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Abstract: The increase in the occurrence of the multifactorial Alzheimer’s disease (AD) demands an
urgent effort towards the development of effective anti-AD agents, such as the multitarget-directed
ligands (MTDLs). In fact, AD is a genetic and an environmental disease, involving a diversity of
etiopathogenic processes, and there is not yet a successful AD treatment. The major AD clinical
indications (CIs) are extracellular amyloid plaques, intracellular neurofibrillary tangles (NFTs),
abnormal inflammatory response, and neuron apoptosis and death caused by oxidative stress. The
discovery of neuroprotective natural products, presenting good oral bioavailability, ability to cross the
blood-brain barrier (BBB) and safety profile, is indeed a necessity, and some flavonoids are in clinical
trials for AD treatment. In this review, the several flavonoids from natural sources that have shown
activity on mechanisms associated with AD are presented. Although several reviews have been
presented in the last few years, the main objective of this review is to recognize and discuss, for each
CI, the scaffolds leading to the highest activity and so to attempt to achieve molecules targeting more
than one CI, the MTDLs, which are potential leads for AD treatment. In conclusion, the most active
flavonoids against several CIs of AD are flavanols and flavonols, which have a planar scaffold and
structures presenting hydroxy groups at C5 and C7 on ring A and at C4′ of ring B. Thus, molecules
linking flavanols to flavonols, with hydroxy groups at C5 and C7 on ring A and at C4′ of ring B, are
also promising against CIs of AD and potential anti-AD agents.

Keywords: Alzheimer’s disease; plant natural products; flavonoids; multitarget-directed ligands
(MTDLs) approach

1. Introduction

Alzheimer’s disease (AD) is a common disease in geriatric patients. Currently 50
million people are diagnosed with dementia and this number is expected to increase by 60%
in 2030 and up to 180% in 2050 [1]. AD is the most common cause of dementia, accounting
for 60 to 80% of cases. It is most common in people over the age of 65. Indeed, the risk of
AD and other types of dementia increases with age, affecting an estimated 1 in 14 people
over the age of 65 and 1 in every 6 people over the age of 80 [1]. Deficient cholinergic
function, behavioral disorders, memory and intellectual function loss and neuronal death
are symptoms of this disease. Some of the AD risk factors were identified as family medical
history, way of living and psychosocial factors, elderliness, the apolipoprotein E (APOE) ε4
allele genotype and cardiovascular disease risk factors [2]. There are two subtypes of AD.
The first one, called early onset of AD (EOAD), develops in people younger than 65 years
old being associated with genetic mutations, especially of amyloid precursor protein (APP),
presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes, that are involved in the production of
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the amyloid-beta (Aβ) peptides. The second one, called late onset of AD (LOAD), develops
in people older than 65 years, being the most frequent AD, and has been consistently
associated with only one gene, the APOE gene. The allele ε4 of APOE is a genetic risk
factor [3,4], causing cognitive decline and cerebral amyloid in aged individuals [5]. APOE
is formed in the neuroglial cells, astrocytes, producing Aβ plaques and development of
cerebral amyloid angiopathology [6]. Furthermore, APOEε4 has been associated with tau
pathology [7]. However, 50% of AD patients are not APOEε4 carriers [3,4], and up to 75%
of APOEε4 homozygous carriers do not progress to AD. In fact, the genetic tendency to
LOAD and the role of other risk factors is still unknown [8]. Nevertheless, the detailed
studies of the mechanisms of action of these genes in AD pathogenesis suggest that AD
is also an environmental complex disease [9], which efficacious treatment still remains to
be developed [10] and the actions taken have been concerned mostly with the reduction
of AD clinical indications (CIs). Extracellular plaques formed by Aβ peptide aggregation,
intracellular neurofibrillary tangles (NFTs) resulting from hyperphosphorylated τ-protein,
abnormal inflammatory response and neuron apoptosis and death caused by oxidative
stress are the major CIs of AD [11–13]. Indeed, communication at synapses between
neurons is impeded by cell death caused by Aβ plaques. Also, the transport of crucial
molecules in neurons is hindered by NFTs [2].

The Aβ peptides result from APP cleavage and are the major components of Aβ
plaques. Thus, the inhibition of APP cleavage will cause a decrease in Aβ plaques. APP can
be cleaved by the amyloidogenic pathway involving the action of two enzymes, β-secretase
(BACE1) and γ-secretase. BACE1 cleaves APP generating a soluble fragment, β-APP, and a
longer 99-amino acids peptide fragment that is then cleaved by γ-secretase into amylogenic
peptides of varying length, such as Aβ40, Aβ42, and Aβ43 [14]. The imbalance between
these Aβ fragments generation and their clearance causes disequilibrium and consequently
cell death. One way to combat AD is, therefore, to prevent the brain Aβ peptide deposition
by the inhibition of BACE1.

The microtubules (MTs), which are involved in several important structural and
regulatory functions, are stabilized by τ-protein. However, when hyperphosphorylated,
they aggregate into paired helical and straight filaments resulting in the formation of the
NFTs [15–19], losing MTs, which become destabilized. MTs result from the head-to-tail
polymerization of α- and β-tubulin heterodimers [19], being always vibrating alternatively
between growing and shrinking phases [20]. This dynamic nature of MTs results in the
formation of several arrangements within cells. As MTs result from different isoforms of
tubulin, their dynamism and their interaction with associated proteins (MAPs) regulates
the morphology, stability, and their function in different cell types [21]. If this tuned process
fails, AD or other neurodegenerative disorders will take place [22]. It has been concluded
that stabilization of MTs may also potentially prevent AD progression. AD prevention
also occurs by reducing hyperphosphorylation of τ-protein, avoiding MTs dysfunction. As
τ-protein phosphorylation results from an equilibrium between τ-kinase and phosphatase
activities, the aggregation and the formation of NFTs is restrained by kinase inhibitors [23–
25]. Thus, inhibition of these protein kinases [26] constitutes another strategy to combat AD.
The most important protein kinase that is involved in τ-phosphorylation is the glycogen
synthase kinase-3 beta (GSK-3β) [10,14].

AD development may also be avoided by inhibiting inflammatory response of mi-
croglial cells [27,28]. When properly stimulated, microglia cells can transform themselves by
modifying their shapes, releasing proinflammatory/neurotoxic factors, such as interleukin-
1 (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2),
cyclooxygenase-2 (COX-2), nitric oxide (NO) and reactive oxygen species (ROS) [29–31]. Ac-
cumulation of these proinflammatory/neurotoxic factors damages and causes degeneration
of the nearby neurons. They release immune substances, increasing inflammatory neuro-
toxicity and causing irreversible neuroinflammation [32–34]. Another potential therapeutic
strategy to combat AD is, therefore, the use of inhibitors of microglia response.
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The decline of cognitive functions in AD patients is associated with the deficiency of
the brain neurotransmitter acetylcholine (ACh). Upon action of the acetylcholinesterase
enzyme (AChE), ACh breaks down giving acetate and choline, which is uptaken into the
presynaptic neuron and carried out by choline carriers. The signal transduction at the
neuromuscular junction finishes rapidly [35]. On the other hand, ACh binds to several
receptors in the synaptic cleft. One of them, nicotinic ACh receptors (nAChRs) in the
central nervous system (CNS), controls the liberation of other neurotransmitters which
are involved in cognitive processes and memory [36,37]. Inhibition of AChE prevents the
hydrolysis of Ach, increasing its concentration and duration of action, which is clinically
beneficial for AD patients. Thus, AChE inhibitors are widely used for AD treatment [36].

AD pathology can, therefore, progress through different pathways which can even
be related. For example, AChE accelerates deposition of Aβ peptide [38] interacting also
with Aβ deposits producing an AChE-Aβ complex, a very toxic substance, which in turn
increases the intracellular calcium load and decreases mitochondrial membrane potential.
The AChE-Aβ complex formation causes the neuronal cells death [39]. AChE also stimu-
lates the protein kinase C (PKC) which inhibits GSK-3β. Thus, the above mechanisms may
work altogether through interaction between genetic, molecular and cellular events [40].

Several compounds have been identified to combat AD, and multitarget compounds
represent an effective strategy for the treatment of this multifactorial disease [41–43].
For example, preventing the appearance of the Aβ plaques and cholinergic deficit are
considered major contributing factors for AD. Thus, compounds which act simultaneously
against BACE1 and AChE are multitarget compounds to combat AD.

Ubiquitously presented in plants, flavonoids, a class of polyphenolic compounds, are
present in plant-based foods, and so are consumed by humans through the diet. Dietary
flavonoids are considered able to cross the blood-brain barrier (BBB) and are known for their
CNS-related activity [44]. Flavonoids are biosynthesized through the phenylpropanoid-
acetate pathway (Figure 1) [44] as a response to protect themselves against foreign agents
such as UV radiation, parasites, or virus, as well as to regulate enzymes involved in cell
metabolism [44–47]. Flavonoids themselves are subdivided in different classes [48]. Those
flavonoids with a C6-C3-C6 carbon skeleton may have the structure of a chromane or that
of a chromene, with the aromatic ring being designated as ring A and the pyran or the
3,4-dihydro-2H-pyran as ring C. Ring B is the substituent linked to ring C. The class of
flavonoids in restricted sense has ring B linked to chromane/chromene position 2, whereas
that of isoflavonoids has ring B connected to position 3. Chalcones and dihydrochalcones
are flavonoids with a C6-C3-C6 skeleton but ring C is absent (Figure 2). Depending on
the oxidation of ring C, flavonoids can be named as flavans, such as the catechins, or
flavanones, 3-hydroxyflavanones, flavones and flavonols, when ring C is a pyrone. The
several flavonoids differ greatly due to diverse substitutions on the different scaffolds
including glycosylation, hydrogenation, hydroxylation, malonylation and alkylation. Usu-
ally the scaffolds comprising conjugation, glycosylation or methylation are responsible for
several biological properties and for the hydrophilicity of the compounds [47].
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Figure 1. Biosynthetic pathway of flavonoids illustrated for naringenin and derivatives. ANS, 

anthocyanidin synthase; CHI, chalcone isomerase; CHR, chalcone reductase; CHS, chalcone 

synthase; DFR, dihydroflavonol 4-reductase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; 

Figure 1. Biosynthetic pathway of flavonoids illustrated for naringenin and derivatives. ANS, an-
thocyanidin synthase; CHI, chalcone isomerase; CHR, chalcone reductase; CHS, chalcone synthase;
DFR, dihydroflavonol 4-reductase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; FNS,
flavone synthase; HID, 2-hydroxyisoflavanone dehydratase; IFS, isoflavone synthase; LAR, leucoan-
thocyanidin reductase; LDOX, leucoanthocyanidin dioxygenase; UF3GT, UDP-glucose flavonoid
3-O-glucosyltransferase.
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Pilot study for evaluation of the penetration of the 
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- 2 NCT04063124 

Quercetin 

Interventional-open label study to evaluate the safety and 

feasibility of the combination with Dasatinib in AD and mild 

cognitive impairment patients 

1000 2 NCT04785300 
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Figure 2. Atom numbering used in flavonoids with a C6-C3-C6 structure, shown in a flavonoid with
a pyran ring (left) or an open chain form (right).

Some flavonoids are in clinical trials for the treatment of several signs and symptoms
of AD [49]. Examples are quercetin (3,3′,4′,5,7-pentahydroxyflavone, (1), genistein (4′,5,7-
trihydroxyisoflavone, (2), daidzein (4′,7-dihydroxyisoflavone, (3) and epigallocatechin-3-
gallate, the (2R,3R)-3′,4′,5,5′,7-pentahydroxyflavan-3-yl 3,4,5-trihydroxybenzoate (EGCG,
(4) (Figure 3 and Table 1).
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Figure 3. Structure of flavonoids on clinical trials.

