12 (13.3) [30,35,43–45,69,78,85,86,90,93,107]

HAP 8 16 (18.2) [23,26–28,36,42,45,52,54,78,86,90,96,101,102,104]

Autologous (any tissue) 3 (3.4) [34,67,84]

Xenogenic graft (any tissue) 3 (3.4) [36,83,109]

When a conjugate scaffold was used, references are placed under both categories for completion. 1 PLGA—
poly(lactide-co-glycolic acid); 2 PDLLA/CaCO3—poly-dl-lactic acid/calcium carbonate; 3 PEI—polyethylenimine;
4 PCL—polycaprolactone; 5 PTFE—polytetrafluoroethylene; 6 PU—polyurethane; 7 TCP—tricalciumphosphate;
8 HAP—hydroxyapatite.
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3.3. Bioactive Substances

Bioactive molecules were used in 58 studies (66%), either alone or in combination with
a scaffold or cell therapy (Table 5). The most common growth factor was BMP-2, which was
used alone in 31 studies and in combination with other growth factors in 8 studies. The
growth factor dosage depended on the graft size and the animal model. Several studies
reported using various concentrations of growth factors for bone regeneration.

Table 5. Overview of bioactive molecules.

Bioactive Molecules Number of Studies (%) References

BMP-2 31 (35.2) [22,23,27,30,40,45,46,49,51,52,55–57,60,61,66,68,70,76–
79,86,87,93,95,97,100,103,107,108]

BMP-7 5 (5.6) [28,71,72,74,75]

BMP–4 1 (1.1) [29]

BMP-2 + BMP-4 1 (1.1) [53]

BMP-2 + phenamil 1 (1.1) [41]

BMP-2 + VEGF 3 (3.4) [43,88,92]

BMP-6 + VEGF 1 (1.1) [50]

BMP-2 + FGF 3 (3.4) [25,58,105]

FGF 1 (1.1) [80]

TGF1 + IGF-1 1 (1.1) [91]

Insulin 1 (1.1) [33]

L-PRF 1 (1.1) [47]

rHOP-1 4 (4.5) [63,65,73,109]

Dipyridamole 1 (1.1) [69]

CGF 2 (2.3) [101,102]

SDF 1α 1 (1.1) [24]

BMP—bone morphogenetic protein; VEGF—vascular endothelial growth factor; FGF—fibroblast growth factor;
TGF—transforming growth factor; IGF-1—insulin-like growth factor 1; L-PRF—leucocyte and platelet-rich fibrin;
rHOP-1—recombinant human osteogenic protein 1; CGF—concentrated growth factor; SDF 1α—stromal-derived
factor 1α.

3.4. Cell Therapy

Cell therapies were used for mandibular regeneration in 45 studies (51%). Bone
marrow stem cells (BMSCs) were mostly used to promote bone regeneration. Regarding SCs,
adipose-derived stem cells (ADSCs), stem cells derived from human exfoliated deciduous
teeth (SHED), and dental-pulp-derived stem cells (DPSCs) were used in 7, 1, and 1 study,
respectively (Table 6). Other cell therapies included lipid-free dedifferentiated fat cells
(DFAT) and alveolar osteoblasts (AOB).

Table 6. Overview of cell therapies.

Cell Therapy Number of Studies (%) References

BMSCs 22 (25) [23,25,29–31,33,34,37,38,42,43,48,61,68,70,71,77,80,84,95,98,105]

DPSCs 1 (1.1) [26]

ADSCs 7 (8) [35,40,49,62,99,104,106]

MSCs 11 (12.5) [28,41,50,67,75,79,82,85,94,100,101]

SHED 1 (1.1) [81]

DFAT 1 (1.1) [39]

Osteoblasts/osteocytes 2 (2.3) [65,83]

BMSCs—bone-marrow-derived stem cells; DPSCs—dental pulp derived stem cells; ADSCs—adipose-tissue-
derived stem cells; MSCs—mesenchymal stem cells; SHED—stem cells from human exfoliated deciduous teeth;
DFAT—dedifferentiated adipocyte-derived progeny cells.
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4. Discussion

