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Abstract: In the digital era, smart-home users face growing threats from cyberattacks that threaten
their privacy and security. Hence, it is essential for smart-home users to prioritize cybersecurity
education and training to secure their homes. Despite this, the high cost of such training often
presents a barrier to widespread adoption and accessibility. This study aims to analyze the costs
and benefits associated with various cybersecurity investment strategies for smart-home users in
the context of cyberattacks. The study utilizes evolutionary game theory to model a game com-
prised of three populations: smart-home users, stakeholders, and attackers. We derive and an-
alyze the replicator dynamics of this game to determine the evolutionarily stable strategy (ESS).
Furthermore, we investigate the impacts of the costs and benefits of cybersecurity investment and
cyberattack costs on the ESS. The findings indicate that incurring costs for cybersecurity training is
beneficial for smart-home users to protect their homes and families. However, the training costs must
be low and affordable for smart-home users in order to ensure their participation and engagement.
Additionally, providing rewards for commitment to cybersecurity is crucial in sustaining interest and
investment over the long term. To promote cybersecurity awareness and training for smart-home
users, governments can incorporate it as a priority in national cybersecurity plans, provide subsidies
for training costs, and incentivize good cybersecurity practices.

Keywords: cybersecurity investment; cost–benefit analysis; evolutionary game theory; replicator
dynamics; smart-home users

1. Introduction

Smart homes—houses that mainly incorporate internet-of-things (IoT) devices (e.g.,
smart meters, smart fridges, and smart speakers) that collect various data and perform
autonomous tasks to improve the quality of life at home through remote control and
monitoring via the internet—are one of the fastest-growing markets, with worldwide
revenue of USD 115.7 billion in 2022 expected to increase to USD 222.9 billion by 2027 [1].
The users of smart homes are of all age groups, i.e., children, adults, and senior citizens,
who may face cybersecurity literacy issues leading to human errors and data breaches. This
security vulnerability exposes both users and their smart homes to potential cyberattacks.
Indeed, existing research [2] seems to agree that the human factor plays a critical role in
cybersecurity breaches.

Previous studies investigating home users have shown a need for cybersecurity train-
ing. Furnell, Bryant, and Phippen [3] reported that home users lack deep knowledge about
cybersecurity. Similarly, Furnell, Tsaganidi, and Phippen [4] reported a need for automatic
safeguards to protect home users. Moreover, Łukasz and Potyrała [5] demonstrated the
low competence of parents in handling the risks of the digital world. It is well known
that user awareness of security countermeasures directly influences information system
misuse [6]. Thus, cybersecurity awareness education is a solution that can empower smart-
home users by providing them with the knowledge and skills required to reduce the success
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rate of cyberattacks in smart homes that exploit human vulnerabilities. However, the fi-
nancial costs of cybersecurity education programs are a crucial constraint [7]. For example,
Morrison, Coventry, and Briggs [8] revealed that older adults might not engage in security
behaviors because they believe that the costs of cybersecurity outweigh the benefits and do
not want to do something wrong due to limited skills.

Solving the problem of the costs of cybersecurity training is necessary for home users who
have limited resources for daily life expenditures. Many studies have investigated the costs
and benefits of cybersecurity education training. For example, Zhang et al. [9] conducted a
cost–benefit analysis of cybersecurity awareness training programs to determine a company’s
optimal degree of security. Unfortunately, previous research has not considered trainees’
perspectives and constraints. Additional cost–benefit analyses are needed to examine the
typical case of smart-home users. By demonstrating that cybersecurity training can provide
tangible benefits to smart-home users, they can be motivated to engage in cybersecurity
training and security behaviors at home.

To determine whether it is worthwhile for smart-home users to invest in cyberse-
curity, in this work we analyze smart-home environments, including many IoT devices,
smart-home users, and multiple stakeholders (e.g., manufacturers) subject to cyberattacks.
As mentioned in [10], attackers have a wide range of interests and potential targets in a
dynamic and complex smart-home environment. We adopt evolutionary game theory
(EGT) to model realistic attack scenarios based on direct attacks and supply chain attacks,
which are indirect attacks in which an attacker compromises a part or parts of a supply
chain in order to reach and compromise its primary target. We analyze the costs and
benefits of the decision-making of three populations, i.e., smart-home users, smart-home
stakeholders, and attackers, with regard to smart-home security.

Previous research has used formal methods to address cybersecurity issues in IoT-
based smart environments. For example, Krichen and Alroobaea [11] used attack trees
to represent attack scenarios on IoT systems and transformed a given attack tree into
a network of priced timed automata to test the security of IoT systems. Tabrizi and
Pattabiraman used model checking to automatically analyze and identify possible attacks
on smart-home devices known as smart meters [12]. Similarly, Kumar et al. [13] used model
checking to address authentication, anonymity, and integrity in a smart-home environment.
In addition to these formal methods, EGT can be used to analyze decision-making in
smart environments.

The choice of EGT in the present study is motivated by its effectiveness in studying
the decision-making of large populations of agents who repeatedly engage in strategic
interactions [14]. Similar formal methods, such as classical game theory and agent-based
modeling, have limitations when modeling the evolution of populations over time. Classical
game theory assumes that all players are rational and make decisions based only on their
payouts, which is often unrealistic in real-world scenarios. While agent-based modeling
can be used to simulate the behavior of individual agents and their interactions with each
other and the environment, it may not capture the strategic interactions between agents
as effectively as EGT. In contrast, EGT focuses specifically on strategic interactions among
agents and describes the outcomes of these interactions as payoff distributions.