Table 1. Flavonoids under clinical trials [49].

Flavonoid Description Dosage
(mg/d)

Status
(Phase)

Clinical Trial
(Gov. Identifier)

Quercetin
Pilot study for evaluation of the penetration of

the combination with Dasatinib in elderly
early AD patients

- 2 NCT04063124

Quercetin

Interventional-open label study to evaluate
the safety and feasibility of the combination

with Dasatinib in AD and mild cognitive
impairment patients

1000 2 NCT04785300

Quercetin

Interventional study to evaluate the efficacy,
safety and feasibility of the combination with
Dasatinib in older patients with early stage of

AD

1000 2 NCT04685590

Genistein To check the effect of 60 mg BID genistein in
patients suffering AD R NCT01982578

Daidzein/Genistein

Pilot study of capsules mixing Diadzein and
Genistein (Novasoy) for observing the

improvement in cognitive function of patients
suffering AD

100 2 NCT00205179

EGCG

Randomized and double blinded study to
evaluate the effectiveness of EGCG along with
dietary, physical and cognitive intervention in

AD patients

- R NCT03978052

BID—twice a day; R—Recruiting.
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On this review, the several flavonoids from natural sources are presented, which have
shown activity on the mechanisms highlighted below (Figure 4 and Table 2). Although
several reviews have been presented on the last years, the main objective of this review is to
recognize and discuss, for each CI, the scaffolds leading to the highest activity (lower IC50)
and so to attempt to achieve molecules targeting more than one CI, the multitarget-directed
ligands (MTDLs), which have the potential to become a lead in AD treatment. In addition,
the log10 value of the partition coefficient (LogP) of flavonoids discussed in this review is
also presented in Table 2. This constant is a measure of lipophilicity of a compound that
can be used as a quick and simple prediction of its BBB permeability.
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Figure 4. Activities of flavonoids on mechanisms associated with Alzheimer’s disease.

Table 2. Flavonoids from natural sources with neurological activities and their mode of action.

Flavonoid Mechanism of
Action

IC50
(µM) Ref.

N. Name LogP 1 Class

1 Quercetin 1.48 Flavonol BACE1 5.40 [50–52]
GSK-3β 2.00 [52]

P-IF NE [47,53,54]
AChE 19.80 [55,56]

2 Genistein 2.84 Isoflavone P-IF NE [47]
AChE 167.00 [57]

3 Daidzein 2.63 Isoflavone P-IF NE [47]

4 (−)-EGCG 0.64 Flavanol P-IF NE [47]
AChE 0.0096 [58]

5 (−)-
Epigallocatechin −0.10 Flavanol BACE1 2.40 [50]

6 (−)-Naringenin 2.52 Flavanone BACE1 38.06 [59]
GSK-3β 45.71 [52]

P-IF NE [47,54]
AChE 3.81 [60]

7 (+)-Pinocembrin 3.09 Flavanone BACE1 27.01 [61]

8 (+/−)-Pinostrobin 3.10 Flavanone BACE1 4.35 [61]
AChE NA [62]

9 Sophoraflavanone
G 3.96 Flavanone BACE1 5.20 [63]

P-IF NE [47]
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Table 2. Cont.

Flavonoid Mechanism of
Action

IC50
(µM) Ref.

N. Name LogP 1 Class

10 (−)-Kurarinone - Flavanone BACE1 3.30 [63]
11 Leachianone A - 8.40
12 Kushenol A - 2.60
13 (2S)-2′-Methoxykurarinone - 6.70
14 Kushenol T 5.85 36.80
15 Kurarinol 4.80 39.20

16 Isoxanthohumol 4.75 Flavanone BACE1 27.70 [63]
AChE NA [64]

17 Didymin 2.72 Flavanone BACE1 2.34 [59]
AChE 2.13 [59]

18 Poncirin - Flavanone BACE1 3.96 [59]
AChE 12.96 [59]

19 (−)-Prunin 0.60 Flavanone BACE1 13.41 [59]
AChE 6.31 [59]

20 (−)-Hesperidin - Flavanone BACE1 10.02 [65]
GSK-3β NA [66]

P-IF NE [47]
AChE 22.80 [66]

21 Neoeriocitrin - Flavanone BACE1 22.49 [60]
22 Selagintriflavonoid A - 0.75 [67]

23 Cardamonin 3.55 Chalcone BACE1 4.35 [61]
24 2,2′ ,4-Trihydroxychalcone 2.99 2.50 [51]

25 Xanthohumol 5.43 Chalcone BACE1 7.19 [68]
AChE 71.34 [64]

26 Kuraridin - Chalcone BACE1 6.03 [68]
27 Kuraridinol 5.83 7.10

28 Phlorizin 0.72 Dihydrochalcone BACE1 2.70 [69]

29 Apigenin 3.02 Flavone BACE1 38.50 [49,50,52,53]
GSK-3β 1.91 [66]

P-IF NE [47]
AChE 34.43 [49]

30 Baicalein 3.27 Flavone BACE1 69.18 [70]
AChE 0.61 [55]

P-IF (NO) 66.40 [54,71]

31 Acacetin 3.41 Flavone BACE1 88.50 [72]
AChE 50.33 [73]

32 Mosloflavone 3.19 Flavone BACE1 43.65 [70]

33 Diosmetin 3.10 Flavone BACE1 43.65 [70]
P-IF NE [47]

34 Luteolin 2.53 Flavone BACE1 13.75 [74]
GSK-3β 1.51 [66]

P-IF (NO) 1.74 [47,54,75,76]
AChE 9.27 [76]

35 Norartocarpetin 2.36 Flavone BACE1 60.60 [52]

36 5-Hydroxy-3′ ,4′ ,7-
trimethoxyflavone - 2.14 [70]

37 3′ ,4′ ,5,7-
Tetramethoxyflavone 2.43 1.66 [70]

38 Tangeritin 3.18 Flavone BACE1 49.00 [77]
GSK-3β NA [66]

39 Nobiletin 2.74 Flavone BACE1 59.00 [77]
GSK-3β 52.48 [66]

40 Sinensetin 2.66 Flavone BACE1 63.00 [77]
41 Cirsilineol 2.54 20.35 [78]
42 Isothymusin 1.98 4.45 [78]

43 Vitexin −1.68 Flavone BACE1 51.07 [79]
AChE 12.16 [79]

44 Isovitexin 0.32 Flavone BACE1 NA [79]
GSK-3β 195.00 [80]

P-IF (NO) 66.70 [81]
AChE 6.24 [79]

45 5-O-(β-D-
Glucopyranosyl)luteolin 0.10 Flavone BACE1 NA [74]
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Table 2. Cont.

Flavonoid Mechanism of
Action

IC50
(µM) Ref.

N. Name LogP 1 Class

46 Orientin −2.16 Flavone BACE1 15.95 [76]
GSK-3β NA [80]
AChE 20.06 [76]

47 Isoorientin −0.16 Flavone BACE1 20.88 [76]
GSK-3β 185.00 [80]

P-IF (NO) 61.00 [81]
AChE 29.48 [76]

48 Kuwanon C 7.07 Flavone BACE1 3.40 [52,82]
AChE 25.06 [83]

49 Morusin 4.48 Flavone BACE1 59.40 [52,82]
AChE 36.40 [83]

50 Kuwanon A - Flavone BACE1 5.30 [52,82]

51 Cyclomorusin 6.74 Flavone BACE1 102.20 [52,82]
AChE 31.69 [83]

52 Morusinol 3.47 Flavone BACE1 135.90 [52,82]
AChE 173.49 [83]

53 Neocyclomorusin - Flavone BACE1 146.10 [52,82]
AChE 26.69 [83]

54 Mormin - Flavone BACE1 103.50 [52,82]
55 Robustaflavone - NA [84]
56 Cupressuflavone - NA [84]
57 Hinokiflavone - NA [84]

58 Amentoflavone 3.49 Flavone BACE1 1.54 [84]
P-IF NE [85]

59 Sequoiaflavone - Flavone BACE1 1.40 [84]

60 Bilobetin - Flavone BACE1 2.02 [84]
P-IF NE [85]

61 Sotetsuflavone - Flavone BACE1 1.58 [84]
62 Podocarpusflavone A - 0.99

63 Ginkgetin 4.45 Flavone BACE1 4.18 [84]
P-IF NE [85]

64 Amentoflavone-7,7”-dimethylether - Flavone BACE1 6.25 [84]
65 Podocarpusflavone B - 4.21
66 Isoginkgetin 5.24 3.01
67 4′ ,7”-Di-O-methylamentoflavone - NA
68 7”,4”′-Di-O-imethylamentoflavone - NA
69 4′ ,7,7”-Tri-O-methylamentoflavone - NA
70 Sciadopitysin - NA
71 Heveaflavone - NA
72 Kayaflavone 6.04 NA

73 7,7”,4′ ,4”′-Tetra-O-
methylamentoflavone - NA

74 2,3-Dihydroamentoflavone - 0.75
75 2,3-Dihydro-6-methylginkgetin - 0.35

76 Kaempferol 1.96 Flavonol BACE1 14.70 [52]
GSK-3β 3.47 [66]

P-IF NE [47]
AChE 30.40 [86]

77 Morin 1.54 Flavonol BACE1 21.70 [52]
GSK-3β NE [53]
AChE 210.00 [87]

78 Myricetin 1.42 Flavonol BACE1 2.40 [52]
AChE 157.11 [88]

79 Sophoflavescenol 4.10 Flavonol BACE1 10.98 [89]
AChE 8.37 [89]

80 Icaritin 4.87 Flavonol BACE1 22.48 [89]
AChE 6.47 [89]

81 Desmethylanhydroicaritin 4.31 Flavonol BACE1 1.51 [89]
AChE 6.67 [89]

82 Kushenol C - Flavonol BACE1 5.45 [68]

83 Rutin (Sophorin) −2.02 Flavonol BACE1 0.004 [90]
P-IF NE [47]

AChE 19.65 [91]
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Table 2. Cont.

Flavonoid Mechanism of
Action

IC50
(µM) Ref.