Bone healing is a complex process, where there is a temporospatial interaction between
the ECM, growth factors, and osteogenic cells, resulting in bone regeneration. During
natural bone healing, the body generates a natural scaffold on which MSCs differentiate into
osteoblasts under the influence of growth factors to regenerate bone tissue [3]. Nonetheless,
critical-sized defects that cannot heal spontaneously within a patient’s lifetime impair
this process. In these cases, it is necessary to provide biomimetic scaffolds to bridge the
defect and provide the repair site with sufficient osteogenic progenitor cells or growth
factors in a suitable carrier to ensure osteoblastic differentiation [2]. The present review
evaluated current therapeutic approaches regarding the BTE of critically sized mandibular
defects. BTE is a promising alternative in mandibular regeneration based on in vivo studies;
however, translation to clinical use is to be performed. The results of in vivo trials should be
taken with caution because, for successful mandibular bone regeneration, specific clinical
problems unique to the mandible should be considered. These issues include the contact
between materials and saliva and intraoral pathogens, which may lead to inflammation
and infection, significant forces of mastication in load-bearing locations, restoration of
the normal contour of the bone for the esthetic appearance of the patient, and dental
implant placement.

4.1. Scaffolds

Based on the results of the present review, the use of scaffolds in mandibular bone
regeneration, alone or in combination with bioactive molecules and/or cell therapies,
resulted in improved osteogenesis of critical-sized mandibular defects in various animal
models. The most promising results in mandibular bone regeneration were observed
with composite scaffolds. Scaffolds for BTE can be classified into four classes: polymeric,
ceramic, composite, and metallic scaffolds.

Natural polymeric scaffolds have excellent biocompatibility and controlled biodegra-
dation [20]. Natural biopolymers are used for maxillofacial bone regeneration because
they mimic the structure, chemical composition, and biochemical properties of the natural
ECM bone organic matrix and have osteoinductive and osteoconductive properties. This
was demonstrated by their ability to induce bone regeneration in mandibular bone defects.
The major drawbacks of natural polymers are their poor mechanical properties, which
do not approach those of natural bone tissue, and the high degradation rate of natural
polymers, since they are naturally metabolizable [110]. The most commonly used natural
polymeric scaffolds implemented for mandibular bone regeneration were hyaluronic-acid-
based and collagen. Due to their excellent biological properties, natural polymers are
extensively studied in composite scaffolds for bone repair. Several investigations have
indicated that incorporating inorganic components, such as hydroxyapatite (HAP), or
tricalcium phosphate (TCP), into hybrid hyaluronic-acid-based (HA) scaffolds results in en-
hanced osteoinductivity, osteoconductivity, and improved mechanical properties [111,112].
Natural polymers are versatile, encapsulating bioactive osteogenic factors (growth factors,
drugs, hormones, peptides, nucleic acids, and cells) via a cross-linking reaction [112–114].
Recent studies reported excellent the bone regeneration of rabbit mandibular bone defects
using nano-hydroxyapatite/collagen (nHAC) scaffolds with concentrated growth factors
(CGF). The results of these studies showed degradation of the scaffold within 24 weeks,
a high rate of new bone formation, and higher compressive strength and elastic mod-
ulus on biomechanical tests of the nHAC/CGF group compared to those of the nHAC
group [99,100].