Using EGT, we can examine how the different costs and benefits of cybersecurity
investment influence the behavior of smart-home users and stakeholders as well as how
attackers might adapt to these changes. EGT allows us to study the evolution of different
strategies and their effects on the population over time, which is important for understand-
ing how to design effective cybersecurity measures. Several previous studies have used
EGT to study cybersecurity issues, demonstrating its effectiveness and relevance in this field.
For example, Tosh et al. [15] used EGT to examine a Cybersecurity Information Exchange
(CYBEX) framework, while Abass et al. [16] used EGT to analyze advanced persistent
threats. These studies highlight the value of EGT in addressing cybersecurity challenges
and advancing our understanding of how strategic interactions shape the evolution of
populations over time.



Appl. Sci. 2023, 13, 4645 3 of 28

This journal paper is an extended version of our earlier conference paper [17].
That paper used a classical game-theoretic approach to analyze the security investment
costs and benefits of smart-home users. In that paper, we studied a game based on agents
and analyzed the pure and mixed Nash equilibria of a four-player game comprising three
types of smart-home users (i.e., adults, children, and senior citizens) along with an attacker.
In the present journal paper, we focus on a population game to investigate the evolution
of agents’ strategy choices on a large scale and over time. We propose an asymmetric
non-cooperative game describing the strategic sets of three populations: smart-home users,
manufacturers (an instance of smart-home stakeholders), and attackers. Figure 1 illustrates
our proposed approach, outlining our investigation of the evolutionarily stable strategy
(ESS) and the properties of the evolutionary dynamics in the game. Additionally, we
analyze the impacts of cybersecurity investment costs, benefits, and cyberattack costs on
the ESS.

Smart-home users
(Population 1)

Smart-home stakeholders, e.g., manufacturers
(Population 2)

Attackers
(Population 3)

Population 1’s strategies Population 2’s strategies Population 3’s strategies

Costs Benefits Costs Benefits

Population 1’s 
payoff function

Population 2’s 
payoff function

Population 3’s 
payoff function

Payoff matrix for 
the proposed game

Replicator dynamics

Evolutionary Stable Strategy 
(ESS)

Costs Benefits

Analyzing the impacts of cybersecurity investment 
costs, benefits, and cyberattack costs on the ESS

4-dimensional phase portraits 
by state combinations 

Conditions for asymptotic 
stability

Figure 1. Flowchart of the proposed approach.

Contributions

The major contributions of the present journal paper are:

• Modeling the competition between cybersecurity investment and cyberattacks as a
non-cooperative game among three populations: smart-home users, manufacturers,
and attackers.

• Deriving the replicator dynamics of these three populations using EGT, analyzing the
Nash equilibrium solutions of the proposed evolutionary game model, and identifying
the conditions for asymptotic stability of equilibrium solutions.

• Validating our theoretical results using four-dimensional phase portraits with state
combinations and plotting the evolution of population fractions to confirm the exis-
tence of a unique ESS in the proposed game.

• Analyzing and discussing the numerical results of the proposed game by investigating
the impacts of costs and benefits of cybersecurity investment and cyberattack costs on
the ESS.
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We organize the remainder of the paper as follows: Section 2 presents the research
background; Section 3 explains the proposed game model and illustrates the payoff matrix;
Section 4 derives replicator dynamic equations and identifies the ESS; Section 5 presents the
numerical results; Section 6 discusses the findings of the paper; finally, Section 7 concludes
the work.

2. Related Work

This section presents related works in three subsections. Section 2.1 presents previous
articles that have covered cybersecurity awareness for home users, Section 2.2 describes
works that have used a game-theoretic approach to analyze security investment costs and
benefits, and Section 2.3 introduces the background of evolutionary game theory.

2.1. Cybersecurity Awareness for Home Users

In the present paper, we differentiate home users from smart-home users. We consider
home users as conventional internet users who use internet services through terminals (e.g.,
desktops, laptops, smartphones, and tablets) in the home. Smart-home users, on the other
hand, are new-generation users who, in addition to internet services, use and remotely control
IoT devices (e.g., smart thermostats, smart speakers) through terminals and voice commands
to improve their comfort and quality of life at home.

The issue of home users’ awareness of cybersecurity best practices is not new in itself.
The first research dates back to the early 2000s with the accessibility of the internet and
computers in the home. In 2007, Furnell, Bryant, and Phippen [3] investigated the security
perceptions of internet users in the home using a survey of 415 home users. They found
that home users, especially novice internet users, lacked deep knowledge regarding how to
protect themselves and were not aware of initiatives that might help them. In 2008, Furnell,
Tsaganidi, and Phippen [4] confirmed this finding in an additional investigation based on
detailed interviews with 20 novice internet users. Moreover, the study revealed that safe-
guards should automatically be provided for home users. To this end, in 2010, Kritzinger
and von Solm [18] proposed a theoretical e-awareness model that forces home users to
absorb the required awareness content before venturing out into cyberspace in order to
empower them with a better understanding of security risks and how to avoid threats. In
2012, Howe et al. [19] analyzed the psychology of security for home users. They reported
that when home users do not understand the various security threats, they are sometimes
unwilling or unable to incur the costs of defending against threats. An effective way to
raise home user awareness of threats is to engage them in cybersecurity awareness training.
In 2017, Alotaibi, Clarke, and Furnell [20] reviewed the existing security awareness tools
for home users in terms of their timeliness, mechanisms, and effectiveness. They reported
a need to implement a holistic information security management system that is easy to un-
derstand and not time-consuming in order to raise information security awareness among
home users.