N. Name LogP 1 Class

84 Hesperetin 2.60 Flavanone GSK-3β 26.92 [66]
P-IF NE [54]

85 Naringin −0.44 Flavanone GSK-3β NA [66]
AChE 26.40 [60]

86 Flavone 3.56 Flavone GSK-3β NA [66]

87 Epicatechin 0.49 Flavanol P-IF NE [47]

88 (+)-Ampelopsin −0.73 3-
Hydroxyflavanone

P-IF NE [92]
AChE 59.47 [93]

89 Butein 2.51 Chalcone P-IF (NO) 10.90 [47]

90 Theaflavin 1.17 Flavanol P-IF NE [47]

91 Scutellarin 0.26 Flavone P-IF NE [47]

92 Wogonin 3.15 Flavone P-IF (NO) 45.30 [71,75,94]
AChE <10.00 [95]

93 Irilone 0.84 Isoflavone P-IF (NO) 89.70 [81]
94 4′-O-(β-D-Glucopyranosyl)irilone - 80.10

95 4′-O-[β-D-Glucopyranosyl-(1→6)-β-D-
glucopyranosyl]irilone - 83.60

96 4′-O-(β-D-Glucopyranosyl)-7-O-
methyltectorigenin - 56.90

97 4′-O-[β-D-Glucopyranosyl-(1→6)-β-D-
glucopyranosyl]-7-O-methyltectorigenin - 29.40

98 Iridin - 67.50
99 4′-O-(β-D-Glucopyranosyl)irisolone - 98.30

100 4′-O-[β-D-Glucopyranosyl-(1→6)-β-D-
glucopyranosyl]irisolone - 55.10

101 Irisolidone 3.23 23.60

102 6′’-O-(β-D-Glucopyranosyl)isoorientin - Flavone P-IF (NO) 71.90 [81]

103 Taiwaniaflavone - Flavone P-IF NE [85]

104 Astragalin −0.44 Flavonol P-IF (NO) 45.20 [81]
AChE 18.24 [60]

105 Fisetin 1.18 Flavonol P-IF (NO) 13.50 [47]

106 Icariin - Flavonol P-IF NE [96]

107 (+)-Catechin 0.51 Flavanol AChE NA [97]

108 Dorspoinsetifolin - Flavanone AChE 91.07 [98]
109 4′-Hydroxyisolonchocarpin - NA [98]
110 Nimphaeol A (Diplacone) 6.78 7.77 [99]
111 Nimphaeol B - 15.09 [99]
112 Nimphaeol C - 15.70 [99]
113 Isonimphaeol B - 7.23 [99]
114 3′-Geranylnaringenin - 12.34 [99]
115 4′-O-Methyldiplacone - 92.40 [100]
116 3′-O-Methyldiplacone - 109.20 [100]

117 6-Geranyl-3′ ,5,5′ ,7-tetrahydroxy-4′-
methoxyflavan-4-one - 22.90 [100]

118 Mimulone 7.26 91.50 [100]

119 6-Geranyl-4′ ,5,7-trihydroxy-3′ ,5′-
dimethoxyflavan-4-one - 316.30 [100]

120 (−)-8-Prenylnaringenin 4.97 NA [64]
121 6-Prenylnaringenin - NA [64]

122 4′-O-Methyldiplacol - 3-
Hydroxyflavanone

AChE 31.90 [100]
123 3′-O-Methyldiplacol - 48.50

124 6-Geranyl-3,3′ ,5,5′ ,7-pentaahydroxy-4′-
methoxyflavan-4-one - 15.60

125 Isobavachalcone 5.35 Chalcone AChE 18.34 [62]
126 2′ ,4′-Dihydroxy-3′ ,6′-dimethoxychalcone 3.38 20.15 [62]
127 Xanthohumol L - NA [64]
128 Xanthohumol I - NA [64]
129 Xanthohumol B 3.89 NA [64]
130 Xanthohumol D 3.97 NA [64]
131 3-Hydroxyxanthohumol - 51.25 [64]
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Table 2. Cont.

Flavonoid Mechanism of
Action

IC50
(µM) Ref.

N. Name LogP 1 Class

132 7-O-(β-D-Glucopyranosyl)apigenin - Flavone AChE 237.74 [101]
133 Baicalin 0.74 204.10 [102]
134 Cynaroside 0.35 17.13 [60]
135 4′-O-(β-D-Glucopyranosyl)luteolin 0.10 147.41 [101]
136 Veronicastroside - NA [103]

137 6-Hydroxy-7-O-(β-D-
glucopyranosyl)luteolin −0.38 1.65 [55]

138 Violanthin - 79.80 [93]
139 7-O-(β-Rhamnosyl)acacetin - NA [104]
140 7-O-(β-D-Glucopyranosyl)acacetin 1.40 NA [104]

141 3-O-[α-L-Rhamnopyranosyl-(1→6)-β-D-
glucopyranosyl]acacetin - 165.04 [105]

142 Swertisin 0.88 71.89 [106]

143 5′-Geranyl-4′-methoxy-2′ ,5,7-
trihydroxyflavone - 10.95 [83]

144 5′-Geranyl-2′ ,4′ ,5,7-tetrahydroxyflavone - 16.21 [83]
145 6,8-Diprenyleriodictyol - 15.03 [62]
146 6-Prenylapigenin 5.20 25.73 [62]

147 Barbigerone 4.90 Isoflavone AChE 121.60 [98]

148 4′ ,5′-Dimethoxy-6”,6”-dimethyl-6”H-
pyrano-[2”,3”:7,8]isoflavone - 131.17

149 3-O-Methylquercetin - Flavonol AChE 37.90 [55,56]
150 Galangin 2.44 19.10 [107]
151 Tamarixetin - 22.30 [86]
152 3-O-(β-D-Glucopyranosyl)quercetin - 124.73 [105]
153 3-O-(α-D-Glucopyranosyl)quercetin - 171.34 [105]

154
3-O-[α-L-Rhamnopyranosyl-(1→4)-α-L-

rhamnopyranosyl-(1→2)-β-D-
glucopyranosyl]quercetin

- 148.81 [105]

155 3-O-[α-L-Rhamnopyranosyl-(1→2)-β-D-
glucopyranosyl]quercetin - 126.95 [105]

156 3-O-[α-L-Rhamnopyranosyl-(1→6)-β-D-
glucopyranosyl]quercetin - 119.74 [105]

157 Quercitrin 0.43 66.90 [55,56]
158 Nicotiflorin - 15.03 [91]

150
3-O-[α-L-Rhamnopyranosyl-(1→4)-α-L-

rhamnopyranosyl-(1→6)-β-D-
glucopyranosyl]Kaempferol

- 137.30 [105]

160 3-O-(β-D-Galactopyranosyl)-3′-O-
methylmyricetin - 19.90 [86]

161 3-O-(β-D-Galactopyranosyl)-3′ ,5′-di-O-
methylmyricetin - 37.80 [86]

162 8-Lavandulylkaempferol - 5.16 [89]

1 LogP values from the chemical databases PubChem and ChemSpider. NA—not active; NE—not evaluated;
P-IF—proinflammatory factor.

2. Activities of Flavonoids from Natural Sources
2.1. Inhibition of Aβ Production

In the amyloidogenic pathway, BACE1 is the enzyme that is involved in the rate-
limiting step in the production of Aβ plaques. By inhibition of this protease the load of
Aβ plaques in the neuronal cells will, therefore, be reduced by slowing or reversing the
process [108].
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2.1.1. Catechins and Flavanones

Green tea catechins present inhibitory activity of BACE1, with (−)-epigallocatechin
(5) as the most potent one with an IC50 of 2.40 µM. That activity is attributed to the pyro-
gallol moiety linked to C2 of the catechin [50]. From Tamarix gallica L. [109], Drynariae rhi-
zomethe [58] and several citrus fruits [49,109], naringenin, the (2S)-4′,5,7-trihydroxyflavanone
(6), can be extracted, presenting a BACE1 IC50 of 38.06 µM) [59]. Pinocembrin, the
5,7-dihydroxyflavanone (7), existing in a variety of plants, mainly from Pinus heartwood,
Eucalyptus, Populus, Euphorbia, Sparattosperma leucanthum and Turnera diffusa, presents a
BACE1 IC50 of 27.01 µM [61]. Drynaria roosii (Nakaike), also called D. fortunei (Kunze) J.
Sm., a large epiphytic fern of the family Polypodiaceae, known as “Gusuibu”, contains
pinostrobin, the (2S)-5-hydroxy-7-methoxyflavanone (8), which presents a BACE1 IC50 of
4.35 µM [61]. These results suggest that the BACE1 inhibition is influenced by the presence
of the pyrogallol moiety linked to C2 of the catechin.

Eight flavanones were isolated from Sophora flavescens Ait. (Leguminosae), a plant
widely distributed in Asia, Oceania, and the Pacific islands, namely: five lavandulyl
flavanones, sophoraflavanone G (9), kurarinone (10), leachianone A (11), kushenol A (12),
and (2S)-2′-methoxykurarinone (13), which present BACE1 IC50 values of 5.20, 3.30, 8.40,
2.60, and 6.70 µM, respectively; two hydrated lavandulyl flavanones, kushenol T (14)
and kurarinol (15), with BACE1 IC50 values of 36.80 and 39.20 µM, respectively, and one
isoprenyl flavanone, isoxanthohumol (16), with a BACE1 IC50 of 27.70 µM [63]. Thus, the
lavandulyl substituent at C8 increases by ten times the BACE1 inhibition when compared
with the hydrated lavandulyl flavanones or the isoprenyl flavanone, suggesting that the
hydrophobic interactions are decreased on these two latter scaffolds.

The glycosylated flavanones didymin, the (2S)-5-hydroxy-4′-methoxy-7
-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]flavan-4-one (17), and poncirin, the
(2S)-5-hydroxy-4′-methoxy-7-[α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyloxy]flavan-
4-one (18), existing in several citrus fruits, present BACE1 IC50 values of 2.34 and 3.96 µM,
respectively [59]. Another glycosylated flavanone existing in citrus fruits is prunin, the (2S)-
7-(β-D-glucopyranosyloxy)-4′,5-dihydroxyflavan-4-one (19), which exhibits a BACE1 IC50
of 13.41 µM [59]. Hesperidin, the (2S)-3′,5-dihydroxy-4′-methoxy-7-[α-L-rhamnopyranosyl-
(1→6)-β-D-glucopyranosyloxy]flavan-4-one (20), and neoeriocitrin, the 3′,4′,5-trihydroxy-
7-(α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyloxy)flavan-4-one (21), existing also in
several citrus fruits, present BACE1 IC50 values of 10.02 [65] and 22.49 µM [60], respectively,
suggesting again that, when the number of hydroxy groups on the ring B of the flavanone
increases, the BACE1 inhibition decreases. Selagintriflavonoid A (22), an uncommon tri-
flavonoid consisting of three naringenin units, isolated from the plant Selaginella doederleinii
that is widely distributed in southern China, exhibits a strong BACE1 inhibition (IC50 of
0.75 µM), and is thus a promising compound for AD treatment [67].

Figure 5 shows the chemical structure of catechins and flavanones (compounds 5–22)
that inhibit BACE1 with IC50 range of 0.75 to 39.20 µM.
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2.1.2. Chalcones and Dihydrochalcones

Boesenbergia rotunda (L.) Mansf., a plant commonly used as a food ingredient, as well
as in traditional medicine, also known as fingerroot and Chinese ginger, contains car-
damonin, the 2′,4′-dihydroxy-6′-methoxychalcone (23), which presents a BACE1 IC50 of
4.35 µM [61]. 2,2′,4′-Trihydroxychalcone (24), isolated from the plant Glycyrrhiza glabra L.
(licorice), exhibits a BACE1 IC50 of 2.50 µM [51]. Xanthohumol, the 2′,4,4′-trihydroxy-6′-
methoxy-3′-(3-methylbut-2-en-1-yl)chalcone (25), isolated from the dichloromethane frac-
tion of an extract of Sophora flavescens, is another chalcone with activity against BACE1 (IC50
= 7.19 µM) [68]. From the same plant, S. flavescens, kuraridin, the 2,2′,4,4′-tetrahydroxy-3′-
[5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]-6′-methoxychalcone (26), and Kuraridinol, the
2,2′,4,4′-tetrahydroxy-3′-[5-hydroxy-5-methyl-2-(prop-1-en-2-yl)hexyl]-6′-methoxychalcone
(27), were isolated from the ethyl acetate fraction, exhibiting BACE1 IC50 values of 6.03 and
7.10 µM, respectively [68]. Phlorizin, the 4,4′,6′-trihydroxy-2′-2′-(β-D-glucopyranosyloxy)
dihydrochalcone (28), isolated from Malus domestica Borkh. (cv. Anna), is a dihydrochalcone
that inhibits BACE1 with an IC50 of 2.70 µM [69]. Thus, chalcones and dihydrochalcones
are very active in their inhibition of BACE1 activity, regardless of the presenting prenyl
groups, lavandulyl groups, hydrated or not, and glycosyl groups.

