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Abstract: Phishing is an online threat where an attacker impersonates an authentic and trustworthy
organization to obtain sensitive information from a victim. One example of such is trolling, which
has long been considered a problem. However, recent advances in phishing detection, such as
machine learning-based methods, have assisted in combatting these attacks. Therefore, this paper
develops and compares four models for investigating the efficiency of using machine learning to
detect phishing domains. It also compares the most accurate model of the four with existing solutions
in the literature. These models were developed using artificial neural networks (ANNs), support
vector machines (SVMs), decision trees (DTs), and random forest (RF) techniques. Moreover, the
uniform resource locator’s (URL’s) UCI phishing domains dataset is used as a benchmark to evaluate
the models. Our findings show that the model based on the random forest technique is the most
accurate of the other four techniques and outperforms other solutions in the literature.

Keywords: phishing detection; machine learning; phishing domains; artificial neural networks;
support vector machine; decision tree; random forest

1. Introduction

Phishing is an online crime that tries to trick unsuspecting users into exposing their
sensitive (and valuable) personal information. This can include usernames, passwords,
financial account details, login credentials, personal addresses, and social relationships,
which the attacker then uses for malicious purposes, such as identity theft. Phishing is
usually perpetrated by a hacker disguising themself as a trustworthy entity, an effect
achieved by combining both social engineering and technical tricks.

Phishing domains are one type of attack. These domains obtain sensitive information
without authorization, either through blackmail or by directing users to a fake website
that looks similar to a real one. Both then request personal information. Security breaches
occur when users enter their private data into these sites, as the assailant now has personal
information that may be used to commit identity theft.

Most financial and government institutions have improved their direct internet offer-
ings to combat potential security breaches such as phishing domains. However, as services
on the Internet continue to grow, so has the public’s reliance on online services. Despite
the risks that phishing attacks pose, online shopping, banking, and bill payment have all
become popular in the United States and developed European countries. Successful phish-
ing attempts have had an impact on global finances, raising the risk for both clients and
businesses and further increasing the need for protection online. The process of defending
cyberspace against threats such as phishing is known as cybersecurity [1–3]. Protecting
internet-connected resources from cyber-attacks is cybersecurity’s main goal [4–6].

Cybersecurity is becoming increasingly complicated as cyber-attacks become more
complex and more frequent, making it difficult to recognize, assess, and handle signif-
icant risk events. The Anti-Phishing Working Group (APWG) discovered more than
51,000 distinct phishing websites. According to the Rivest–Shamir–Adleman (RSA) analy-
sis, phishing attacks cost global enterprises $9 billion in 2016 [7]. Over one million phishing
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attacks were listed in 2016, a 65% increase from the previous year [8]. The frequency of
these attacks erodes consumers’ trust in social works, such as webpages.

There are various types of web fraud [9], and phishing websites are a common entry
point for online social engineering attempts. To start, the hacker creates a webpage by
impersonating a reputable website. They then send these fishy URLs to potential victims
via spam chats, messages, or social media sites, hoping that unsuspecting users will believe
it is a real URL [10]. If users enter their personal information (bank account numbers,
government savings numbers, and so on) at the link sent by the hacker, that data will
be compromised.

There are a lot of strategies to combat phishing [11]. Artificial intelligence (AI) has
had a huge impact on almost every industry, including cybersecurity because AI can
detect spam, phishing, spear phishing, and other assaults using past attacks in the form
of datasets.

This paper develops and compares the effectiveness of machine learning (ML) classifi-
cation models in detecting phishing domains. The goal is to improve detection by using
the most accurate model of the four to predict if a webpage is a phish or legal. A phished
domain is difficult to analyze and comprehend since it involves social and technical issues
for which there is no one-size-fits-all analysis. As a result, all phishing domain causes and
features were analyzed quantitatively and qualitatively to determine where to focus the
model to better decrease the danger arising from a visit to a phishing website, particularly
regarding consumer trust.

The rest of this paper is organized as follows: Section 2 reviews the latest research on
phishing attacks. The data used, and the solutions based on ML classifiers are presented in
Section 3. The proposed model architecture is presented in Section 4. Section 5 includes
the results and evaluation of the proposed model. Finally, Section 6 presents the paper’s
conclusion and directions for future work.