In 2019, Aldawood and Skinner [7] studied the challenges of implementing training
and awareness programs targeting cybersecurity social engineering. They reported that the
economic aspect of cybersecurity training was another challenge to consider. This finding
corroborated the conclusions of Ricci, Breitinger, and Baggili [21], who surveyed 233 parents
and reported that many did not want to spend money on cybersecurity education even
though they were concerned about their children’s safety and security from cyberattacks.
In 2021, Łukasz and Potyrała [5] examined the level of knowledge and literacy held by
514 parents of primary school students. They reported that the majority of parents tended
to overestimate their digital literacy level and had low cybersecurity skills. In addition,
Morrison, Coventry, and Briggs [8] showed in 2021 that older adults, i.e., senior citizens,
believed that the costs of cybersecurity training outweigh the benefits and did not want to
engage in cybersecurity education.

The literature reveals that the cybersecurity literacy of children, adults, and senior
citizens appears to be low. Despite this, home users are not willing to spend money on
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cybersecurity education. Considering that smart-home users are even more at risk of
cyberattacks because of security flaws in IoT devices, Douha et al. [17] analyzed the costs
and benefits of cybersecurity awareness training for smart-home users. The authors used
game theory to model the strategy choices of four agents: a child, an adult, and a senior
citizen, each living in a smart home, and an attacker. They found that it is beneficial for
smart-home users to incur costs to protect their homes and families against the threat of
cyberattacks. One limitation of this study was the small number of agents and the static
nature of the model. On the one hand, the results did not reflect the strategic choices of the
smart-home users’ population dynamic as a whole, only a sample of three agents living in
a smart home. On the other hand, as an individual’s choices may change over time, it is
necessary to conduct a new study using evolutionary game theory to analyze the costs and
benefits of cybersecurity education over time for the smart-home user population.

Finally, a recent review paper published in 2022 on home users’ perspectives of security
and privacy uncovered several research gaps [22]. The authors emphasized the need to
take into account various interconnected home devices, the co-existence of diverse home
user groups, and other stakeholders in future studies. We consider these aspects in our
game theory-based approach.

2.2. Game-Theoretic Approaches for Cybersecurity Investment

Decisions about information technology (IT) security investment often involve weigh-
ing the costs and benefits. Thus, one might consider decision theory as an essential support
for this purpose. However, Cavusoglu et al. [23] showed that game-theoretic approaches
are more suitable than traditional decision-theoretic approaches regarding IT security in-
vestments, especially when considering that attackers are strategic. On the other hand,
Douha et al. [24] presented an overview of potential cyberattacks on a smart home. Attack-
ers can exploit different entry points, such as smart-home networks, IoT devices, mobile
apps, and human vulnerabilities; thus, attackers are supposed to be strategic when plan-
ning to attack a smart home. This supports the idea that a game-theoretic approach can
address the research problem addressed in our work.

Anna Nagurney and Ladimer Nagurney [25] presented a game model that deter-
mines optimal product transactions and cybersecurity investments for sellers competing
to maximize their expected profits. Their model incorporates the preferences of buyers
through demand price functions, which depend on product demand and the average level
of security in the marketplace. Furthermore, Nagurney et al. [26,27] proposed supply
chain network game theory models based on retailers and demand markets. However,
their models do not account for attackers, a critical aspect in attack–defense models that is
necessary for evaluating the costs and benefits of cybersecurity investment.

Tosh et al. [28] proposed a sequential game model that involves three players: orga-
nization, attacker, and insurer. The authors used backward induction to determine the
subgame perfect equilibrium and analyze the optimal self-defense investment strategy for
organizations, the optimal attack rate for the adversary, and the optimal coverage level
for insurers through numerical results. However, the proposed game assumes that each
player is aware of the moves of other players, which may not be realistic in a real-world
smart-home environment where users may not know if IoT devices available on the market
are secure or if they are being targeted by attackers. This incomplete information can limit
the effectiveness of the game model in capturing real-world scenarios. Therefore, in the
present paper, we use a simultaneous game model to address this limitation.

Hyder and Govindarasu [29] proposed a game-theoretic approach for optimizing
cybersecurity investment strategies in a smart grid. Their system model focuses on the
costs of both attackers and defenders, with attackers seeking to minimize their costs while
maximizing the costs of defenders, and vice versa for defenders. However, the authors
did not include benefit parameters in their model, which are critical for evaluating the
significance of cybersecurity investment. Therefore, our proposed model builds upon their
framework by studying a non-cooperative game that analyzes both the costs and benefits



Appl. Sci. 2023, 13, 4645 6 of 28

of attackers and defenders in the smart-home environment. Furthermore, we investigate
the evolution of strategic choices by agents on a large scale and over time. This model
extension contributes to a more comprehensive understanding of the strategic behavior of
agents in cybersecurity investment decision-making.

Sun et al. [30] utilized evolutionary game theory to investigate information security
investments in the mobile electronic commerce industry chain. They introduced a penalty
parameter to discourage organizations from not investing in IT security, and showed that
regulating such a parameter could encourage information security investments. In contrast,
our study proposes a different approach that imposes higher costs of cyberattacks on
populations that do not invest in cybersecurity, while offering a reward parameter for those
who do. Although a recent study [17] used a similar approach, it only considered a static
game model without analyzing the evolution of players’ strategies over time. To address
this limitation, our study uses an evolutionary game theory-based model to explore the
dynamics of strategic behaviors over time, providing a deeper understanding of decision-
making processes regarding cybersecurity investment in a smart-home environment.