Figure 6 shows the chemical structure of chalcones and dihydrochalcones (compounds
23–28) that inhibit BACE1 with IC50 range of 2.50 to 7.19 µM.
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2.1.3. Flavones

Apigenin, the 4′,5,7-trihydroxyflavone (29), which exists in oregano, mint, rosemary
sage, celery, bell pepper, garlic, French peas, thyme, Tabernaqemontana pandaqcaqui and
Phagnalon saxatile (L.) Cass., exhibits a BACE1 IC50 of 38.50 µM [49,50,52,53]. For baicalein,
the 5,6,7-trihydroxyflavone (30), existing in Scutellaria baicalensis, also with three hydroxy
groups, but all of them on ring A, the BACE1 inhibition decreases (IC50 = 69.18 µM) [70].
For acacetin, the 5,7-dihydroxy-4′-methoxyflavone (31), extracted from Agastache rugosa
(Fisch. and C.A. Mey.) O. Kuntze (Lamiacae), where the hydroxy group of C4′ of ring B of
apigenin is replaced by a methoxy group, there is also a decrease in BACE1 inhibition (IC50
= 88.50 µM) [72].

Mosloflavone, the 5-hydroxy-6,7-dimethoxyflavone (32), where the OH-6 and OH-
7 present in baicalein (30) are replaced by methoxy groups, exhibits a small increase in
BACE1 inhibition (IC50 = 43.65 µM) [70] when compared to baicalein. This flavone exists in
Desmos dumosus and Phonus arborescens. When acacetin (31) bears a hydroxy group on C-3′

on ring B, this 3′,5,7-trihydroxy-4′-methoxyflavone (33) has the trivial name diosmetin.
It exists on the Caucasian vetch which occurs in the region of North Caucasus [110].
There is an increase in BACE1 inhibition of 33 (IC50 = 43.65 µM) when comparing with
acacetin (31) [70]. Luteolin, the 3′,4′,5,7-tetrahydroxyflavone (34), exhibits a BACE1 IC50 of
13.75 µM [74], showing the importance of the two hydroxy groups on C-3′ and C-4′ of
ring B for hydrophilic interactions. It is interesting to notice that norartocarpetin (35), the
2′,4′,5,7-tetrahydroxyflavone, existing on Morus lhou and regioisomer of luteolin, exhibits
a decrease in BACE1 inhibition (IC50 = 60.60 µM) [52], as the two hydroxy groups on
ring B are at meta position and not ortho position as happens on luteolin. If the hydroxy
group at C3′ of diosmetin (33) is replaced by a methoxy group, as well as the one at
C7, the resulting 5-hydroxy-3′,4′,7-trimethoxyflavone (36) is a natural product isolated
from the medicinal plant Lippia nodiflora [111]. This flavone is a very potent inhibitor of
BACE1 (IC50 = 2.14 µM) [70], showing the importance of the methoxy groups on the ring
A of the flavone. 3′,4′,5,7-Tetramethoxyflavone (37), existing in Orthosiphon aristatus and
Bauhinia championii, where all the hydroxy groups are replaced by methoxy groups, exhibit
a BACE1 IC50 of 1.66 µM even higher than 36 [70], suggesting an increase in hydrophobic
interactions when the methoxy groups are linked to C5 and C7. There is a huge decrease
in the inhibitory activity against BACE1 when citrus peels flavones such as tangeretin, the
4′,5,6,7,8-pentamethoxyflavone (38), or nobiletin, the 3′,4′,5,6,7,8-hexamethoxyflavone (39),
or sinensetin, the 3′,4′,5,6,7-pentamethoxyflavone (40) (IC50 values of 49.00, 59.00 and 63.00
µM, respectively) [77], are compared with 3′,4′,5,7-tetramethoxyflavone (37) owing to steric
hindrance. The same happens when cirsilineol, the 4′,5-dihydroxy-3′,6,7-trimethoxyflavone (41),
is considered. However, there are now increases in the hydrophilic interactions owing to the
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hydroxy group on the C-4′ (IC50 = 20.35 µM). Another flavone, extracted from Ocimum sanctum
(leaves), is isothymusin, the 5,8,4′-trihydroxy-6,7-dimethoxyflavone (42), also bearing a hydroxy
group at C8, which exhibits an increase in BACE1 inhibition (IC50 = 4.45 µM) [78].

Considering glycosylated flavones, vitexin, the 8-(β-D-glucopyranosyl)-4′,5,7
-trihydroxyflavone (43), is a C-glycoside isolated from Vigna radiata L. that presents a
BACE1 IC50 of 51.07 µM [79]. Isovitexin (44), the regioisomer of vitexin having the
β-D-glucopyranosyl group linked to C6, is inactive (IC50 > 100 µM) [79]. The same
happens when the β-D-glucopyranosyl group is linked to OH-5. Indeed, the 5-O-(β-
D-glucopyranosyl)luteolin (45) is also inactive against BACE1 (IC50 = 969.75 µM) [74].
Orientin, the 8-(β-D-glucopyranosyl)-3′,4′,5,7-tetrahydroxyflavone (46), and isoorientin, the
6-(β-D-glucopyranosyl)-3′,4′,5,7-tetrahydroxyflavone (47), with the β-D-glucopyranosyl
group, respectively on C8 and C6, are also weak inhibitors of BACE1 with IC50 of 15.95 and
20.88 µM, respectively [76].

Seven alkyl-substituted flavones from methanol extract of Morus lhou, namely kuwanon
C (48), morusin (49), kuwanon A (50), cyclomorusin (51), morusinol (52), neocyclomorusin
(53) and mormin (54), present BACE1 IC50 values of 3.40, 59.40, 5.30, 102.20, 135.90, 146.10
and 103.50 µM, respectively, suggesting that BACE1 inhibition is significantly influenced
by the presence of two hydroxy groups at ring B and the isoprenyl group at C3 [52,82].

Several biflavones exhibit BACE1 inhibitory activity. Amentaflavone-type flavonoids,
where the flavonoid moieties are connected through a C3′-C8” bond, showed BACE1 in-
hibition. Robustaflavone (55), cupressuflavone (56), and hinokiflavone (57), biflavones
where the two flavonoid moieties are connected through, respectively, C3′-C6”, C8-C8” and
C4′-C6” bonds, are inactive [84]. Amentoflavone (58) and all the monomethoxy analogs
of it, sequoiaflavone (59), bilobetin (60), sotetsuflavone (61), and podocarpusflavone A
(62), showed a strong BACE1 inhibition (IC50 range of 0.99–2.02 µM). The dimethoxy
amentoflavones ginkgetin (63), amentoflavone-7,7”-dimethyl ether (64), podocarpusflavone B
(65), and isoginkgetin (66) showed a decrease in the BACE1 inhibition (IC50 range of 3.01–6.25
µM) when compared with their monomethoxy analogs. The other dimethoxy amentoflavones,
4′,7”-di-O-methylamentoflavone (67) and 7”,4”′-di-O-methylamentoflavone (68), were inactive,
as well as the trimethoxy amentoflavones, 4′,7,7”-tri-O-methylamentoflavone (69), sciadopi-
tysin (70), heveaflavone (71), and kayaflavone (72), and the tetramethoxy amentoflavone,
7,7”,4′,4”′-tetra-O-methylamentoflavone (73). The 2,3-dihydroamentoflavone (74) showed
an increase in BACE1 inhibition (IC50 = 0.75 µM) whereas 2,3-dihydro-6-methylginkgetin
(75) showed the strongest inhibitory activity (IC50 = 0.35 µM) [84].

Thus, it can be concluded that the amentaflavone-type biflavonoids, which have a
scaffold consisting of two apigenin molecules linked by the C3′ of one molecule with the
C8” of the other apigenin molecule, have significant inhibitory activity against BACE1. The
results suggest that more than two hydroxy groups at C7, C4′, C7” and C4′” are needed for
the inhibitory activity of the biflavonoid. From the data obtained for the biflavones 74 and
75 it can be concluded that the presence of a flavanone moiety in these amentaflavone-type
biflavonoids increases the BACE1 inhibition, even more so if there is a methyl group at C6
to increase the hydrophobic interactions with the enzyme [84].

Figure 7 shows the chemical structure of flavones (compounds 29–75) that inhibit
BACE1 with an IC50 range of 0.35 to 146.10 µM, except for compounds 44, 45, 55–57 and
67–73 that were inactive.
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2.1.4. Flavonols

Kaempferol, the 3,4′,5,7-tetrahydroxyflavone (76), exhibits a BACE1 IC50 of 14.70 µM.
Comparing with apigenin (29) (IC50 = 38.50 µM) it can be concluded that the hydroxy
group on C3 is important for the hydrophilic binding to BACE1 of flavonols [52]. Quercetin,
the 3,3′,4′,5,7-pentahydroxyflavone (1, Figure 3), isolated from several plants, such as
Allium cepa L. and Malus pumila Mill., presents an IC50 of 5.40 µM [50–52] and morin,
the 2′,3,4′,5,7-pentahydroxyflavone (77), isolated from Psidium guajava [53], has an IC50
of 21.70 µM [52], suggesting once more the significant role of the hydroxy group on C4′

for the hydrogen bonds. When there are two hydroxy groups on ring B they should be
in the ortho position. Myricetin, the 3,3′,4′,5,5′,7-hexahydroxyflavone (78), which exists
in Ficus auriculata, Ardisia sanguinolenta and many other plants, shows an increase in the
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inhibitory activity against BACE1 (IC50 = 2.40 µM) [52], suggesting that the six hydroxy
groups improve the hydrogen binding to the enzyme.

Isolated from the plant Sophora flavescens, sophoflavescenol, the 3,4′,7-trihydroxy-
5-methoxy-8-(3-methylbut-2-enyl)flavone (79), icaritin, the 3,5,7-trihydroxy-4′-methoxy-
8-(3-methylbut-2-enyl)flavone (80), desmethylanhydroicaritin or 3,4′,5,7-tetrahydroxy-8-
(3-methylbut-2-enyl)flavone (81), and kushenol C, the 2′,3,4′,5,7-pentahydroxy-8-[(2R)-5-
methyl-2-prop-1-en-2-ylhex-4-enyl]flavone (82), presented BACE1 IC50 values of 10.98,
22.48, 1.51 [89] and 5.45 µM [68], respectively. These results suggest the importance
of the hydroxy groups at C4′ and C5 when desmethylanhydroicaritin (81) is compared
with icaritin (80) or sophoflavescenol (79). The results obtained for Kushenol C (82) and
desmethylanhydroicaritin (81) indicate that the prenyl group, rather than the lavandulyl
group, might make predominant contributions to BACE1 inhibition [68,89].

Rutin is the 3′,4′,5,7-tetrahydroxy-3-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]
flavone (83), a glycosylated flavonol on C3 of several citrus fruits, which exhibits a BACE1
IC50 of 0.004 µM [90], confirming the importance of the hydroxy groups at C4′ and C5, as
well as of a hydrophilic group at C3.