2. Background

Common machine learning classification techniques have proven efficient in phishing
domain detection, including the following:

2.1. Decision Tree

A decision tree helps individuals make better decisions via a tree-like graph or model-
ing of alternatives and their possible implications, such as likely outcomes, resource costs,
and utility. It is one strategy of many to demonstrate an algorithm completely made up
of conditional control statements [12]. Decision trees are frequently used to analyze the
underlying relationships in big datasets. The decision tree’s goal is to observe a process;
by doing this, researchers can utilize its attributes, allowing it to be assigned to a certain
class, as shown in Figure 1, which shows a training algorithm that creates the structure of
such a decision tree. After its construction, a decision tree may be used to assess further
samples with variable degrees of success, depending on how well it represents the dataset.
The success rate is determined by several aspects, including the size of the dataset used to
create the tree, the class-wise overlapping of variable observations, the algorithm used to
build the tree, and the usage of extra methods to enhance tree development.

The root node is the starting point of the decision tree (also known as the parent node).
It represents the full dataset, which is then split into two or more homogenous groups, also
called child nodes. These eventually lead to the leaf nodes, which are the tree’s final output,
after which no further splits are possible. Splitting is the process of separating the root
node into sub-nodes based on the conditions specified. A branch/sub-tree is a tree that has
been created by splitting a larger tree. Pruning is the removal of unwanted branches.
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Figure 1. Decision tree algorithm [13].

2.2. Random Forest

Random forest is an ensemble of supervised learning algorithms for classification
and regression used in predictive modeling and machine learning techniques [14]. The
random forest has attracted the attention of academics because of its speed and accuracy
in categorization. It gathers the results and predictions of several decision trees to choose
the best output: the mode of the classes (the value that appears most often in the decision
tree results) or mean prediction. Random forest splits the dataset into two sections: the
training set and the test set. It then randomly selects multiple samples from the training set.
Next, the researcher uses the decision tree for each sample, which divides each selection
into two daughters using best division. Thereafter, users must repeat the last step to vote
for each prediction result and select the most voted prediction as the final result. The main
hyper-parameters in the random forest are used to either increase the predictive power of
the model or to make the model faster [15]. In this context, a higher number of trees can
increase the performance as well as make the predictions more stable, but it also increases
the processing time. The employment of a maximum number of features, in addition to a
minimum number of leaves, may improve algorithm performance.

Once the training step is completed, the model can be applied to a test dataset. This
procedure allows for the estimation of predictions and then for the comparison of the results
against the expected values [16]. Figure 2 shows how each tree is responsible for producing
a distinct output after being fed an independent random sample vector. The random forest
is used for its error generalization technique, and the random forest’s accuracy improves
as the forest grows in size. After randomly picking the features for the error rate, the
accuracy is entirely dependent on the correlation between the trees. The random forest’s
characteristics might be created by tracking the error and correlation between nodes. As a
consequence, the relevance of a variable can be measured [17].
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2.3. Support Vector Machine

SVM is a supervised learning method based on statistical learning theory utilized for
pattern identification and regression. Statistical learning theory can pinpoint the factors
needed to successfully learn specific, easy algorithms; real-world applications frequently
require more complicated tools and algorithms (such as neural networks), which are much
more difficult to analyze theoretically. SVMs are the meeting point of learning theory and
practice. They create models that are both complicated (including a huge class of neural
networks, for example) and simple enough to be mathematically examined. This is because
an SVM is a linear algorithm in a high-dimensional space [19]. As shown in Figure 3,
SVM predicts labels by generating a decision boundary, such as a hyperplane, between
two specified classes with a minimum of one label. The data points and support vectors
are handled by the hyperplane. It takes advantage of the distance between data points to
categorize each class independently.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 19 
 

 
Figure 3. Support vector machine [20]. 