Synthetic polymers are aliphatic polyesters, and their copolymers are commonly
utilized polymers in bone tissue engineering due to their mechanical properties. They
are biocompatible, biodegradable, easily fabricated into different shapes, and provide
mechanical support and a controlled degradation time. Their use in bone engineering is
limited due to their decrease in mechanical strength due to rapid degradation in vivo and
immune reaction to acidic degradation products. The chemical modification of synthetic
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polymers allows for the incorporation of bioactive molecules to produce biocompatible
and functional materials to enhance osteogenesis. One of the major advantages of synthetic
polymers is that they can be mass-produced and fabricated for individual bone sites. The
traditional preparation methods of synthetic-polymer-based bone scaffolds include particle
leaching, phase separation, gas forming, and fiber bonding. The 3D printing technology
produces porous scaffolds by managing the arrangement of the scaffold, the thickness of
each layer, and the porosity [115]. The 3D-printed scaffolds achieved better cell adhesion,
proliferation, and differentiation while possessing suitable mechanical properties and a
sufficiently long degradation time [116]. Recent studies have developed grafts for the
mandible, skull, femoral head, tibia, fibula, and others [117].

Poly(lactic-co-glycolic acid) (PLGA), a linear copolymer of lactic acid and glycolic acid
monomers, was the most widely used biodegradable polymer. PLGA was investigated
as a single scaffold biomaterial for several reasons: it posesses excellent biocompatibility,
non-toxic metabolites that can be safely eliminated from the metabolic cycle, and excellent
processability; the degradation time of PLGA can be controlled to be consistent with bone
regeneration; PLGA has suitable mechanical strength to adequately support the defect
area at the early stage; grafts can be loaded with a variety of bioactive factors, such as
SCs, growth factors, and drugs, to promote the regeneration of bone defects [118–120].
Inflammation is one of the main reasons for bone graft resorption. Synthetic porous
polymers can be loaded with anti-inflammatory medicines (such as ibuprofen) and growth
factors to reduce inflammatory reactions and enhance bone regeneration [121]. In the
present review, we found that the application of synthetic polymer scaffolds, alone or in
combination with bioactive molecules and/or mesenchymal SCs, resulted in improved
bone regeneration.

The bioceramic scaffolds have high compressive strength, excellent biocompatibility
and stability, bioactivity, and osteogenic properties. The mechanical strength of ceram-
ics is superior to polymers, but is still inferior to natural bones, especially in terms of
tensile and torsional strength [9]. Disadvantages include low tensile strength and tough-
ness, fabrication hitches, brittleness, and slow resorption rate. Hydroxyapatite (HAP)
(Ca10(PO4)6(OH)2) is the main mineral component of bone tissue and, as a scaffold, it
is a bioactive ceramic material of high biocompatibility because it forms direct chemical
connections with bone tissue. It has excellent bioactive, and bioresorbable properties and
can be synthesized in various forms, such as ceramic plates, blocks, granules, and powder
for various bone tissue applications [122,123]. In the bone tissue, HAP is deposited around
and within the collagen fibers in the form of thin slabs and sticks (length 20–40 nm, width
15 nm, and thickness of 1.5–3 nm) in regular spaces [122,123]. Synthetic HAP is similar
to a natural mineral apatite in bones and is widely used for bone repairs. Its structural
composition is the same as natural bone, with a nominal stoichiometric Ca/P atomic ratio
of 1:67 [122,123]. Still, mechanical properties are very low compared to natural bone [41,42].
Due to brittleness and fragility, HAP is commonly mainly used in the form of composite
scaffolds with polymer materials [124,125]. Numerous studies have shown, that after
applying a HAP scaffold, the rapid activation and binding of osteoblasts to the scaffold
surface occurred due to the rapid deposition of the biological carbonate HAP, which is
the primary substrate for binding of the osteoprogenitor cells [126]. The osteoprogenitor
cells are known to better bond to rough surfaces than smooth surfaces. For this purpose,
in addition to good biological characteristics, the topography of the HAP scaffold has an
impact on cell adhesion, proliferation, and differentiation [127]. Cells on rough surface
show phenotypes that are similar to osteoblasts and release pro-osteoblastic mediators such
as prostaglandins and LTGF-β. In vitro research showed that osteoprogenitor cells do not
differ in terms of the surface of synthetic and biological HAP [127,128].