Figure 8 shows the chemical structure of the flavonols 76–83 that inhibit BACE1 with
an IC50 range of 0.004 to 22.48 µM.
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2.2. Inhibition of NFTs Formation
2.2.1. Inhibition of GSK-3β
Flavanones

Naringenin (6) exhibits GSK-3β inhibition with an IC50 of 45.71 µM [52]. Hesperetin,
the (2S)-3′,5,7-trihydroxy-4′-methoxyflavanone (84) (Figure 9), presents GSK-3β inhibi-
tion characterized by an IC50 of 26.92 µM [66]. However, the corresponding glycosy-
lated flavanones naringin, the (2S)-4′,5-dihydroxy-7-[α-L-rhamnopyranosyl-(1→2)-β-D-
glucopyranosyloxy]flavan-4-one (85) (Figure 9), and hesperidin (20), existing also in several
citrus fruits, have no effect on the inhibition of GSK-3β (IC50 > 300 µM) [66]. These results
suggest that side group substitutions on the flavonoid scaffold affect the GSK-3β activity
in a significant manner as the flavonoids with larger side groups exhibit lower inhibitory
activity. The presence of bulkier groups leads to decreased interactions between enzymes
and inhibitors [52,66].
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Flavones

Flavone (86) (Figure 9), the simplest compound of this class, with no hydroxy groups,
presents no inhibitory activity of GSK-3β (IC50 > 100 µM) [66]. Very weak inhibitors
of the enzyme are also nobiletin (39) (IC50 = 52.48 µM) and tangeritin (38) (IC50 > 100
µM) [66], which have multiple methoxy groups as substituents. These results show how
the inhibitory activity of GSK-3β is influenced by the number of free hydroxy substituted
groups on the flavonoids (hydroxy groups on A and B rings tend to form hydrogen bonds
with the active site of the enzyme) [52,66].

The GSK-3β inhibitory activity of apigenin (29) and luteolin (34) is characterized by
IC50 values of 1.91 and 1.51 µM, respectively, suggesting the importance of the hydroxy
groups at C4′, C5 and C7 [66].

C-glycosylflavones at C6, such as isoorientin (47) and isovitexin (44) are weak in-
hibitors of GSK-3β, having IC50 values of 185.00 and 195.00 µM, respectively [80]. Orientin
(46), the C-glycosylflavone at C8, is inactive against the enzyme (IC50 > 5000 µM). These
results show that side bulky group substitutions on the flavonoid scaffold affect the GSK-
3β activity in a significant manner, decreasing the interactions between the enzyme and
inhibitors [80].

Flavonols

Quercetin (1) presents high GSK-3β inhibition (IC50 = 2.00 µM) [52] and morin (77),
structurally related to 1, is also very active against GSK-3 [53] showing how important
is the presence of the two hydroxy groups on the ring B. Kaempferol (76), with only one
hydroxy group on ring B at C4′, exhibits an IC50 of 3.47 µM [66], suggesting that one of the
two hydroxy groups on ring B should be on C4′.

Also, it can be concluded that flavones, such as luteolin (34) and apigenin (29), are
more potent compared to flavan-4-ones such as hesperetin (84) and naringenin (6) [52,66].

2.3. Inhibition of Pro-Inflammatory Factors
2.3.1. Catechins, Flavanones and 3-Hydroxyflavanones

The neuroprotective action of EGCG (4, Figure 3) is due to its ability to inhibit neu-
roinflammation. EGCG reduces TNF-α, IL-1β, IL-6 and iNOS levels in Aβ-stimulated
EOC13.31 microglia through mechanisms involving NF-κB [47]. Epicatechin (87) attenuates
several pro-inflammatory mediators including TNF-α, NF-κB and iNOS [47]. The flavanone
naringenin (6) inhibits iNOS and COX-2 expression and NO production in activated mi-
croglia [47,54]. Hesperetin (84) only induces a very weak anti-neuroinflammatory effect
and doesn’t protect neurons from neuroinflammatory injury [54]. Glycosylated hesperetin,
such as hesperidin (20), inhibits neuronal cells’ death by reducing the expression of pro-
inflammatory factors as NF-κB, iNOS, and COX-2 [47], suggesting that the presence of
the α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy group at C7 is important for the
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inhibition of neuroinflammation. Sophoraflavanone G (9) reduces the expression of the
genes: iNOS, COX-2, TNF-α, IL-6, and IL-1β [47]. Ampelopsin, the (2R,3R)-3,3′,4′,5,5′,7-
hexahydroxyflavan-4-one (88), decreases hippocampal neuronal apoptosis, IL-1β, IL-6 and
TNF-α [92].

2.3.2. Chalcones and Flavanols

Butein (89) exhibits one of the greatest inhibitory effect against NO production with
an IC50 value of 10.9 µM [47].

Theaflavin (90) attenuates neuroinflammation by reducing pro-inflammatory factors
as IL-6 or TNF-α [47].

2.3.3. Flavones

Several flavones have an inhibitory effect on the pro-inflammatory factors. Apigenin
(29) decreases the production of pro-inflammatory IL-6 and TNF-α through mechanisms
involving STAT1. Further evidence of the anti-inflammatory activity of this flavonoid was
provided in investigations showing reduction in iNOS/NO and PGE2/COX-2 in activated
microglia [47]. Luteolin (34) attenuates IL-6, TNF-α, COX-2 and iNOS gene expression in
activated microglia, and inhibits cytokine-induced neuronal death [47,54,75]. This flavone
inhibits the NO level with an IC50 value of 1.74 µM [76].

Studies in vitro revealed that diosmetin (33) decreases the production of pro-inflammatory
mediators [47] and that scutellarin (91) also decreases the production of pro-inflammatory
mediators as the expression of NF-κB [47]. Wogonin (92) suppresses the activity of NF-κB
and the iNOS expression [75,94]. Baicalein (30) decreases the inflammatory processes and
neuronal death by the inhibition of iNOS/NO [54]. These two flavones (92 and 30) inhibit
the NO level with IC50 values of 45.3 and 66.4 µM, respectively [71].

Considering the isoflavones genistein (2, Figure 3), or daidzein (3, Figure 3), they
possess anti-inflammatory effects against activated microglial cell line inhibiting iNOS and
IL-6 expression [47]. Nine isoflavones, isolated from Iris pseudopmila Tineo, inhibit the NO
level with IC50 values ranging from 23.60 to 98.30 µM, such as: irilone, the 4′,5-dihydroxy-
6,7-methylenedioxyisoflavone (93, 89.70 µM); 4′-O-(β-D-glucopyranosyl)irilone or 4′-O-
(β-D-glucopyranosyl)-5-hydroxy-6,7-methylenedioxyisoflavone (94, 80.10 µM); 4′-O-[β-D-
glucopyranosyl-(1→6)-β-D-glucopyranosyl]irilone or 5-hydroxy-4′-O-[β-D-glucopyranosyl-
(1→6)-β-D-glucopyranosyl]-6,7-methylenedioxyisoflavone (95, 83.60 µM); 4′-O-(β-D

-glucopyranosyl)-7-O-methyltectorigenin or 4′-O-(β-D-glucopyranosyl)-5-hydroxy-6,7
-dimethoxyisoflavone (96, 56.90 µM); 4′-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl]-
7-O-methyltectorigenin or 4′-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl]-5-hydroxy-
6,7-dimethoxyisoflavone (97, 29.40 µM); iridin, the 3′,5-dihydroxy-4′,5′,6-trimethoxy-7-
O-(β-D-glucopyranosyl)isoflavone (98, 67.50 µM); 4′-O-(β-D-glucopyranosyl)irisolone or
4′-O-(β- D-glucopyranosyl)-5-methoxy-6,7-methylenedioxyisoflavone (99, 98.30 µM); 4′-O-[β-D-
glucopyranosyl-(1→6)-β-D-glucopyranosyl]irisolone or 5-methoxy-4′-O-[β-D-glucopyranosyl-
(1→6)-β-D-glucopyranosyl]-6,7-methylenedioxyisoflavone (100, 55.10 µM) and irisolidone,
the 5,7-dihydroxy-4′,6-dimethoxyisoflavone (101, 23.60 µM) [81]. Thus, comparing the IC50
values for 96 (IC50 = 56.90 µM) and 97 (IC50 = 29.40 µM), it is concluded that the presence of
disaccharidyl moiety increases the activity against the NO production. The same occurred
relatively to 99 (IC50 = 98.30 µM) and 100 (IC50 = 55.10 µM) [81].

Glycosilated flavones such as isoorientin (47), isovitexin (44), and 6”-O-(β-D-glucopyranosyl)
isoorientin (102), isolated from Iris pseudopumila Tineo, exhibit inhibitory activity against
NO production with IC50 values of 61.00, 66.70 and 71.90 µM, respectively [81].

Considering biflavonoids such as ginkgetin (63), bilobetin (60), taiwaniaflavone (103)
and amentoflavone (58) they downregulate the expression of COX-2 and iNOS [85].
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2.3.4. Flavonols

Kaempferol (76) is a flavonol that inhibits neuroinflammation by reducing LPS-
induced production of pro-inflammatory mediators in BV2 microglial cells through mech-
anisms involving NF-κB and p38 MAPK [47]. Astragalin, the 3-O-(β-D-glucopyranosyl)
kaempferol (104), isolated from Iris pseudopumila Tineo, exhibits inhibitory activity against
NO production with an IC50 value of 45.20 µM [81].

Quercetin (1), a similar flavonol to kaempferol with an extra hydroxy group at C-
3′ (B ring), reduces iNOS-mediated NO production in LPS-stimulated BV-2 microglia
through mechanisms involving suppression of NF-κB activation [47,53,54]. It lowers the
expression of pro-inflammatory cytokines such as IL-6, TNF-α, IL-1β and COX-2 [47].
Rutin (83) reduces neuroinflammation, downregulating microgliosis and astrocytosis and
reducing the expression of COX-2, IL-6, IL-1β, iNOS and NF-κB [47]. Fisetin is the 3,3′,4′,7-
tetrahydroxyflavone (105), and shows one of the greatest inhibitory effects against NO
production with an IC50 value of 13.5 µM [47]. Considering glycosylated flavonols, icariin
(106) has an anti-inflammatory effect on primary rat microglial cultures activated by LPS.
It reduces the release of NO and PGE2 in a dose dependent manner and down-regulates
the expression of proinflammatory cytokines such as TNF-α, IL-1β and IL-6. Icariin also
inhibites the protein expression of iNOS and COX-2 [96].

These results suggest that flavonoids may exert neuroprotective effects by inhibiting
the activation of microglia which mediates inflammatory processes in the CNS. There is
evidence indicating that flavonoids may act through four mechanisms: inhibition of the
release of cytokines such as IL-1β and TNF-α; inhibition of iNOS induction and subsequent
NO production; inhibition of the activation of NADPH oxidase and subsequent ROS
generation; and downregulation of the activity of pro-inflammatory factors such as NF-
κB [54]. Figure 10 shows the chemical structure of flavonoids 87–106 that inhibit the
pro-inflammatory factors.
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2.4. Inhibition of Acetylcholinesterase (AChE)
2.4.1. Catechins, Flavanones and 3-Hydroxyflavanones

EGCG (4), extracted from the leaves of green tea (Camellia sinensis L.), is a very potent
inhibitor of AChE (IC50 = 9.6 nM) [58] whereas catechin (107) is inactive [97], suggesting
that the hydroxy group at C5′ increases the hydrogen bonding to the enzyme.

Naringenin (6) presents AChE inhibition, with an IC50 of 3.81 µM [60], pinostrobin (8)
is inactive, having an IC50 > 236.79 µM [62], and naringin (85) has an IC50 of 26.40 µM [60],
indicating that activity is increased by the hydroxy group at C4′ and decreased by alkylation
at C7.