Previous research has demonstrated that the hyperplane with the greatest margin of 
separation between the two classes offers the highest generalization performance [21]. The 
best hyperplane is found by solving a convex optimization problem involving the mini-
mization of a quadratic function under linear inequality constraints. The answer may be 
expressed in terms of support vectors, which are a subset of the training instances. Sup-
port vectors include all the information required to solve a classification issue since the 
result will remain the same even if all other vectors are removed. 

2.4. Ensemble Classification Techniques 
Building a fair model from a dataset is one of the main goals of machine learning 

algorithms. Learning, or training, is the process of developing models from data, and the 
learned model is referred to as a hypothesis or learner. Ensemble methods learn algo-
rithms that create a set of classifiers and then use their predictions to put new data points 
into categories [22]. 

Ensembles are far more accurate than the individual classifiers that make them up. 
Ensemble methods, also known as committee-based learning or learning multiple classi-
fier systems, are used to train numerous hypotheses to solve a problem. Random forest 
trees are a common form of ensemble modeling in which many decision trees are utilized 
to predict outcomes. Figure 4 shows a general ensemble architecture [23]. 

An ensemble is made up of numerous hypotheses or learners that are produced from 
training data using a basic learning method. Most ensemble methods produce homoge-
neous base learners or homogeneous ensembles using a single-based learning algorithm, 
but some approaches use multiple learning algorithms to build heterogeneous ensembles. 
The ability of ensemble approaches to enhance weak learners is well established. Below 
are three major types of meta-algorithms that are regularly used in ensemble approaches 
[23]. 

2.4.1. Bagging 
Bagging, or bootstrap aggregation, is a powerful, effective, and simple ensemble 

method [24]. The method uses bootstrapping to sample several copies of a training set. It 
may be applied with any form of classification or regression model, as demonstrated in 
Figure 4. Bagging works well with nonlinear models that are unstable. 

 
 
 
 
 
 

Figure 3. Support vector machine [20].

Previous research has demonstrated that the hyperplane with the greatest margin
of separation between the two classes offers the highest generalization performance [21].
The best hyperplane is found by solving a convex optimization problem involving the
minimization of a quadratic function under linear inequality constraints. The answer may
be expressed in terms of support vectors, which are a subset of the training instances.
Support vectors include all the information required to solve a classification issue since the
result will remain the same even if all other vectors are removed.

2.4. Ensemble Classification Techniques

Building a fair model from a dataset is one of the main goals of machine learning
algorithms. Learning, or training, is the process of developing models from data, and the
learned model is referred to as a hypothesis or learner. Ensemble methods learn algorithms
that create a set of classifiers and then use their predictions to put new data points into
categories [22].

Ensembles are far more accurate than the individual classifiers that make them up.
Ensemble methods, also known as committee-based learning or learning multiple classifier
systems, are used to train numerous hypotheses to solve a problem. Random forest trees
are a common form of ensemble modeling in which many decision trees are utilized to
predict outcomes. Figure 4 shows a general ensemble architecture [23].

An ensemble is made up of numerous hypotheses or learners that are produced from
training data using a basic learning method. Most ensemble methods produce homoge-
neous base learners or homogeneous ensembles using a single-based learning algorithm,
but some approaches use multiple learning algorithms to build heterogeneous ensembles.
The ability of ensemble approaches to enhance weak learners is well established. Below are
three major types of meta-algorithms that are regularly used in ensemble approaches [23].



Appl. Sci. 2023, 13, 4649 5 of 16

2.4.1. Bagging

Bagging, or bootstrap aggregation, is a powerful, effective, and simple ensemble
method [24]. The method uses bootstrapping to sample several copies of a training set. It
may be applied with any form of classification or regression model, as demonstrated in
Figure 4. Bagging works well with nonlinear models that are unstable.
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2.4.2. Boosting

Boosting is a meta-algorithm that can be thought of as a method of model averag-
ing [26]. It is the most popular ensemble approach, as well as one of the most effective
learning concepts. This method was created for classification, but it can also be applied to
regression. The original boosting algorithm created a strong learner by combining three
weak learners.