Combining the advantages of two or more different scaffold materials into a compos-
ite scaffold has been a matter of research in many previous trials [129,130]. Composite
scaffolds of bioceramics with synthetic polymers have been used in the majority of studies,
either as a single regenerative therapy or as a carrier of bioactive molecules or SCs. These
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scaffolds mimic the natural bone matrix, a combination of organic/inorganic composites.
Composite scaffolds combine the excellent biological activity of HAP and mechanical prop-
erties and 3D architecture of synthetic polymers. The HAP/PLGA scaffold was extensively
studied for bone regeneration. Jokanovic et al. [110] examined the PLGA/HAP scaffold
for critical-sized calvaria defects and found numerous biological advantages compared to
commercially available xenograft, which were reflected mainly by the lower number of
giant cells surrounding implanted material and a higher degree of mineralization in newly
formed bone. Micic et al. [114] evaluated the nHAP/PLGA coating scaffold for large seg-
mental defects in the rabbit’s ulna. The authors reported almost complete bone regeneration
and excellent histological parameters: new bone formation with both endochondral and
endosomal types of ossification, high concentrations of BMPs, osteocalcin, and osteopontin
within the newly formed bone. Zhang et al. [108] evaluated the HAP/PLGA scaffold for the
repair of large segmental defects of rabbit radius and exhibited rapid and strong mineraliza-
tion and osteoconductivity. Previous studies have shown that both the biocompatibility and
mandibular bone regeneration performance of composite polymer/bioceramic scaffolds
are enhanced compared to polymeric or bioceramic scaffolds [32]. Regarding mandible
reconstruction, Stevanovic et al. [36] investigated the HAP/PLGA and HAP/PEI scaffolds
for mandibular bone regeneration in a swine model and demonstrated improved biologi-
cal behavior compared to conventional xenograft in the treatment of swine’s mandibular
defects in terms of bone density and bone tissue histological characteristics. An interest-
ing finding in this study was the significant activation of osteocalcin, the most abundant
noncollagenous protein in bone tissue, produced by osteoblasts in the HAP/PEI cohort.
Osteocalcin is an important molecule for the regulation of bone mineral deposition, and
its expression can serve as a marker of mineralized matrix formation [36]. Therefore, the
ability of composite scaffolds to induce osteoblasts to produce more osteocalcin may be an
interesting feature of these biomaterials.

Biodegradable metals (BMs) have a variety of properties that are essential for bone
regeneration scaffolds, including biodegradability properties, mechanical strength, forma-
bility, osteogenic capacity, and antibacterial properties [131]. The most representative BMs
are Mg-based, Zn-based, and Fe-based. These materials have been used in manufactur-
ing biomimetic scaffolds, fixation plates, screws, pins, wires, and stents [131]. Mg-based
biomaterials are widely used because of their elastic modulus, which is similar to human
bones, biosafety, and biodegradability. Fe-based biomaterials have a relatively low degra-
dation rate and insoluble degradation products, which greatly limit their application [132].
Zn-based biomaterials possess a moderate degradation rate and excellent mechanical
properties for orthopedic and cardiovascular applications [51]. Critical-sized mandibu-
lar defects imply the use of load-bearing tissue scaffolds due to significant masticatory
forces. Bioresorbable metallic scaffolds may potentially be used to overcome the mechanical
properties of conventional tissue scaffolds. Magnesium and its alloys have outstanding
mechanical and biological properties for bone regeneration, including mechanical proper-
ties and Young’s modulus close to that of cortical bone [133–136]. Magnesium stimulates
bone growth due to the formation of bone-apatite-like HAP crystals [136]. In vitro studies
showed excellent mechanical properties of porous magnesium scaffolds with a modified
Young’s modulus to adjust to one of the cancellous bones (0.01–2.0 Gpa) [134,135]. The use
of Mg-based bone scaffolds may be a promising strategy in future research on mandibular
bone regeneration.