From the seeds of Millettia pachycarpa Benth, two compounds were isolated, namely:
dorspoinsettifolin, the 4′-methoxy-6”,6”-dimethyldihydropyrano [2”,3”:7,8]flavanone) (108),
that presents an AChE IC50 of 91.07 µM and 4′-hydroxyisolonchocarpin (4′-hydroxy-6”,6”-
dimethyldihydropyrano [2”,3”:7,8]flavanone) (109), which was inactive, suggesting how
important is for flavanones the methoxy group at C4′ for the AChE inhibition [98].

The glycosylated flavanones didymin (17), prunin (19) and poncirin (18), also present
AChE inhibition with IC50 values of 2.13, 6.31 and 12.96 µM, respectively [59], or hesperidin
(20) with an IC50 of 22.80 µM [66].

Five geranylated flavanones, isolated from Okinawa propolis, exhibit AChE IC50 val-
ues ranging from 7.23 to 15.70 µM, as follows: 6-geranyl-3′,4′,5,7-tetrahydroxyflavan-4-one
(nymphaeol A, 110, 7.77 µM); 2′-geranyl-3′,4′,5,7-tetrahydroxyflavan-4-one (nymphaeol
B, 111, 15.09 µM); 2′-geranyl-3′,4′,5,7-tetrahydroxy-6-(3-methylbut-2-enyl)flavan-4-one
(nymphaeol C, 112, 15.70 µM); 5’-geranyl-3’,4’,5,7-tetrahydroxyflavan-4-one (isonymphaeol
B, 113, 7.23 µM); and (2S)-3′-geranyl-4′,5,7-trihydroxyflavan-4-one (3′-geranylnaringenin,
114, 12.34 µM) [99]. These results might suggest a steric hindrance by the geranyl group
(3,7-dimethylocta-2,6-dienyl) when it is linked to C2′. It should also be highlighted that
pharmacokinetics and toxicological properties determination suggest that these propolis
components might be beneficial in inflammation and AD treatment [99]. From Paulownia
tomentosa Steud. another series of five geranylated flavanones were extracted, exhibiting
AChE inhibition with IC50 range of 22.90 to 316.30 µM as follows: (2R,3R)-6-geranyl-
3′,5,7-trihydroxy-4′-methoxyflavan-4-one (4′-O-methyldiplacone, 115, 92.40 µM); (2R,3R)-6-
geranyl-4′,5,7-trihydroxy-3′-methoxyflavan-4-one (3′-O-methyldiplacone, 116, 109.20 µM);
6-geranyl-3′,5,5′,7-tetrahydroxy-4′-methoxyflavan-4-one (117, 22.90 µM); (2R,3R)-6-geranyl-
4′,5,7-trihydroxyflavan-4-one (mimulone, 118, 91.50 µM); and 6-geranyl-4′,5,7-trihydroxy-
3′,5′-dimethoxyflavan-4-one (119, 316.30 µM) [100]. These results suggest how important is
the presence of two hydroxy groups on ring B for the hydrogen bonding of the flavanone
to the enzyme. From Humulus lupulus L. (hops), three prenylated flavanones were isolated,
namely isoxanthohumol (16), 8-prenilnaringenin or (2S)-4′,5,7-trihydroxy-8-(3-methylbut-
2-en-1-yl)flavan-4-one (120), and 6-prenylnaringenin or 5,7,4′-trihydroxy-6-(3-methylbut-2-
en-1-yl)flavan-4-one (121) that are inactive as inhibitors of AChE [64], suggesting the steric
hinderance of the prenyl group.

From the fruits of Paulownia tomentosa Steud three geranylated 3-hydroxyflavanones
were isolated, namely 4′-O-methyldiplacol or (2R,3R)-6-geraniol-3,3′,5,7-tetrahydroxy-4′-
methoxyflavan-4-one (122), 3′-O-methyldiplacol or (2R,3R)-6-geraniol-3,4′,5,7-tetrahydroxy-
3′-methoxyflavan-4-one (123), and 6-geranyl-3,3′,5,5′,7-pentahydroxy-4′-methoxyflavan-4-
one (124) that inhibit AChE with IC50 values of 31.90, 48.50, and 15.60 µM, respectively [100].
Ampelopsin, the (2R,3R)-3′,4′,5,5′,7-pentahydroxyflavanonol (88), was isolated from Piper
bavinum, and presented an IC50 of 59.47 µM [93]. These results show, once again, how
important is the presence of two hydroxy groups on the ring B for the hydrogen bonding
of the 3-hydroxyflavanone to the enzyme, as well as the presence of the geranyl group at
C6 [100].

Figures 11 and 12 show the chemical structure of flavonoids 107–124 that inhibit AChE
with IC50 values ranging from 7.23 to 316.30 µM, except for compounds 107, 109, 120, and
121 that were inactive.
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2.4.2. Chalcones

From the twigs of Dorstenia barteri, isobavachalcone (2′,4,4′-trihydroxy-3′-prenylchalcone)
(125) and 2′,4′-dihydroxy-3′,6′-dimethoxychalcone (126) were isolated. Both the chal-
cones exhibited AChE inhibition with IC50 values of 18.34 and 20.15 µM, respectively [62].
From Humulus lupulus L six chalcones were isolated, namely: xanthohumol L, the 4′,4,5”-
trihydroxy-2′-methoxy-6”,6”-dimethyldihydropyrano [2”,3”:5′,6′]chalcone (127); xanthohu-
mol I, the (E)-1-[4-hydroxy-2-(2-hydroxypropan-2-yl)-6-methoxy-2,3-dihydro-1-benzofuran-
7-yl]-3-(4-hydroxyphenyl)prop-2-en-1-one) (128); xanthohumol B, the 2′,4,5”-trihydroxy-6′-
methoxy-6”,6”-dimethyldihydropyrano [2”,3”:3′,4′]chalcone) (129); xanthohumol D, the 2′,4,4′-
trihydroxy-3-(2-hydroxybut-3-en-1-yl)-6′-methoxy-chalcone (130); 3-hydroxyxanthohumol or
2′,3,4′-trihydroxy-3′-(4-hidroxy-3-methylbut-2-en-1-yl)-6′-methoxychalcone (131), and xan-
thohumol (25). Only 3-hydroxyxanthohumol (131) and xanthohumol (25) weakly inhibit
AChE with IC50 values of 51.25 and 71.34 µM, respectively. All the other compounds are
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inactive [64]. These results point out the importance of the two hydroxy groups at C2′ and
C4′, as well as the prenyl group at C3′ and the methoxy group at C6′. Figure 13 shows the
chemical structure of chalcones 125–131.
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2.4.3. Flavones

Apigenin (29) and acacetin (31) exhibit AChE inhibition with IC50 values of 34.43 µM
[49] and 50.33 µM [73], respectively, suggesting that for flavones the presence of a methoxy
group at C4′ decreases the AChE inhibition. From the roots of Scutellaria baicalensis (Chinese
Skullcap) was extracted baicalein (30) with an IC50 of 0.61 µM [55]. Wogonin (5,7-dihydroxy-
8-methoxyflavone) (92), also isolated from S. baicalensis, exhibits IC50 value < 10 µM [95],
and luteolin (34) exhibits an IC50 of 9.27 µM [76].

Regarding glycosylated flavones, 7-O-(β-D-glucopyranosyl)apigenin (132), isolated
from Phagnalon saxatile (L.) Cass., is a much weaker inhibitor of AChE (IC50 = 237.74
µM) [101] when comparing with apigenin (29). Baicalin (133), the glycosylated form of
baicalein at C7, exhibits an IC50 value much higher (204.10 µM) [102] than the aglycone
(30). Cynaroside, the 7-O-(β-D-glucopyranosyl)luteolin (134), isolated from Drynariae rhi-
zome [60], 4′-O-(β-D-glucopyranosyl)luteolin (135), isolated from Phagnalon saxatile (L.)
Cass. [101], or veronicastroside (7-O-rutinosyl luteolin) (136) from Veronicastrum sibiricum
var. japonicum [103], present IC50 of 17.13, 147.41 and 6.783.80 µM, respectively. Thus,
these glycosylated luteolins are also weaker inhibitors of AChE than luteolin (34). Even
C-glycosylation of luteolin at C6 and C8 decreases the AChE inhibition, as shown by ori-
entin (46) and isoorientin (47), with IC50 values of 20.06 and 29.48 µM, respectively [76].
These results suggest that flavone glycosylation decreases the AChE inhibition. However,
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7-O-glucosyl-6-hydroxyluteolin (137), isolated from Achillea millefolium, is a remarkable
AChE inhibitor exhibiting an IC50 of 1.65 µM [55], being a more potent inhibitor than
luteolin (34). The substitution of the proton by a hydroxy group at C6 makes the difference.
Thus, 7-O-glucosyl-6-hydroxyluteolin (137) should be compared with baicalein (30) (IC50 =
0.61 µM) [55], showing the usual decrease in AChE inhibition due to the glycosylation. Vi-
olanthin, the 4′,5,7-trihydroxy-6-D-glucosyl-8-L-rhamnosylflavone (138), isolated from Piper
bavinum, exhibiting an IC50 value of 79.80 µM [93], is another example. On the other hand,
baicalin (133), the glycosylated form of baicalein at C7, exhibits an IC50 value much higher
(204.10 µM) [102], suggesting that the AChE inhibition of 7-O-glucosyl-6-hydroxyluteolin
(137) is also due to the hydrogen bonding with the hydroxy groups of C3′ and C4′, as well
as of C6 or, in the case of violanthin, with the hydroxy groups of C4′. The decrease in
activity when acacetin is glycosylated as in 7-O-(β-rhamnosyl)acacetin (139) and 7-O-(β-
glucosyl)acacetin (140), which are inactive [104], and 3-O-[α-L-rhamnopyranosyl-(1→6)-β-
D-glucopyranosyl]acacetin (141), which exhibits an IC50 value of 165.04 µM [105], reinforces
that glycosylation of flavones decreases AChE inhibition. Now, comparing vitexin (43),
which is C-glycosylated apigenin at C8, with isovitexin (44) which is C-glycosylated api-
genin at C6, and swertisin (7-O-methylisovitexin) (142), inhibiting AChE with IC50 values of
12.16, 6.24 [79] and 71.89 µM [106], respectively, it can be assumed that the steric hinderance
of the glycoside is higher when it is linked to C8 of the flavone. Even when a methoxy
group is linked to C8 the hydrogen bonding is weaker. The alkyl-substituted flavones 5′-
geranyl-4′-methoxy-2′,5,7-trihydroxyflavone (143), 5′-geranyl-2′,4′,5,7-tetrahydroxyflavone
(144), morusin (49), cyclomorusin (51), morusinol (52), neocyclomorusin (53) and kuwanon
C, the 2′,4′5,7-tetrahydroxy-3,8-bis(3-methyl-2-buten-1-yl)flavone (48), isolated from the
roots of Morus lhou, present AChE inhibition characterized by IC50 values of 10.95, 16.21,
36.40, 31.69, 173.49, 26.69 and 25.06 µM, respectively [83]. 6,8-Diprenyleriodictyol or
3′,4′,5,7-tetrahydroxy-6,8-bis(3-methylbut-2-en-1-yl)flavone (145) and 6-prenylapigenin or
4′,5,7-trihydroxy-6-(3-methyl-2-buten-1-yl)flavone (146), isolated from the leaves of Poly-
gonum limbatum and the twigs of Dorstenia barteri Bureau var. multiradiata, exhibit IC50
values of 15.03 and 25.73 µM [62], respectively. Thus, the presence of a hydroxy group at
C7 is important for the AChE inhibition. Comparing morusin (49) with morusinol (52), the
structural difference consists in the hydration of the prenyl group linked to C3, producing a
significant decrease in the activity to inhibit AChE. This result implies that hydrophobicity
is important for the inhibition [83].