2.4.3. Stacking

Stacking is the process of integrating numerous classifiers created by various learning
algorithms into a single dataset of feature vector pairs and their classifications [27]. A set of
base-level classifiers is constructed in the first phase, and a meta-level classifier is trained
in the second phase, as shown in Figure 5.
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2.5. Ensemble Classification Techniques

A neural network (NN) is a mathematical model that mimics the behavior of biological
neurons and the nervous system. ANNs utilize technological solutions to imitate the archi-
tecture and functions of the neural system of human brains [29]. They use neural network
topologies to represent physical systems in this way. McCulloch and Pitts introduced the
ANN theory for the first time in [30]. ANNs are appropriate for addressing the mapping is-
sue from one dataset to another when they have strong nonlinear mapping capabilities [31].
ANNs can be categorized into two types of signal transmission modes: feedforward and
feedback neural networks, each of which has a distinct framework. Feedback neural net-
works play a significant role in AI; however, they have only been used in a few applications
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due to solid waste concerns. In the application of biosorption capacity, several researchers
compared the models of feedforward neural networks such as multilayer perception ANNs
and feedback neural networks, which found that feedforward neural networks had lower
prediction errors than feedback neural networks [32].

In a multilayer feedforward neural network, neurons in one layer communicate with
those in the next layer through various weighted linkages. There are three kinds of neuron
layers: input, hidden, and output. The neurons in the input layer receive external data,
such as from sensory receivers; the neurons in the hidden layer imitate a biological neural
network to transmit that data, and the neurons in the output layer offer a judgment output.
Although several hidden layers are feasible, typically, only one hidden layer is employed,
especially with small sample sizes. Neurons only link between layers, not inside them. In a
feedforward neural network, signals can only go one direction, from input to output [33].
ANNs have been extensively employed in numerous activities, including environmental
difficulties and even solid waste-related issues, due to these simplifications.

Complex systems and correlations in labeled data are recognized using these models.
Deep neural networks (DNNs) are more complicated neural networks with hidden layers
that conduct much more complex functions than basic sigmoid or ReLU activations [34].
The architecture of a deep learning model is shown in Figure 6.
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3. Related Work

Users, overall, tend to overlook a website’s URL. This makes them more likely to fall
prey to a phishing domain, which might otherwise be avoided by determining whether
a URL is authentic. Unfortunately, traditional methods for detecting phishing attacks
have limited accuracy and can only detect roughly 20% of attempts. ML techniques for
phishing detection produce better results, but they are time-consuming, even on small
databases, and they are not scalable. Furthermore, heuristics-based phish detection has a
significant false-positive rate. Previous research on anti-phishing models has concentrated
on strategies to modify efficiency. Even so, feature reduction and the use of an ensemble
model can improve these models’ accuracy even further.

For phishing domain detection, machine learning algorithms are prevalent, and using
them has become a straightforward categorization problem. The data at hand must have
properties relevant to phishing and legitimate website classes to build an ML-based detec-
tion model. Previous works have shown that when robust machine-learning approaches
are utilized, detection accuracy is high. To reduce features, a variety of feature selection
strategies are applied.

To train a machine learning model to predict phishing attacks versus legal traffic,
a batch of data is given as the input. Dataset visualization becomes more efficient and
intelligible when characteristics are reduced. The DT, C4.5, k-NN, and SVM algorithms are
the most important classifiers; they have been utilized in numerous research projects, and
they have detected phishing attacks with the greatest accuracy and efficiency. According
to the empirical experiment’s findings, manual parameter adjustment, protracted training
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periods, and poor detection accuracy are prevalent problems with modern deep learning
systems [36].

Despite these benefits, researchers have noted the limits of their studies. Many pointed
out that ensemble learning techniques have not been applied and that feature selection
and reduction have not been performed. A range of strategies has been applied to combat
phishing attacks. One paper [37] used different classifiers, such as naive Bayes and SVM.
Similarly, the authors in [38] utilized random forest to differentiate phishing attacks from
normal websites.

Subasi et al. [17] reported that their proposed classifiers were extremely effective at
classifying phishing websites. They reported that random forest was the most accurate
classifier, at 97.26%.

The authors of [39] proposed a paper concentrating on feature selection in phishing
websites. They sorted the characteristics into six groups using the UCI dataset, which has
more than 11,000 URLs and 30 characteristics. They chose three groups and decided that
these were the best solutions for detecting phishing attacks accurately.