2.3. Evolutionary Game Theory

Evolutionary game theory (EGT) was developed following the work of John Maynard
Smith [31,32], with the aim of adapting the traditional game-theoretic approaches [33,34],
in which players are assumed to be rational, to study natural biological selection. This in-
vestigation led to the development of the concept of “evolutionarily stable strategies” (ESS)
to explain the existence of ritual conflicts between animals. In a game model comprising
populations of individuals adopting different strategies and competing against each other,
an ESS is a strategy that cannot be bettered (or invaded) by any other existing strategy
that everybody else in the population chooses. The ESS describes the stability of the game
dynamics over time. Note that this dynamic is often described using replicator dynam-
ics [35]. Therefore, in the present study we derive and analyze the replicator dynamics of
our proposed evolutionary game in order to identify the ESS.

While numerous previous studies have investigated cybersecurity challenges using
evolutionary games, most have not focused on the central problem that our paper ad-
dresses. For example, Tosh et al. [15] examined a Cybersecurity Information Exchange
(CYBEX) framework using an EGT-based approach to determine the condition under which
players’ self-enforced evolutionary stability (i.e., ESS) can be achieved. Abass et al. [16]
analyzed the stability of defense and attack strategies in an evolutionary game based on the
replicator dynamics criteria and identified the locally asymptotically stable points of the
game. Sun et al. [30] used an EGT-based approach for cybersecurity investment, although
they proposed a symmetric game and did not provide numerical results for their study.

Table 1 compares our study with previous research in the field. We note that the
existing literature mainly focuses on the security of traditional internet users in their homes.
However, with the increasing use of modern technologies such as IoT devices, the possibility
of security breaches in smart homes is on the rise. There is a gap in the existing literature,
as previous studies have not thoroughly explored the issue of cybersecurity investments
for smart-home users. This motivates us to use an evolutionary game-theoretic approach
to analyze the costs and benefits of cybersecurity investment over time for smart-home
users in order to encourage them to invest in cybersecurity measures necessary to defend
themselves against potential cyberattacks.
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Table 1. Comparison between the present study and related works.

Year Reference (Internet-Based)
Home Users

(IoT-Based)
Smart-Home

Users

Cybersecurity
Investment Approach

Evolutionary
Game

Analysis

2007
Furnell, Bryant,

and
Phippen [3]

Yes No No Empirical study of home
users (survey) No

2008
Furnell,

Tsaganidi, and
Phippen [4]

Yes No No Empirical study of home
users (interview) No

2008 Sun et al. [30] No No Yes
Game model using
two-organization
symmetric game

Yes, but no
numerical

results

2010 Kritzinger and
von Solm [18] Yes No No Theoretical e-awareness

model No

2012 Howe et al. [19] Yes No No

Literature review of
factors that influence
security decisions of

home users

No

2015

Anna
Nagurney and

Ladimer
Nagurney [25]

No No Yes Game model using
buyers and sellers No

2015 Nagurney et al.
[26] No No Yes

Supply chain
network game

model using retailers and
demand markets

No

2017
Alotaibi,

Clarke, and
Furnell [20]

Yes No No
Reviewing the existing

security awareness tools
for home users

No

2017 Nagurney et al. [27] No No Yes

Supply chain network
game model using

retailers and demand
markets with nonlinear

budget constraints

No

2017 Tosh et al. [28] No No Yes
Sequential game model

using organizations,
attackers, and insurers

No

2019
Ricci,

Breitinger, and
Baggili [21]

Yes No Yes Empirical study of
parents (survey) No

2020
Hyder and

Govindarasu
[29]

No No Yes Game model using
attackers and defenders No

2021 Łukasz and
Potyrała [5] Yes No No Empirical study of

parents (survey) No

2021
Morrison,

Coventry, and
Briggs [8]

Yes No Yes Empirical study of older
adults (interview) No

2021 Douha et al. [17] Yes Yes Yes

Game model using an
attacker and three

categories of
smart-home users

No
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Table 1. Cont.

Year Reference (Internet-Based)
Home Users

(IoT-Based)
Smart-Home

Users

Cybersecurity
Investment Approach

Evolutionary
Game

Analysis

2022 Pattnaik, Li,
and Nurse [22] Yes Yes No

Literature review of user
perspectives on security
and privacy in a home

networking environment

No

2023 This work Yes Yes Yes
Game model using
three-population
asymmetric game

Yes

3. Proposed Game Model

This section introduces our game model in three subsections; Section 3.1 describes
the system, Section 3.2 defines the parameters of the game, and Section 3.3 presents the
payoff matrix.

3.1. System Model

Our system comprises three populations: smart-home users (population1), manufactur-
ers (population2), and attackers (population3). Figure 2 illustrates our system. Population1
uses the IoT devices (e.g., IP cameras, smart speakers, and smartwatches) manufactured by
population2 for conveniences such as house physical security, entertainment, and health-
care. The rise of cyberattacks on IoT devices may lead population1 to invest in cybersecurity
awareness training to learn how to protect IoT devices from cyberattacks and adopt good
cybersecurity hygiene at home.

Recent cyberattacks have shown that manufacturing is among the most targeted indus-
tries. The IBM Security X-Force Threat Intelligence Index 2022 reported that manufacturing
was the most attacked industry in 2021 [36]. It is worth noting that manufacturers do not
always implement security best practices due to the effects of supply chain pressures and
delays and the high costs of security. Thus, we consider that population2 may comply with
security best practices and implement them for smart-home devices.