4.2. Bioactive Molecules

Bioactive molecules and the cell therapies incorporated in the scaffolds significantly
improved bone regeneration in comparison to the scaffold alone in the majority of stud-
ies. Scaffolds with BMPs significantly promoted bone regeneration in a dose-dependent
manner [22,24,31,46,51,56,57,83,84]. BMPs activate MSCs differentiation during bone for-
mation through the activation of the Smad-dependent signaling pathway or the MAPK
pathway [10]. The protracted slow release of BMP-2 using microspheres resulted in a better
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bone quality compared to the early deleterious effect of the supraphysiological dose of
BMP [2]. The timing of the application of BMP-2 is important, especially for critical-sized
defects, due to the initial burst release of rhBMP-2 and the insufficient number of SCs from
the boundary of the bone defect in such cases [137]. Kim et al. [79] found the application of
BMP-2 to the mandibular defect one week after surgery, compared with admixing with a
hyaluronic acid scaffold before the operation, resulted in significant increases in the mineral
density, total volume, and trabecular volume of bone. Çakır-Özkan et al. [92] found that
the combined use of VEGF + BMP-2 with the PLLA/PEG scaffold for rabbit mandibular
defect resulted in increased osteoblastic activity and neovascularization when compared
with the use of BMP-2 or VEGF alone. Similarly, the combined use of FGF + BMP-2 with
PLGA/PCL/nHA scaffold for rabbit mandibular defect resulted in significantly promoted
proliferation and osteogenic differentiation of BMSCs and osteogenesis than when BMP-2
and FGF were used alone [25]. In a study on sub-human primates of different ages, the
host recipient tissue had the same capacity to respond to BMP-2 induction regardless of
the subject’s age [55]. In addition, previous studies have shown good bone regeneration
of scaffolds with BMP-7 or BMP-6 factors [50,63,109]. Das et al. [83] found that the com-
bined use of VEGF + BMP-6 with the PLGA scaffold for rat mandibular defects resulted
in significantly enhanced bone repair through the enhancement of angiogenesis and the
differentiation of endogenously recruited MSCs into the bone repair site.

Despite the encouraging results of BMPs for bone regeneration in the maxillofacial
area for the bridging and ingrowth of bone, the results of biomechanical testing were not
uniform. The mechanical tests performed in previous papers showed that the regeneration
in the mandibular critical-size defects reconstructed with BMP-7 and BMP-2 showed a wide
range of mechanical properties due to the varied proportions of woven and lamellar bone
formation that were histologically shown, as well as possible variations in the concentration
of BMPs within the grafts [73–75].

A study with porous nHAP/collagen/PLGA scaffolds with incorporated insulin-
loaded microspheres showed a higher bone restoration capacity than the defects that were
filled with nHAC scaffolds [33]. This finding may be important in the bone regeneration of
patients diagnosed with diabetes.

Several studies investigated the use of concentrated growth factor (CGF), a third-
generation platelet concentrate extracted from blood, featuring a wide range of sources, low
cost, absorbability, lack of immunogenicity, and bone inducibility [101,102]. Zhu et al. [102]
investigated the HAP/collagen scaffold in combination with CGF to repair mandibular
rabbit defects. The results showed a higher rate of new bone formation, better bone quality,
higher osteocalcin and BMP-2 expression, and higher compressive strength and elastic
modulus of the nHAC/CGF cohort.

Due to the positive influence of BMPs on mandibular bone regeneration in in vivo stud-
ies, several case reports and case series reported the human application of BMPs [138–146].
Moghadam et al. [138] successfully used a BMP bioimplant for the primary reconstruction
of a 6 cm mandibular critical-size defect after the segmental resection of ameloblastoma.
Warnke et al. [139] used a titanium mesh cage filled with bone mineral blocks, recom-
binant human BMP-7, and the patient’s bone marrow implanted in the latissimus dorsi
muscle for the growth of the grafted bone. The graft was successfully transplanted as
a free bone–muscle flap to reconstruct the mandibular defect. A similar study was per-
formed by Heliotis et al. [140], who used a vascularized pedicled bone flap created with
a HAP/BMP-7 composite implant; however, an unfavorable outcome was achieved due
to graft failure occurring five months after the transplantation due to MRSA infection.
Herford and Boyne [141] reported successful results in 14 patients treated with BMP-2 in
a collagen carrier for various mandibular defects. Chao et al. [142] reported successful
mandibular reconstruction with BMP-2, applied with collagen sponge and granules of 85%
TCP and 15% HAP, following a hemimandibulectomy due to aggressive juvenile ossifying
fibroma in a 9-year-old boy.
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4.3. Cell Therapy