Patil et al. [40] suggested three strategies for detecting phishing websites. The first
entailed assessing various URL attributes; the second determined the validity of the website
by determining where it was hosted and who managed it; and the third method determined
the authenticity of the website through visual, appearance-based analysis. They used ML
methodologies and algorithms to assess the numerous aspects of the URLs and websites.

Joshi et al. [41] used a binary classifier based on an RF algorithm and a feature selection
algorithm based on the reliefF algorithm. They utilized data from the Mendeley domain
as the source for their feature selection algorithm. They then used the selected features to
train an RF algorithm to predict phishing attacks.

The work of Ubing et al. [42] employed three ensemble learning strategies: bagging,
boosting, and stacking. Their dataset had 30 characteristics and 5126 records in the result
column. The data comes from UCI, which is open to the public. They integrated their
classifiers to achieve the highest level of accuracy possible from a DT.

The authors of [43] suggested a new method based on both URLs as inputs and HTML-
related data. After the features were extracted, a stacking strategy merged the learners. The
researchers then ran tests on a variety of datasets, including 2000 webpages taken from
Phishtank (1000 legitimate and 1000 phishing sites). The second dataset came from Alexa
and contained nearly 50,000 websites. To improve their accuracy, they used SVMs, NNs,
DT, and RF, which they combined through stacking. This study obtained a high level of
accuracy using a variety of classifiers.

The authors of [44] looked at how stacking techniques could be used to identify
phishing websites. The goal of these tests was to enhance precision metrics using PCA and
stacking the most efficient classifiers. Other classifiers using proposed features N1 and N2
outperformed stacking (RF, NN, stowing). The tests were carried out using datasets from
phishing websites. With 11,055 web pages, the dataset had 32 preprocessed characteristics.

Another strategy is the extra-tree base classifier utilized by the authors of [45], who
used it to classify several meta models: AdaBoost, bagging, rotation forest, and LogitBoost-
Extra Tree. The suggested models outperformed current ML-based phishing attack detec-
tion models, and, as a result, the authors recommended using meta-algorithms to create
phishing attack detection models.

To improve the detection of phishing websites, the authors of [46] suggested a phish-
ing detection model based on a particle swarm optimization (PSO) algorithm. Their
proposed method used PSO to weigh distinct websites, resulting in increased accuracy for
classifying abnormal phishing websites. PSO weighting distinguishes different aspects
of a website, considering how important they are in detecting phishing from legitimate
websites. According to the findings, their proposed PSO-based component weighting
improved the ML model’s ability to recognize and monitor both phishing and legitimate
websites individually.



Appl. Sci. 2023, 13, 4649 8 of 16

The authors of [47] employed an evolutionary neuro-fuzzy intelligence system-based
resilient approach with integrated features to identify and guard against phishing attacks.

The authors of [48] introduced the PhishBench benchmarking structure, which permits
researchers to evaluate the characteristics of phishing attacks and fully comprehend dif-
ferent evaluation circumstances, unified framework specifications, data, machine learning
algorithms, and evaluation metrics. When the proportion of phishing and authentic traffic
fell from one to 10, the classification execution was reduced. In terms of the F1 score, the
drop in execution ranged from 5.9% to 42%.

An intelligent phishing website identification method was proposed by Subasi and
Kremic [49]. They used proprietary machine learning approaches to differentiate phishing
websites. Several classifier approaches were applied to create a reliable and intelligent
phishing detection system. The performances of their ML approaches were evaluated
using ROC area, F-measure, and AUC. With a 97.61% accuracy, Adaboost with SVM
outperformed all other classification approaches.

Alternatively, Mao et al. [50] developed a learning-based technique for determining
page design comparability, which might be utilized to identify phishing attack pages. They
built a phishing classifier using dual ML algorithms, a support vector machine, and a
decision tree for effective page layout aspects. They used genuine website page testing
from phishtank.com and alexa.com to validate their methodology.