Considering isoflavones, genistein (2), extracted from the roots of Astragalus mem-
branaceus (Fish.) Bge., exhibits an IC50 value of 167.00 µM, [57], a weaker AChE in-
hibition than the corresponding flavone, apigenin (29) (IC50 = 34.43 µM) [49]. Barbi-
gerone (2′,4′,5′-trimethoxy-6,6-dimethylpyranoisoflavone) (147) and 4′,5′-dimethoxy-6,6-
dimethylpyranoisoflavone (148), isolated from Millettia pachycarpa Benth, exhibit IC50
values of 121.60 and 131.17 µM, respectively, indicating that the loss of one methoxy group
at ring B reduces the AChE inhibition [98].

Figures 14 and 15 show the chemical structure of flavones 132–148 that inhibit AChE
with IC50 values ranging from of 1.65 to 237.74 µM, except for compounds 136, 139 and 140
that were inactive.
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2.4.4. Flavonols

Quercetin (1) exhibits an IC50 value of 19.80 µM [55,56] and 3-methoxyquercetin
(149), isolated from Agrimonia pilosa Ledeb., an IC50 value of 37.90 µM [55,56], being
weaker inhibitors of AChE than the flavone luteolin (IC50 = 9.27 µM) [76]. Galangin (3,5,7-
trihydroxyflavone) (150) [107], tamarixetin (3,3′,5,7-tetrahydroxy-4-methoxyflavone) (151),
isolated from the buds of Cleistocalyx operculatus [86], kaempferol (76) [86], morin (77) [87]
and myricetin (78) [88], exhibit IC50 values of 19.10, 22.30, 30.40, 210.00, and 157.11 µM,
respectively, suggesting that there is a decrease in the AChE inhibition when the number of
hydroxy groups on ring B increases.

Considering glycosylated flavonols, several glycosylated quercetin (1) molecules
were isolated from Gingko biloba namely 3-O-(β-D-glucopyranosyl)quercetin (152), 3-O-(α-
D-glucopyranosyl)quercetin (153), 3-O-[α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-
(1→2)-β-D-glucopyranosyl]quercetin (154), 3-O-[α-L-rhamnopyranosyl-(1→2)-β-D

-glucopyranosyl]quercetin (155), and 3-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl]
quercetin (156) which present IC50 values of 124.73, 171.34, 148.81, 126.95, and 119.74 µM, re-
spectively [105]. Quercitrin, the 3′,4′,5,7-tetrahydroxy-3-(α-L-rhamnopyranosyloxy)flavone
(157), extracted from Agrimonia Pilosa, presents an IC50 value of 66.90 µM [55,56]. Rutin (83),
another glycosylated quercetin, isolated from the leaves of Ouratea fieldingiana, also exhibits
AChE inhibition with an IC50 value of 19.65 µM [91]. Thus, there is a decrease in the AChE
inhibition for glycosylated quercetin molecules comparing with the aglycone. Glycosy-
lated kaempferol (76) molecules as astragalin, the 3-O-(β-D-glucopyranosyl)kaempferol
(104), isolated from Drinariae Rhizome [60], nicotiflorin, the 3-O-(β-D-rutinosyl)kaempferol
(158), isolated from Ouratea fieldingiana leaves [91], or 3-O-[α-L-rhamnopyranosyl-(1→4)-
α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl]kaempferol (159), isolated from Gingko
biloba [105], present IC50 values of 18.24, 15.03, and 137.30 µM, respectively. Thus, gly-
cosylated kaempferol molecules show an increase in AChE inhibitory activity when we
compare them with the aglycone. Glycosylated myricetin (78) molecules were isolated from
Cleistocalix operculatus (Roxb.) Merr and Perry plant, namely 3-O-(β-D-galactopyranosyl)-3′-
O-methylmyricetin (160) or 3-O-(β-D-galactopyranosyl)-3′,5′-di-O-methylmyricetin (161)
with IC50 values of 19.90 and 37.80 µM, respectively [86]. Thus, there is an increase in
AChE inhibition when we compare the aglycone with glycosylated myricetin. These results
suggest that, as the number of hydroxy groups on ring B increases, there is an interaction
between them, not allowing hydrogen bonds with the enzyme. The glycosylated molecule
allows the linkage with the enzyme by hydrogen bonding increasing the AChE inhibition.
However, by steric hinderance multiglycosylated molecules decrease that activity.

Considering prenyl or lavandulyl flavonoids, desmethylanhydroicaritin (81), icaritin
(80), sophoflavescenol (79), and 8-lavandulylkaempferol, the 3,4′,5,7-tetrahydroxy-8-[5-
methyl-2-(prop-1-en-2-yl)hex-4-enyl]flavone (162), isolated from Sophora flavescens, exhibit
AChE inhibition with IC50 values of 6.67, 6.47, 8.37 and 5.16 µM, respectively [89]. Compar-
ing these IC50 values with the one of kaempferol (30.40 µM) [86], it can be concluded that
the prenyl or lavandulyl groups at C8 increase the AChE inhibition.

Figures 16–18 show the chemical structure of flavonols 149–162 that inhibit AChE with
IC50 ranging from 5.16 to 171.34 µM.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 28 of 36 
 

trihydroxyflavone) (150) [107], tamarixetin (3,3′,5,7-tetrahydroxy-4-methoxyflavone) 

(151), isolated from the buds of Cleistocalyx operculatus [86], kaempferol (76) [86], morin 

(77) [87] and myricetin (78) [88], exhibit IC50 values of 19.10, 22.30, 30.40, 210.00, and 157.11 

μM, respectively, suggesting that there is a decrease in the AChE inhibition when the 

number of hydroxy groups on ring B increases. 

Considering glycosylated flavonols, several glycosylated quercetin (1) molecules 

were isolated from Gingko biloba namely 3-O-(β-D-glucopyranosyl)quercetin (152), 3-O-(α-

D-glucopyranosyl)quercetin (153), 3-O-[α-L-rhamnopyranosyl-(1→4)-α-L-

rhamnopyranosyl-(1→2)-β-D-glucopyranosyl]quercetin (154), 3-O-[α-L-

rhamnopyranosyl-(1→2)-β-D-glucopyranosyl]quercetin (155), and 3-O-[α-L-

rhamnopyranosyl-(1→6)-β-D-glucopyranosyl]quercetin (156) which present IC50 values of 

124.73, 171.34, 148.81, 126.95, and 119.74 μM, respectively [105]. Quercitrin, the 3′,4′,5,7-

tetrahydroxy-3-(α-L-rhamnopyranosyloxy)flavone (157), extracted from Agrimonia Pilosa, 

presents an IC50 value of 66.90 μM [55,56]. Rutin (83), another glycosylated quercetin, 

isolated from the leaves of Ouratea fieldingiana, also exhibits AChE inhibition with an IC50 

value of 19.65 μM [91]. Thus, there is a decrease in the AChE inhibition for glycosylated 

quercetin molecules comparing with the aglycone. Glycosylated kaempferol (76) 

molecules as astragalin, the 3-O-(β-D-glucopyranosyl)kaempferol (104), isolated from 

Drinariae Rhizome [60], nicotiflorin, the 3-O-(β-D-rutinosyl)kaempferol (158), isolated from 

Ouratea fieldingiana leaves [91], or 3-O-[α-L-rhamnopyranosyl-(1→4)-α-L-

rhamnopyranosyl-(1→6)-β-D-glucopyranosyl]kaempferol (159), isolated from Gingko 

biloba [105], present IC50 values of 18.24, 15.03, and 137.30 μM, respectively. Thus, 

glycosylated kaempferol molecules show an increase in AChE inhibitory activity when 

we compare them with the aglycone. Glycosylated myricetin (78) molecules were isolated 

from Cleistocalix operculatus (Roxb.) Merr and Perry plant, namely 3-O-(β-D-

galactopyranosyl)-3′-O-methylmyricetin (160) or 3-O-(β-D-galactopyranosyl)-3′,5′-di-O-

methylmyricetin (161) with IC50 values of 19.90 and 37.80 μM, respectively [86]. Thus, 

there is an increase in AChE inhibition when we compare the aglycone with glycosylated 

myricetin. These results suggest that, as the number of hydroxy groups on ring B 

increases, there is an interaction between them, not allowing hydrogen bonds with the 

enzyme. The glycosylated molecule allows the linkage with the enzyme by hydrogen 

bonding increasing the AChE inhibition. However, by steric hinderance 

multiglycosylated molecules decrease that activity. 

Considering prenyl or lavandulyl flavonoids, desmethylanhydroicaritin (81), icaritin 

(80), sophoflavescenol (79), and 8-lavandulylkaempferol, the 3,4′,5,7-tetrahydroxy-8-[5-

methyl-2-(prop-1-en-2-yl)hex-4-enyl]flavone (162), isolated from Sophora flavescens, 

exhibit AChE inhibition with IC50 values of 6.67, 6.47, 8.37 and 5.16 μM, respectively [89]. 

Comparing these IC50 values with the one of kaempferol (30.40 μM) [86], it can be 

concluded that the prenyl or lavandulyl groups at C8 increase the AChE inhibition. 

Figures 16–18 show the chemical structure of flavonols 149–162 that inhibit AChE 

with IC50 ranging from 5.16 to 171.34 µM. 

 

Figure 16. Structure of flavonols 149–151 that inhibit AChE. Figure 16. Structure of flavonols 149–151 that inhibit AChE.



Appl. Sci. 2023, 13, 4651 28 of 35Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 36 
 

 

Figure 17. Structure of glycosylated flavonols 152–161 that inhibit AChE. Legend: Glu–

glucopyranosyl, Rha–Rhamnopyranosyl and Rut–rutinosyl. 

 

Figure 18. Structure of lavandulylflavonol 162 that inhibits AChE. 

3. Conclusions 

Nowadays, 139 flavonoids, from natural sources, demonstrated as potential anti-AD 

agents: 4 (2.8%) flavanols, 30 (21.6%) flavanones, 4 (2.8%) 3-hydroxyflavanones, 10 (7.2%) 

chalcones and dihydrochalcones, 52 (37.4%) flavones, 13 (9.5%) isoflavones, and 26 

(18.7%) flavonols. Considering flavones and flavonols, a total of 78 (56.1%) flavonoids 

active against AD was achieved. They are characterized by a 𝜋 system with various 

conjugated double bonds, and the molecule is stabilized in a planar configuration. The 

flavonoids discussed in this review exhibit LogP values ranging from −2.16 to 7.26, 

suggesting their potential to cross the BBB [112]. 