Regarding attackers, they may gain interest in compromising smart homes for various
motives, such as accessing private information, using IoT-based home devices to execute Dis-
tributed Denial-of-Service (DDoS) attacks, and the absence of resistance, such as that provided
by a dedicated cybersecurity team. We consider that population3’s attacks may target supply
chains that include manufacturers (i.e., population2). As a result, population3 may deceive
population1 indirectly through the exploitation of IoT device vulnerabilities. Furthermore,
population3 may discern that population1 is not aware of security countermeasures, such as
changing default passwords, using multi-factor authentication, or recognizing and avoiding
phishing links, which may provide various entry points. Thus, population3 may succeed in
deceiving population1 directly, for instance through social engineering.

The proposed system model is designed to address the unique security challenges of
smart-home environments. In such environments, IoT devices are prevalent and susceptible
to many attacks, partly because manufacturers may produce insecure IoT devices in order
to reduce production costs. Moreover, users may lack extensive knowledge of cybersecurity
best practices, thereby making smart homes even more vulnerable to cybersecurity threats.
As a result, the proposed system aims to enhance the security of smart homes by promoting
investments in cybersecurity to mitigate the risks posed by insecure IoT devices, human
factors, and other vulnerabilities.
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Population3Population2

Population1

Population3

A direct attack (A1)

A supply chain attack (A2)

Sale of smart-home devices

––X–– No attack (A0)

Population1

––X––
Population1––X––

Population2

Population2

Population3

Figure 2. Illustration of the proposed system model.

3.2. Game Modeling

This subsection presents the parameters used to describe the proposed game, as shown
in Table 2.

Table 2. List of parameters used in the proposed evolutionary game model.

Parameters Descriptions

T population1 invests in cybersecurity awareness training.
T̄ population1 does not invest in cybersecurity awareness training.
S population2 implements security best practices.
S̄ population2 does not implement security best practices.
A0 population3 adopts the strategy of no attack.
A1 population3 deceives population1 directly.
A2 population3 deceives population1 after compromising population2.
P(A1/T) Probability of population3 compromising population1 given the strategy T.
P(A1/T̄) Probability of population3 compromising population1 given the strategy T̄.
P(A2/S) Probability of population3 to compromise population2 given the strategy S.
P(A2/S̄) Probability of population3 compromising population2 given the strategy S̄.
C10 Cost of smart-home adoption.
C11 Households’ expenditure.
C12 Cost related to the strategy T.
C13 Cost of a security breach given the strategy S̄.
C14 Cost of cyberattacks on population1 involving interruption costs of smart-home

services and affecting population1’s comfort and safety.
C20 Cost of security implementation related to the strategy S.
C21 Cost of cyberattacks on population2 involving loss of intellectual property and

customer confidential information, and lost revenue.
C30 Cost of conducting a cyberattack targeting population1, given that population1

takes the strategy T.
C31 Cost of conducting a cyberattack targeting population1, given that population1

takes the strategy T̄.
C32 Cost of conducting a cyberattack targeting population2, given that population2

takes the strategy S.
C33 Cost of conducting a cyberattack targeting population2, given that population2

takes the strategy S̄.
I10 Households’ income.
P20 Amount of profit obtained by population2 from selling smart-home devices given

the strategy S.
P21 Amount of profit obtained by population2 from selling smart-home devices given

the strategy S̄.
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Table 2. Cont.

Parameters Descriptions

R10 The measure of the improved lifestyle that population1 may enjoy by living in
smart homes.

R11 Reward of population1 for noticing security countermeasures based on
the strategy T.

R20 The measure of population1’s trust obtained by population2 when considering
the strategy S.

Let T and T̄ respectively be the strategies that population1 invests in cybersecurity
awareness training and that population1 does not invest in cybersecurity awareness training.
Let S and S̄ be the security best practices strategies that population2 implements and does
not implement, respectively, for IoT technology when manufacturing smart-home devices.
Let A1 be the strategy in which population3 attacks population1 directly and let A2 be the
strategy in which population3 attacks population1 after compromising population2. As we
show that the attacker incurs costs for direct/indirect attacks, we consider the strategy of
no attack as well, i.e., A0.

In terms of probabilities, we consider P(A1/T) and P(A1/T̄) to be the respective
probabilities of population3 compromising population1 given strategies T and T̄. More-
over, we consider P(A2/S) and P(A2/S̄) to be the respective probabilities of population3
compromising population2 given strategies S and S̄. We assume that

P(A1/T̄) > P(A1/T). (1)

P(A2/S̄) > P(A2/S). (2)

P(A2/S̄) > P(A1/T). (3)

P(A1/T̄) > P(A2/S). (4)

P(A2/S̄) > P(A1/T̄). (5)

P(A1/T) > P(A2/S). (6)

We have (1) and (2) because we consider that population1 and population2 are more
secure (i.e., less at risk of cyberattacks) when choosing the strategies T and S, respectively.
We have (3) and (4) because we consider that an attacker is more likely to compromise a
target that does not invest in cybersecurity. Moreover, we have (5) because population2
has more assets (e.g., people, hardware, software, networks, cloud servers, and websites),
resulting in more possible entry points for a cyberattack than population1 in the case of
strategies S and T, respectively. Finally, we have (6) because companies have more financial
means to invest in cybersecurity than smart-home users, thereby acquiring adequate
tangible, intangible, and human resources to ensure the implementation of security policies.
Therefore, we assume that population1 choosing the strategy T is less protected from
cyberattacks than population2 choosing strategy S.