Tyagi et al. [51] employed a dataset from the University of California at Irvine’s
machine learning repository, which had 2456 unique URLs and more than 11,000 URLs,
with 6157 phishing and 4898 normal URL. They took 30 characteristics from the URLs and
utilized them to forecast attacks. They employed DT, RF, gradient boosting, generalized
linear, and PCA as machine learning techniques.

Chen and Chen [52] employed the SMOTE approach to increase their model’s detection
coverage. They trained machine learning models such as bagging, RF, and XGboost. The
XGboost approach, which they proposed, yielded the maximum accuracy. They utilized the
Phishtank database, which contained over 24,000 phishing and 4000 legitimate websites.

Alternatively, Abdelhamid et al. [53] developed a model content and feature compari-
son to detect attacks. They used a PhishTank dataset with approximately 11,000 samples.
They utilized a technique called enhanced dynamic rule induction, which they said was
the first machine learning and deep learning algorithm to be used as an anti-phishing tool.
With two major threshold frequencies and rule strength, this algorithm passed datasets.
Only “strong” characteristics were stored in the training dataset, and these features became
part of the rule, while others were eliminated.

A study by Jain and Gupta [54] tested two databases. Their model was more accurate
on Phishtank, which has over 1500 phishing URLs, followed by Openphish, which has over
600 phishing URLs and 1600 real URLs, as well as 66 valid URLs and 252 legal URLs. They
enhanced phishing detection accuracy using machine learning methods such as RF, SVM,
NN, logistic regression (LR), and NB. On the client side, they employed a successful feature
extraction approach.

Lakshmi et al. [55] suggested a novel method for detecting phishing websites by
looking for hyperlinks in the source code of the corresponding website’s HTML page. The
suggested method employed a feature vector with 30 parameters to detect malicious online
pages. These characteristics were used to train a supervised DNN model with an Adam
optimizer to distinguish between fraudulent and legitimate websites. To do so, the model
employed a listwise process. When compared to other traditional ML algorithms such as
SVM, Adaboost, and AdaRank, the proposed model outperformed the others, with a 96%
accuracy rate.

Table 1 presents the summary of ML approaches for phishing website detection. The
next table shows that some studies provide highly efficient results using ML for phishing
attack detection.
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Table 1. Comparison table of the latest research focusing on machine learning phishing
detection techniques.

Model Dataset Algorithm Accuracy

James et al. [37] URLs IBK, SVM, NB 89.75%

Subasi et al. [17] website ANN, KNN, RF, SVM, C4.5, RF 97.36%

Mao et al. [50] Websites SVM, RF, DT, AB 93%

Tyagi et al. [51] URLs DT, RF, GBM 98.40%

Chen and Chen [52] websites ELM, SVM, LR, C4.5, LC-ELM,
KNN, XGB 99.2%

Joshi et al. [41] Websites RF 97.63%

Ubing et al. [42] UCI Ensemble bagging,
boosting, stacking 95.4%

Sahingoz et al. [56] Websites SVM, DT, RF, KNN, KS, NB 97.98%

Abdelhamid et al. [53] URLs eDRI 93.5%

Patil et al. [40] URLs LR, DT, RF 96.58%

Jain and Gupta [54] Websites RF 99.57%

Jagadeesan et al. [57] URLs RF, SVM 95.11%

Niranjan et al. [58] Websites RC, kNN, IBK, LR, PART 97.3%

Chiew et al. [59] URLs RF, C4.5, PART,
SVM, NB 96.17%

Pandey et al. [60] Websites SVM, RF 94%

Ali and Ahmed [61] Websites Genetic algorithm (GA) + DNN 89.50%

Aljofey et al. [62] Websites CNN 95.02%

Shie [63] Websites Convolutional auto encoder + DNN 89.00%

Maurya and Jain [64] Websites PSL 1 + PART 99.30%

Wang et al. [65] Websites RNN + CNN 95.79%

Lakshmi et al. [55] UCI DNN +Adam 96.00%

Li et al. [43] URLs GBDT, XGBoost and LightGBM 98.60%

Yang et al. [66] Websites Auto encoder + NIOSELM 94.60%

Anupam and Arpan [67] Websites Grey wolf optimizer + SVM 90.38%

4. Methodology

Utilizing the UCI dataset, four phishing detection models were developed using ANN,
SVM, DTs, and RF algorithms. The MinMax normalization feature was employed as a
preprocessing strategy to improve the models' accuracy. The proposed models were able to
detect different types of attacks from the UCI dataset.The following subsections discuss the
dataset used and implemented algorithms; Sections 4.1 and 4.2, respectfully.