The most active flavonoid extracted from natural sources against BACE1 is rutin, the 

3′,4′,5,7-tetrahydroxy-3-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]flavone 

(83), a glycosylated flavonol. On its scaffold it bears hydroxy groups on C5, C7 (on ring 

A) and on C3′ and C4′ (on ring B), as well as, linked to the oxygen of C3 α-L-

rhamnopyranosyl-(1→6)-β-D-glucopyranoside group, which allows formation of several 

hydrogen bonding. The difference of activity against BACE1 between myricetin (78) (IC50 

= 2.40 µM) and rutin (83) (IC50 = 0.004 µM) shows, for the increase in BACE1 inhibition, 

how significant is the bond between the oxygen at C3 with a group that allows several 

hydrogen bonds as α-rhamnopyranosyl-(1→6)-β-D-glucopyranoside. It should also be 

highlighted that the two hydroxy groups on ring B are in the ortho position, showing the 

importance of these two hydroxy groups for hydrophilic interactions. Interestingly, the 

most active compounds against BACE1 of each group of flavonoids contain always on 

their scaffold three hydroxy substituents, one at C5 (or C2′ for chalcones), another at C7 

(or C4′ for chalcones) and the last one at C4′ (or C4 for chalcones) as: (-)-epigallocatechin 

(5) belonging to the catechins’ group; sophoroflavanone G (9), kurarinone (10), and 

selagintriflavonoid A (22) in the flavanones’ group; phlorizin (28), representative of the 

dihydrochalcones’ group; and kuwanon C (48), amentoflavone (58), sequoiaflavone (59), 

Figure 17. Structure of glycosylated flavonols 152–161 that inhibit AChE. Legend: Glu–
glucopyranosyl, Rha–Rhamnopyranosyl and Rut–rutinosyl.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 36 
 

 

Figure 17. Structure of glycosylated flavonols 152–161 that inhibit AChE. Legend: Glu–

glucopyranosyl, Rha–Rhamnopyranosyl and Rut–rutinosyl. 

 

Figure 18. Structure of lavandulylflavonol 162 that inhibits AChE. 

3. Conclusions 

Nowadays, 139 flavonoids, from natural sources, demonstrated as potential anti-AD 

agents: 4 (2.8%) flavanols, 30 (21.6%) flavanones, 4 (2.8%) 3-hydroxyflavanones, 10 (7.2%) 

chalcones and dihydrochalcones, 52 (37.4%) flavones, 13 (9.5%) isoflavones, and 26 

(18.7%) flavonols. Considering flavones and flavonols, a total of 78 (56.1%) flavonoids 

active against AD was achieved. They are characterized by a 𝜋 system with various 

conjugated double bonds, and the molecule is stabilized in a planar configuration. The 

flavonoids discussed in this review exhibit LogP values ranging from −2.16 to 7.26, 

suggesting their potential to cross the BBB [112]. 

The most active flavonoid extracted from natural sources against BACE1 is rutin, the 

3′,4′,5,7-tetrahydroxy-3-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]flavone 

(83), a glycosylated flavonol. On its scaffold it bears hydroxy groups on C5, C7 (on ring 

A) and on C3′ and C4′ (on ring B), as well as, linked to the oxygen of C3 α-L-

rhamnopyranosyl-(1→6)-β-D-glucopyranoside group, which allows formation of several 

hydrogen bonding. The difference of activity against BACE1 between myricetin (78) (IC50 

= 2.40 µM) and rutin (83) (IC50 = 0.004 µM) shows, for the increase in BACE1 inhibition, 

how significant is the bond between the oxygen at C3 with a group that allows several 

hydrogen bonds as α-rhamnopyranosyl-(1→6)-β-D-glucopyranoside. It should also be 

highlighted that the two hydroxy groups on ring B are in the ortho position, showing the 

importance of these two hydroxy groups for hydrophilic interactions. Interestingly, the 

most active compounds against BACE1 of each group of flavonoids contain always on 

their scaffold three hydroxy substituents, one at C5 (or C2′ for chalcones), another at C7 

(or C4′ for chalcones) and the last one at C4′ (or C4 for chalcones) as: (-)-epigallocatechin 

(5) belonging to the catechins’ group; sophoroflavanone G (9), kurarinone (10), and 

selagintriflavonoid A (22) in the flavanones’ group; phlorizin (28), representative of the 

dihydrochalcones’ group; and kuwanon C (48), amentoflavone (58), sequoiaflavone (59), 

Figure 18. Structure of lavandulylflavonol 162 that inhibits AChE.

3. Conclusions

Nowadays, 139 flavonoids, from natural sources, demonstrated as potential anti-AD
agents: 4 (2.8%) flavanols, 30 (21.6%) flavanones, 4 (2.8%) 3-hydroxyflavanones, 10 (7.2%)
chalcones and dihydrochalcones, 52 (37.4%) flavones, 13 (9.5%) isoflavones, and 26 (18.7%)
flavonols. Considering flavones and flavonols, a total of 78 (56.1%) flavonoids active against
AD was achieved. They are characterized by a π system with various conjugated double
bonds, and the molecule is stabilized in a planar configuration. The flavonoids discussed
in this review exhibit LogP values ranging from −2.16 to 7.26, suggesting their potential to
cross the BBB [112].

The most active flavonoid extracted from natural sources against BACE1 is rutin,
the 3′,4′,5,7-tetrahydroxy-3-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]flavone
(83), a glycosylated flavonol. On its scaffold it bears hydroxy groups on C5, C7 (on ring A)
and on C3′ and C4′ (on ring B), as well as, linked to the oxygen of C3 α-L-rhamnopyranosyl-
(1→6)-β-D-glucopyranoside group, which allows formation of several hydrogen bonding.
The difference of activity against BACE1 between myricetin (78) (IC50 = 2.40 µM) and
rutin (83) (IC50 = 0.004 µM) shows, for the increase in BACE1 inhibition, how significant is
the bond between the oxygen at C3 with a group that allows several hydrogen bonds as
α-rhamnopyranosyl-(1→6)-β-D-glucopyranoside. It should also be highlighted that the
two hydroxy groups on ring B are in the ortho position, showing the importance of these
two hydroxy groups for hydrophilic interactions. Interestingly, the most active compounds
against BACE1 of each group of flavonoids contain always on their scaffold three hydroxy
substituents, one at C5 (or C2′ for chalcones), another at C7 (or C4′ for chalcones) and
the last one at C4′ (or C4 for chalcones) as: (−)-epigallocatechin (5) belonging to the
catechins’ group; sophoroflavanone G (9), kurarinone (10), and selagintriflavonoid A (22)
in the flavanones’ group; phlorizin (28), representative of the dihydrochalcones’ group;
and kuwanon C (48), amentoflavone (58), sequoiaflavone (59), podocarpusflavone A (62),
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2,3-dihydroamentoflavone (74), myricetin (78), or desmethylanhydroicaritin (81), which
are members of the flavone and flavonol groups.

Luteolin (34), a flavone, presents the highest activity against the enzyme GSK-3β (IC50
= 1.51 µM). This flavonoid also bears on its scaffold hydroxy groups on C5 and C7 (on
ring A) and on C3′ and C4′ (on ring B). Glycosylation on ring A, as on isovitexin (44),
orientin (46), or isoorientin (47) decreases the inhibition of GSK-3β, suggesting that side
bulky group substitutions on the ring A of the flavonoid scaffold affect the GSK-3β activity
in a significant manner, decreasing the interactions between the enzyme and inhibitors. It
should also be noticed that flavonols bearing on its scaffold hydroxy groups on C5 and
C7 (on ring A) and on C4′ (on ring B), such as kaempferol (76) (IC50 = 3.47 µM), present a
decrease in the inhibition of GSK-3β. However, quercetin (1) (IC50 = 2.00 µM), with hydroxy
groups at C3 and at C3′, C4′ C5 and C7 presents an inhibition of the same magnitude of
luteolin (34).

The chalcone butein (89) exhibits one of the greatest inhibitory effects against NO
production, one of the pro-inflammatory factors, with an IC50 value of 10.90 µM. It is
interesting to note that this molecule, although not having the scaffold of flavones, allows
also that the π system is extended as there is an increase in two more conjugated double
bonds, and the molecule will be stabilized in a planar configuration. On the other hand, it
bears hydroxy groups on C3 (the corresponding C3′ of flavones), C4 (the corresponding
C4′ of flavones), C2′ (the corresponding C5 of flavones) and C4′ (the corresponding C7 of
flavones). The inhibition of production of NO increases from isovitexin (44) to isoorientin
(47), suggesting the importance of having on the ring B hydroxy groups at C4′, and another
one in the position ortho to it. Finally, the flavonol fisetin (105) with hydroxy groups on C3,
C3′, C4′ and C7 presents an IC50 against NO production of 13.5 µM, suggesting that the
closure of ring C with an oxygen on it is important for the inhibition of NO production.
The flavonol quercetin (1) with hydroxy groups on C3, C3′, C4′, C5, and C7 has the ring
C closed and has one more hydroxy group at C5 when compared with fisetin (105). In
conclusion, quercetin (1) should be the flavonoid with the highest activity against NO
production when compared to fisetin (105) by presenting a hydroxy group at C5. When
compared with butein (89), quercetin presents the ring C closed by an atom of oxygen, thus
favoring an increase in the hydrogen bonding.

When considering the natural flavonoids which inhibit AChE, EGCG, the (2R,3R)-
3′,4′,5,5′,7-pentahydroxyflavan-3-yl 3,4,5-trihydroxybenzoate (4), extracted from the leaves
of green tea (Camellia sinensis L.), is the most active flavonoid against AChE (IC50 = 9.6 nM).

Although for the other enzymes the scaffold of a flavonol is the most active one, for
inhibiting AChE the more active scaffold is the one presented by catechins. It is interesting
that, even for this different scaffold, the presence of hydroxy groups at C5 and C7 and at
C3′, C4′ and C5′ increases the inhibition of AChE.

The results herein reported only concern the interaction of one flavonoid with the
active site of one enzyme. However, as described above, AD has multiple pathogenic
factors which may work together through interaction between genetic, molecular and
cellular events. Thus, one possible successful strategy might be the use of MTDLs, that is
to say, using a multitarget therapy. MTDLs is a therapy where only one active ingredient
is administered [113], and so there is no risk of interaction between drugs, as in the case
of mixing several compounds. Additionally, the prevision of pharmacokinetic and phar-
macodynamics properties is simplified as there is only one single compound. Analyzing
the scaffold of the several isolated flavonoids, which inhibit one of the mechanisms of AD,
it is concluded that all the described mechanisms—Aβ plaques, NFTs, pro-inflammatory
factors and AChE—are inhibited mostly by flavonoids with a planar core.

Even, for the AChE inhibition, nevertheless not being as planar as the scaffolds for
flavone or flavonols, the catechin one presents two rings (A and B) which are completely
planar. Ring C is a ring with three carbon atoms in a sp3 hybridization, and an oxygen atom.
So, it is not as planar as rings A and B. The data obtained suggest that the AChE site adjusts
better to a molecule with this scaffold. All these data suggest that a biflavonoid where
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two moieties, one from 3,3′,4′,5,7-pentadroxyflavone linked by C3 to the C3 of the other
moiety, (2R,3R)-3′,4′,5,5′,7-pentahydroxyflavan-3-yl, i.e., linking quercetin (1) to EGCG (4).
The linkage between the two C3 should be made directly or through a hydrophilic group
(X), such as α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (163) (Figure 19). However,
as quercetin (1) presents a value of logP of 1.48 and EGCG (4) of 0.64, and have all the
characteristics to be considered orally active compounds [114,115], a combination therapy,
using a drug cocktail of the two compounds might be more advantageous [116].
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Considering the other flavonoids already isolated from natural sources, MTDL flavonoids
inhibiting several pathways causing AD should be identified. As the pathways interact
among them, future research should focus not only on identifying flavonoids that are active
against only one, but on several pathways, encouraging researchers to follow this trend in
their investigations, as well as to incorporate the bioavailability and metabolism of MTDL
flavonoids into experimental design throughout all stages of pre-clinical research [117].
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