With respect to costs, let C10, C11, C12, C13, and C14 be the costs related to population1;
C10 measures the cost of buying a smart home and IoT devices, C11 measures smart-
home users’ expenditures on goods and services such as education, food, furniture, trans-
portation, communication, and medical care, C12 measures the costs related to the strat-
egy T, C13 measures the costs of a security breach given the strategy S̄, i.e., an unno-
ticed breach of population2’s insecure computer systems that allows population3 to create
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backdoors to population1’s IoT devices, and C14 measures the costs incurred by cyber-
attacks on population1, which could involve interruption costs of smart-home services
(e.g., home automation, electric power, healthcare, entertainment, the internet) and affect
population1’s comfort, convenience, and safety. Moreover, let C20 and C21 be the costs
related to population2; C20 measures the security implementation costs related to the strat-
egy S, while C21 measures the costs incurred by cyberattacks on population2, which could
involve loss of intellectual property and confidential customer information, reputational
damage, business operation disruption, and lost revenue. Finally, let C30, C31, C32, and C33
be the costs related to population3; C30 and C31 respectively measure the costs of conducting
cyberattacks targeting population1 when this population takes strategies T and T̄, while C32
and C33 respectively measure the costs of conducting cyberattacks targeting population2
when this population takes strategies S and S̄.

In the following, we provide rational assumptions about the relationships between
system parameters. We first assume that all the cost parameters are non-negative:

Cij ≥ 0. (7)

where (i, j) = (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (3, 3).

C21 > C14. (8)

Equation (8) indicates that the costs of cyberattacks on population2 are assumed to be
higher than those on population1 due to the relative value of stakeholders’ assets versus
smart-home assets.

For the relationship between cost parameters of population3, we have the following
assumptions:

C30 > C31. (9)

C32 > C33. (10)

We assume (9) and (10) because population3 would require more resources to imple-
ment cyberattacks when population1 (or population2) takes strategy T (or S) instead of
strategy T̄ (or S̄). In addition, we assume the following:

(C13 + C14)P(A1/T̄) > C14P(A1/T̄) > C31. (11)

(C13 + C21)P(A2/S̄) > C33. (12)

C30 > (C13 + C14)P(A1/T) > C14P(A1/T). (13)

C32 > (C13 + C21)P(A2/S). (14)

Equations (11) and (12) indicate that the attacker, i.e., population3, commits fewer
resources for a large gain by compromising a target that does not invest in cybersecurity,
e.g., when population1 takes strategy T̄ and population2 takes strategy S̄. In the case
of (13) and (14), the targets, i.e., population1 and population2, invest in cybersecurity. They
are more aware of cybersecurity threats and security best practices. In such a scenario,
we presume that population3 incurs higher costs than gains from a successful attack on
population2 and population3.

Income and profits: I10 measures smart-home users’ income, while P20 and P21 measure
the amount of profit obtained by population2 from selling smart-home devices given
strategies S and S̄, respectively.

For rewards, let R10 and R11 be the rewards of population1; R10 quantifies the im-
proved lifestyle that population1 may enjoy by living in smart homes, while R11 is the
reward of population1 due to noticing security countermeasures based on the strategy T.
This reward measures the increased sense of feeling safe and secure when using IoT devices
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at home. Moreover, let R20 be the reward of population2; R20 quantifies population1’s trust
obtained by population2 when considering strategy S.

R11 > C12. (15)

We have (15) because population1 would be willing to take strategy T only if the
merit of investing in cybersecurity awareness training, i.e., R11, is larger than its cost,
i.e., C12.

In addition, we assume that

P20 + R20 > C20 + P21. (16)

We have (16) because companies, including population2 (i.e., manufacturing com-
panies), are willing to invest in cybersecurity and take strategy S only if the profit P20
obtained from sales using strategy S and the good reputation R20 obtained based on the
same strategy are larger than the cost of strategy S plus the profit P21 obtained from sales
using strategy S̄.

With the parameters of the game defined, we now describe the strategy sets of each
population in a matrix, called the normal form.

3.3. Normal-Form Game

This subsection presents the strategies and payoffs resulting from our proposed
game. Table 3 describes the strategic form of the game, known as the normal-form game.
Each cell (row, column) from (5, 3) to (7, 6) represents the payoffs of each population.
The first line of these cells shows population1’s payoffs, the second line shows population2’s
payoffs, and the third line shows population3’s payoffs. As an illustration, we explain the
payoffs described in the cell (Row 6, Column 3). The strategies of population1, population2,
and population3 consist of playing strategies T, S, and A1, respectively. When each popula-
tion engages in this contest, the payoffs of population1, population2, and population3 are
I10 + R10 − C10 − C11 − C12 + R11 − C14P(A1/T), P20 − C20 + R20, and C14P(A1/T)− C30,
respectively.

Table 3. Payoffs for the proposed game.

Population2

S

Population1

T T̄

Population3

A0

I10 + R10 − C10 − C11 − C12 + R11
P20 − C20 + R20

0

I10 + R10 − C10 − C11
P20 − C20 + R20

0

A1

I10 + R10 − C10 − C11 − C12 + R11 − C14P(A1/T)
P20 − C20 + R20

C14P(A1/T)− C30

I10 + R10 − C10 − C11 − C14P(A1/T̄)
P20 − C20 + R20

C14P(A1/T̄)− C31

A2

I10 + R10 − C10 − C11 − C12 + R11 − C13P(A2/S)
P20 − C20 + R20 − C21P(A2/S)
(C13 + C21)P(A2/S)− C32

I10 + R10 − C10 − C11 − C13P(A2/S)
P20 − C20 + R20 − C21P(A2/S)
(C13 + C21)P(A2/S)− C32
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Table 3. Cont.