4.1. Dataset Used: UCI Phishing Websites

Standard datasets already exist for the development of phishing website detection
algorithms. Other studies classified websites to establish a list of legitimate and phishing
sites for further consideration. This work, on the other hand, utilizes the freely accessible
phishing dataset from UCI machine learning repository that can be found in [68], and
was prepared by [69]. This dataset was created to build machine learning-based phishing
website detection algorithms. It is comprised of extensive properties that span four distinct
categories [70]. They designed and extracted characteristics from the following categories:
Address Bar, HTML and JavaScript, Abnormal, and Domain. This study was performed
using a phishing domain dataset with 31 attributes that can either take a binary or ternary
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value. This dataset has 11,055 records, and each record includes 31 characteristics. The
characteristics of the collection are identified by names, such as URL Length, Submitting to
Email, Shortening Service, Abnormal URL, Having an At Symbol, and Redirect.

4.2. Implemented Algorithm

To increase accuracy, this paper utilized the MinMax normalization feature as a prepro-
cessing step in each proposed model. Normalization is a useful strategy for improving the
accuracy of machine learning models, and it is required for some models to work properly.
The MinMax normalization technique in the suggested model compresses the data to a do-
main of [0, 1], which improves the model training input quality (see Equations (1) and (2)).

X_std = (X − X.min)/(X.max − X.min) (1)

X_scalar = X_std × (max − min) + min (2)

To enhance the model performance and complexities, we used a data normalization
strategy, as shown in Table 2. The algorithm selects significant aspects from the initial
dataset by determining the prediction outcome, which is performed by filtering it through
30 features. The UCI dataset is split 80/20 into training and testing sets, respectively, by
using c5-fold cross-validation, which presented the best performance in the latest research.
The prediction model is then taught using machine learning, which employs various
learning models. This is particularly useful for making predictions, as utilizing many
models ensures that the results are not biased toward a single model. To account for this,
we present the results of all the models combined and totaled to establish their maximum
accuracies. If most of the models indicate that a domain is phishing, then the model’s
prediction accuracy confirms that the domain is a phishing attempt.

Table 2. The performance results before and after using the normalization technique.

Classifier Before Use Normalization After Use Normalization

SVM

Accuracy: 94.46
Precision: 93.64

Recall: 96.62
F1-measure: 95.10

Accuracy: 94.66
Precision: 93.9

Recall: 96.6
F1-measure: 95.3

ANN

Accuracy: 95.5
Precision: 95.6

Recall: 96.3
F1-measure: 96

Accuracy: 96.2
Precision: 96
Recall: 97.2

F1-measure: 96.6

RF

Accuracy: 96.86
Precision: 96.56

Recall: 97.84
F1-measure: 97.20

Accuracy: 97.3
Precision: 96.9
Recall: 98.62

F1-measure: 97.6

DT

Accuracy: 95.4
Precision: 95.8

Recall: 95.9
F1-measure: 95.8

Accuracy: 96.3
Precision: 96.5

Recall: 96.8
F1-measure: 96.7

5. Model’s Flowchart

Phishing is a concern to many individuals. However, existing methods, such as
browser security indicators, cannot detect phishing websites. Due to the limits of current
technology, users must evaluate whether a URL is phishing or not on their own. As a
result, an automated technique for phishing website identification should be explored for
increased cyber safety. This study shows how an implemented feature extraction approach
and a prediction model based on a random forest classifier help increase the likelihood that
a user will correctly identify a phishing website.
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Each of the developed models, as shown in Figure 7, employs a feature selection
technique to increase its accuracy. The data analysis heat map picks those that are most
crucial in affecting the forecasted result by filtering the most interesting features out of the
original dataset. As a result, irrelevant features have no effect on the model’s efficiency
or prediction.
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A summary of models’ flowchart steps follows:

1. Read the URL’s UCI phishing websites dataset.
2. Check the data features.
3. Check the proposed data types.
4. Clean missing values from the data.
5. Split the data into training and testing sets.
6. Train the model using four machine-learning techniques: RF, SVM, DT, and ANN.
7. Evaluate the model’s performance to estimate the accuracy and calculate the accuracy results.
8. Select the best model as the final model.