Seeding scaffolds with biologically active cells in order to promote bone regeneration
directly at the implant site is a commonly employed bone tissue engineering strategy. All
the studies with scaffolds serving as carriers for MSCs reported an increased bone formation
compared to scaffold-only cohorts [23,26,34,39,71,81,82,85,98,99,106]. Scaffolds can function
as a substitute for native ECM for the conduction, attachment, and growth of encapsulated
MSCs cells and prevent anoikis, a form of apoptosis [10]. Furthermore, scaffolds are
optimized to protect against host immune attack and induce major cellular processes that
are necessary for tissue regeneration [10]. The most commonly used cell therapy used
the bone-marrow-derived MSCs (BMSCs), which are capable of differentiating multiple
mesodermal lineages, including bone and cartilage [23]. Guo et al. [23] investigated the
bioactivity of an n-HA/PA composite implant seeded with ectogenic BMSCs and found
that ectogenic BMSCs had a significant impact on bone regeneration in bone-marrow-poor
locations such as mandible angle. The authors suggested that the presence of endogenic
BMSCs at the implantation site was found to be a critical factor in determining the outcome
of the bone regeneration process, since ectogenic BMSCs were not found to enhance bone
regeneration in the rich-marrow sites such as the mandibular body, implicating different
tissue engineering strategies for bone defects in marrow-rich and marrow-poor sites.

Dental pulp stem cells (DPSCs) offer certain advantages over other SCs, such as accessi-
bility, availability and multipotency, maintain an undifferentiated state upon long-term cultiva-
tion, and are little influenced by the number of passages [146]. Gutiérrez-Quintero et al. [26]
reported HA/PLGA/DPSCs scaffolds without offering improved bone regeneration due to
significant differences in the mRNA levels of osteogenic markers capable of determining
osteoblastic stage differentiation (Runx2, OPN, COL1, and ALP). Adipose-derived SCs (AD-
SCs) have certain advantages compared to BMSCs, such as easy harvesting, a huge number
of cells can be obtained from fat tissue, cells that are easy to cultivate and a higher prolif-
eration capacity [147]. Probst et al. [35] found that ADSCs seeding on ceramic/polymer
scaffolds improve bone regeneration in large mandibular defects and results in significantly
higher bone volume and an increased amount of osteocalcin deposition.

The combination of MSCs with BMP-2 and composite ceramic/polymer scaffolds
resulted in significantly more bone regeneration than when using MSCs/scaffold and BMP-
2/scaffold complexes [25,28,43,49]. Local gene therapy using BMPs transfected on MSCs
and porous n-HA/PA scaffolds in the repair of mandibular defects in rabbits, as well as
their response during various periods, showed good biocompatibility, more significant bone
formation and earlier mineralization in the implant area. BMP7-transfected MSCs resulted
in significantly higher-end elastic modulus, ultimate stress, and ultimate strain four weeks
after implantation of the mandibular explant [28]. In addition, no differences were observed
between the MSC-only and BMP7-transfected MSC groups at 16 weeks, impying that BMP-
7 enhances bone formation in the early phases of mandibular bone regeneration [28].
However, in a study investigating the efficacy of PLGA scaffolds, alone and in combination
with BMP-2 and ASCs, when healing a critical-sized segmental mandibular defect in a
rat model, bone regeneration was most robust in the BMP-2-treated scaffolds [40]. In
this study, bone regeneration scores were graded according to a previously described
semi-quantitative scale based on micro-CT images without histological examination.