Population3

Population2

S̄

Population1

T T̄

A0

I10 + R10 − C10 − C11 − C12 + R11
P21
0

I10 + R10 − C10 − C11
P21
0

A1

I10 + R10 − C10 − C11 − C12 + R11 − (C13 + C14)P(A1/T)
P21

(C13 + C14)P(A1/T)− C30

I10 + R10 − C10 − C11 − (C13 + C14)P(A1/T̄)
P21

(C13 + C14)P(A1/T̄)− C31

A2

I10 + R10 − C10 − C11 − C12 + R11 − C13P(A2/S̄)
P21 − C21P(A2/S̄)

(C13 + C21)P(A2/S̄)− C33

I10 + R10 − C10 − C11 − C13P(A2/S̄)
P21 − C21P(A2/S̄)

(C13 + C21)P(A2/S̄)− C33

4. Game Analysis

This section aims to analyze the evolutionary stability of the proposed game, which
relates to three populations: population1, population2, and population3. We first derive the
replicator equation related to each population. Then, we analyze the conditions that satisfy
the evolutionary stability of the game.

4.1. Replicator Dynamics

Replicator dynamics is a fundamental concept in evolutionary game dynamics [37]. It
is a deterministic model that describes selection dynamics (frequency-dependent selection)
through the use of equations.

Let x(t), y(t), z1(t), and z2(t) be the frequencies of the strategies T, S, A1, and A2,
respectively, at time t (t ≥ 0), where 0 ≤ x(t), y(t), z1(t), z2(t) ≤ 1. Whenever possible, we
omit the time t for brevity. Note that the frequencies of strategies T̄, S̄, and A0 are provided
by 1− x, 1− y, and 1− z1 − z2, respectively.

4.1.1. Replicator Equation of Population1

Let FT and FT̄ be the fitness of T and T̄, respectively, with F1 being the average expected
fitness for population1. The replicator equation of population1 is then

dx
dt

= x(FT − F1) (17)

Thus, we obtain

dx
dt

=x(x− 1)[C12 − R11 + z1C13P(A1/T) + z1C14P(A1/T)− z1C13P(A1/T̄)

− z1C14P(A1/T̄)− yz1C13P(A1/T) + yz1C13P(A1/T̄)]. (18)

4.1.2. Replicator Equation of Population2

Let FS and FS̄ be the fitness of S and S̄, respectively, with F2 being the average expected
fitness for population2. The replicator equation of population2 is then

dy
dt

= y(FS − F2) (19)

Thus, we obtain

dy
dt

=y(y− 1)[C20 − P20 + P21 − R20 + z2C21P(A2/S)− z2C21P(A2/S̄)]. (20)
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4.1.3. Replicator Equations of Population3

Let FA0 , FA1 , and FA2 be the fitness of A0, A1 and A2, respectively, with F3 being the
average expected fitness for population3. The replicator equation of population3 regarding
strategy A1 is then

dz1

dt
= z1(FA1 − F3) (21)

Thus, we obtain

dz1
dt = −z1[z1[(x(C30 − P(A1/T)(C13 + C14))− (C31 − P(A1/T̄)(C13 + C14))(x− 1))

(y− 1)− y(x(C30 − C14P(A1/T))− (C31 − C14P(A1/T̄))(x− 1))]− [x(C30−
P(A1/T)(C13 + C14))− (C31 − P(A1/T̄)(C13 + C14))(x− 1)](y− 1) + z2

[(x(C33 − P(A2/S̄)(C13 + C21))− (C33 − P(A2/S̄)(C13 + C21))(x− 1))

(y− 1)− y(x(C32 − P(A2/S)(C13 + C21))− (C32 − P(A2/S)(C13 + C21))

(x− 1))] + y[x(C30 − C14P(A1/T))− (C31 − C14P(A1/T̄))(x− 1)]].

(22)

The replicator equation of population3 regarding strategy A2 is

dz2

dt
= z2(FA2 − F3). (23)

Thus, we obtain

dz2
dt = −z2[z1[(x(C30 − P(A1/T)(C13 + C14))− (C31 − P(A1/T̄)(C13 + C14))(x− 1))

(y− 1)− y(x(C30 − C14P(A1/T))− (C31 − C14P(A1/T̄))(x− 1))]− [x(C33−
P(A2/S̄)(C13 + C21))− (C33 − P(A2/S̄)(C13 + C21))(x− 1)](y− 1) + z2

[(x(C33 − P(A2/S̄)(C13 + C21))− (C33 − P(A2/S̄)(C13 + C21))(x− 1))(y− 1)

−y(x(C32 − P(A2/S)(C13 + C21))− (C32 − P(A2/S)(C13 + C21))(x− 1))]

+y[x(C32 − P(A2/S)(C13 + C21))− (C32 − P(A2/S)(C13 + C21))(x− 1)]].

(24)

Let f be a multivariate function. We can observe from (18), (20), (22), and (24) that the
system of equations below defines the game.

f (x) = dx
dt

f (y) = dy
dt

f (z1) = dz1
dt

f (z2) = dz2
dt

(25)

4.2. Conditions for ESS

Any solution of the system defined in (25) is a Nash equilibrium of the proposed
evolutionary game. Moreover, any stable equilibrium of the replicator equations is an ESS.
A Jacobian matrix can be used to analyze the stability of the equilibrium solutions [38].