6. Findings and Analysis

To identify the most accurate machine learning model for detecting phishing domains,
this paper employed an experimental approach using four ML techniques: SVM, ANN,
RF, and DT. With a total of 11,055 data instances, the UCI dataset was utilized for exper-
imentation. Thirty features were used for evaluating the dataset, and the 31st feature
was used as the output. Table 3 displays the outcomes of the simulation with the true
positive rate (TPR), false positive rate (FPR), true negative rate (TNR), and false negative
rate. Moreover, a five-fold cross-validation method was employed for the classification
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procedure. The 10-fold cross-validation approach was used to locate a greater performance
accuracy dataset. Cross-validation is a predictive performance model evaluation technique
used to check a machine-learning algorithm’s performance in generating predictions on
newer data on which it has not been trained. The examination of the confusion matrix is
the basis for the classification technique’s result performance.

Table 3. Evaluation results and parameters used of the proposed classifiers.

Classifier Parameters TPR TNR

SVM Kernel function = rbf 0.92 0.96

ANN Iterations = 500, Activation = Relu,
Optimizer = Adam 0.94 0.96

RF Trees = 100, Creation = gini 0.96 0.98

DT Criterion = gini, Splitter = best 0.95 0.96

The results are shown in Table 4. The RF model provided the highest detection
accuracy rate at 97%, followed by DT at 96%, ANNs at 95%, and SVM at 94%. Figure 8
depicts these results. Finally, Table 5 compares the RF model to the state-of-the-art results
in the literature.

Table 4. Evaluation results in (%).

Classifier Accuracy Precision Recall F1-Measure

SVM 94.66 93.9 96.6 95.3

ANN 95.5 95.6 96.3 96

RF 97.3 96.9 98.2 97.6

DT 96.3 96.5 96.8 96.7
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Table 5 lists other research dealing with phishing attacks and crucial information about
different machine-learning techniques. Three solutions based on ensemble learning, includ-
ing the bagging, boosting, and stacking methods, were developed by Ubing et al. [42]. They
combined their classifiers to attain a 95.4% accuracy rate in their results. Lakshmi et al. [55]
proposed a new method for detecting phishing websites by scanning the source code of
the related website’s HTML page for linkages. They achieved a 96% accuracy rate. The
researchers in [71] suggested three meta-learner models using ForestPA; the suggested
meta-learners are efficient, according to their experimental data, with the lowest accuracy



Appl. Sci. 2023, 13, 4649 13 of 16

at 97.4%. The accuracy values in this paper vary from 0.95 to 0.97%, except for Alsariera
et al. [71], who got 97.4%, but this model takes longer to train and implement than RF and
DT classifiers.

Table 5. Examining existing phishing domain detection model.

Schemes Dataset Algorithm Accuracy

Ubing et al. [42] UCI Ensemble bagging, boosting, stacking 95.4%

Alsariera et al. [71] UCI ForestPA-PWDM, Bagged-ForestPA-PWDM,
and Adab-ForestPA-PWDM

96.26%
96.5%
97.4%

Lakshmi et al. [55] UCI DNN +Adam 96.00%

Random Forest Model UCI Random Forest 97.3%

7. Conclusions and Future Works

In this work, we investigated the practicality and the efficiency of using machine
learning for phishing detection. We developed four machine learning models based on
artificial neural networks (ANNs), support vector machines (SVMs), decision trees (DTs),
and random forest (RF) techniques. We then selected the most outperforming model of
the fours and compared its performance with other solutions in the literature. The overall
results show random forest (RF) model achieved the highest performance and outperforms
other schemes in the literature.

Future work includes examining more machine learning algorithm techniques for
phishing domains.
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