In a study that compared liposome-mediated gene transfer with MSCs and adenoviral-
mediated MSC transduction with BMP-2, the authors found that adenovirus-transfected
MSCs resulted in nearly complete bone healing within four weeks of the scaffold being im-
planted [61]. Still, the authors suggested that liposomes offer several advantages compared
to other vectors, such as ease of preparation, no limitation on the DNA size, and fewer
immunological and safety problems; thus, they may represent the best vector systems for
trials of bone regeneration by BMP-2 gene therapy [61]. Regarding the clinical translation
of the MSCs therapy in human mandibular reconstruction, Sandor et al. reported the
successful reconstruction of a 10 cm anterior mandibular ameloblastoma resection defect
with b-TCP granules, BMP-2, and autologous ASCs [148]. Thus, we may conclude that



Appl. Sci. 2023, 13, 4668 15 of 23

the preclinical evaluation of MSCs is insufficient to demonstrate the clinical efficacy in
mandibular bone regeneration. Presently, the main challenges that need to be resolved
before the clinical application of cell therapy for mandibular defects include the choice of
optimal MSC source, route of administration, and understanding of interactions between
the scaffolds, host tissue, and cells.

4.4. Animal Models

Different animal models have been used to investigate mandibular BTE, including
rats, rabbits, mini-pigs, domestic swine, dogs, sheep, and primates. Rats are cost-effective,
easy to handle, and may be genetically engineered to construct different pathological
states. However, rats have a higher metabolic rate and osteogenic potential compared with
humans. Furthermore, the bone mineral density of rat cortical bone differs greatly from that
of humans, and the operating space of rats is limited by their small size [149]. Rabbits are
the most commonly used laboratory animals, as they are easy to acquire, house, and handle,
with a short developmental cycle, reaching skeletal maturity at 6 months of age [150].
Rabbits exhibit faster cortical bone remodeling and bone turnover compared with rodents
or primates. Due to their faster bone remodeling and large amounts of adipose tissue in
the medullary spaces of the mandible, it is difficult to extrapolate in vivo results to human
trials [151]. Dog models are widely used in maxillofacial research due to similarities with
humans regarding the similar bone mineral density of the mandible and periodontal tissue
and comparable intracortical remodeling, similar levels of collagen, and insulin-like growth
factor-1 in cortical and cancellous bone. However, the rate of trabecular bone turnover in
dogs is highly variable and higher compared to humans [152,153]. Pig bone models are
used due to similarities in terms of bone mineral density and bone mineral concentration
and the similar bone remodeling processes. Furthermore, mature swine have a similar
bone structure to humans, with a well-developed Haversian system and a similar bone
regeneration rate [154]. Swine are large animals, which are difficult to handle and maintain
under experimental conditions [155]. The sheep model for bone regeneration was used due
to its similar bone turnover and bone modeling rates to those of humans [156]. Sheep bones
are sufficiently large to compare multiple surgical procedures simultaneously. However,
the bones of sheep have a different microstructure and undergo seasonal periods of bone
loss [157]. Non-human primates and humans share significant genetic homology, have
comparable osteonal remodeling in skeletally mature individuals, and develop similar bone
diseases and age-associated bone loss. Primates are generally used in bone biomechanics
and loading studies when other large animal models do not adequately represent human
bone. The use of non-human primates is expensive and is associated with some cultural
and ethical questions [135]. The primary rationale for nHPs is the opportunity to match the
genetic background and, therefore, the biological responsiveness of the model, as closely
as possible to that of humans. Nonetheless, it has been assumed that the non-human
primate model will provide the most predictive model for immunological and biological
response due to its genetic background, particularly in the setting of delivery of BMPs,
although the variation in response between primates limits these investigations [5,158].
The follow-up duration and the critical defect size varied widely and depended strongly on
the animal used. Furthermore, the critical defect size was not uniform, even within a single
animal model. Establishing uniform critical-sized defects is particularly difficult with small
animals. Thus, it is difficult to fuse the results of the studies into unique conclusions to
extrapolate to clinical conditions. Future studies on mandibular bone regeneration should
maintain standardized animal models, possibly with larger animals (sheep, swine, and
dogs), with standardized defects and follow-up periods.

4.5. Study Outcomes

Another important issue was the heterogeneity in the approaches used to evaluate
in vivo bone regeneration, which, in many cases, enabled a direct comparison of outcomes
between different treatment groups. Standard diagnostic approaches to the evaluation of
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bone regeneration in vivo comprise radiological, histological, and mechanical testing [2].
The majority of studies used a histological analysis of the explanted mandibular defect to
measure the quantity and quality of bone regeneration. Micro-CT and plain radiography
were commonly used to quantitatively assess new bone formation. Micro-CT offers certain
advantages for new bone formation, and several objective variables could be extracted:
bone mineral density, trabecular thickness, and the percentage of newly formed bone [2].
Cone-beam computed tomography (CBCT) may be an interesting alternative because it is
available, economical, and less expensive than CT or micro-CT [36]. CBCT can calculate
the amount of new bone from grey-scale changes; however, the results are unpredictable,
and more objective means of bone characterization are still not possible [36]. Immunohis-
tochemistry was used along with histology and radiologic examinations to evaluate the
maturity and formation rate of new bone [2]. Noting that the mandible, during the function
of mastication, has to withstand significant muscle forces, the biomechanical characteristics
of newly formed bone are extremely substantial. Still, only 12.5% of studies performed a
biomechanical testing of mandibular bone defects.

This research has several limitations. The significant variations among the included
studies, which made any reasonable comparison complex, were as follows: differences in
animal models, various scaffold types, various means of producing scaffolds, differences
in cell source, and inconsistent evaluation methods. In addition, several studies did not
have control groups. Due to variations in animal models, there were significant differences
in the concentrations of growth factors used, and only a few studies determined the dose–
response curve. This review included studies with various animal models with substantial
differences regarding the follow-up duration and the critical defect size, even within a single
animal model. Due to a lack of consistency in the defect size, it is difficult to compare the
outcomes between the studies. Similarly, there is no standard animal model for mandibular
bone regeneration. There was considerable heterogeneity in the evaluation of in vivo bone
regeneration, which enables the direct comparison of outcomes between treatment groups.
Future studies should provide standardized measurements of bone regeneration, including
histological analysis, imaging results (micro-CT), and biomechanical testing of the newly
formed bone for a reliable comparison of the results.

5. Conclusions

Mandibular BTE can be considered a highly promising treatment for the reconstruction
of critical-sized bone defects. It could become an alternative to microvascular bone grafts,
which are considered a gold-standard treatment. In vivo trials are critical for translating
from experimental to randomized clinical trials. The review aimed to systematically review
in vivo studies and analyze this concept’s effectiveness in treating mandibular critical-
sized defects.

Currently, there are significant discrepancies between the studies due to various study
methodologies, review periods, outcome measures, and different control groups, with
significant differences occurring even within a single animal model. The standardization
of the animal models, operative techniques, and definition of critical-sized defects for
each model is needed, as well as the duration of follow-up and the evaluation of study
outcomes. The results of this review support the use of biocompatible scaffolds, especially
composite polymer/ceramic scaffolds, for bone regeneration, as they obtain significant
results compared to blank controls. In addition, the success of mandibular bone engineering
is significantly enhanced by the use of scaffolds with bioactive molecules and/or progenitor
cells. However, the clinical application of biomolecules and progenitor cells is limited by its
high costs, side effects, and unpredictable responses in humans. Therefore, further research
is required to understand the biological fundamentals of the interplay between scaffolds,
regulatory molecules, and progenitor cells to translate these experimental findings into
clinical practice.
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