4.2.1. Nash Equilibrium

In each Nash equilibrium, any agent (player) cannot improve its own payoff if other
players do not change their strategies. This situation can be interpreted as a steady state of
the system as a result of individuals’ rational decision-making for payoff maximization. A
pure strategy Nash equilibrium refers to a game in which every player’s mixed strategy in
a mixed strategy Nash equilibrium assigns probability 1 to a single action [39]. A mixed
strategy Nash equilibrium refers to a game in which every player plays a mixed strategy
(i.e., a probability distribution over the pure strategies) and cannot improve his or her payoff
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under the mixed-strategy profile. In an attack–defense game, we use the Nash equilibrium
to identify the best set of actions that maximize the defenders’ payoff against cyberattacks.

We solve (25) to identify the Nash equilibrium solutions of the proposed game. With
f (x) = f (y) = f (z1) = f (z2) = 0, we obtain 22 solutions. Thus, the proposed evolutionary
game admits 22 Nash equilibrium solutions: 12 pure solutions and 10 mixed solutions.
According to Abass et al. [16], when the game is asymmetric only the pure solutions
are necessary to build the Jacobian matrix. The pure Nash equilibrium solutions of the
proposed game are E1 = (0, 0, 0, 0); E2 = (1, 0, 0, 0); E3 = (0, 1, 0, 0); E4 = (0, 0, 1, 0); E5 =
(0, 0, 0, 1); E6 = (1, 1, 0, 0); E7 = (1, 0, 1, 0); E8 = (0, 1, 1, 0); E9 = (1, 0, 0, 1); E10 = (0, 1, 0, 1);
E11 = (1, 1, 1, 0); E12 = (1, 1, 0, 1).

4.2.2. Jacobian Matrix

We can use the Jacobian matrix to analyze the signs of eigenvalues and evaluate the
stability of the Nash equilibrium solutions that we found above. Let J be the Jacobian
matrix of the multivariate function f .

J =



∂ f (x)
∂x

∂ f (x)
∂y

∂ f (x)
∂z1

∂ f (x)
∂z2

∂ f (y)
∂x

∂ f (y)
∂y

∂ f (y)
∂z1

∂ f (y)
∂z2

∂ f (z1)
∂x

∂ f (z1)
∂y

∂ f (z1)
∂z1

∂ f (z1)
∂z2

∂ f (z2)
∂x

∂ f (z2)
∂y

∂ f (z2)
∂z1

∂ f (z2)
∂z2


(26)

4.2.3. Equilibrium Stability Analysis

This section studies the stability of the equilibrium solutions. Among the existing Nash
equilibrium solutions, E1 = (0, 0, 0, 0), E2 = (1, 0, 0, 0), E3 = (0, 1, 0, 0), and E6 = (1, 1, 0, 0)
are desirable solutions. As a matter of fact, the proposed game is based on attack–defense
strategies in which the defenders’ strategies consist of investing in cybersecurity, i.e.,
playing 1 (S or T), in order to protect themselves effectively against cyberattacks. It is
obvious that the ultimate and invariable condition that guarantees that the defenders will
always be safe regardless of their choice of strategy is the absence of attacks, i.e., when the
attacker plays (0, 0).

We analyze the sign of the eigenvalues of the Jacobian matrices, i.e., J(E1), . . . , J(E12),
obtained using the respective corresponding solutions, i.e., E1, . . . , E12. An equilibrium
solution Ep (with p = 1, . . . , 12) is asymptotically stable if the eigenvalues obtained from
J(Ep) have all-negative real parts. Table 4 presents the results of the equilibrium stability
analysis. The eigenvalues associated with each equilibrium solution, i.e., J(Ep), are real; on
the other hand, the sign of each eigenvalue depends on the Nash equilibrium.

Thus, we have the following theorem.

Theorem 1. The proposed evolutionary game admits a unique ESS. Only E6 = (1, 1, 0, 0) satisfies
the conditions for asymptotic stability (λq < 0, where q = 1, . . . , 4).

Proof. We show that the eigenvalues of E6 are all negative. Then, we demonstrate that the
other Nash equilibrium solutions have at least one positive eigenvalue.

• E6 is asymptotically stable.

The eigenvalues of E6 are λ1 = C12−R11, λ2 = C20− P20 + P21−R20, λ3 = C14P(A1/T)−
C30, and λ4 = (C13 + C21)P(A2/S)− C32.

First, we have λ1 < 0, because R11 > C12 (15). Then, we have λ2 < 0, because
P20 + R20 > C20 + P21 (16). Next, we have λ3 < 0, because C30 > C14P(A1/T) (13). Finally,
we have λ4 < 0, because C32 > (C13 + C21)P(A2/S) (14). The eigenvalues λ1, λ2, λ3, and
λ4 are negative. Therefore, E6 is asymptotically stable.

• The other Nash equilibrium solutions are not asymptotically stable.
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Table 4. Summary of equilibrium stability analysis.

Pure Nash
Equilibrium Solutions

Eigenvalues Sign of
Eigenvalues

Conditions for
Asymptotic Stability ESS

λ1 λ2 λ3 λ4

E1 = (0, 0, 0, 0) R11 − C12 P20 − C20 − P21 + R20 (C13 + C14)P(A1/T̄)− C31 (C13 + C21)P(A2/S̄)− C33

λ1 > 0
λ2 > 0
λ3 > 0
λ4 > 0

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E2 = (1, 0, 0, 0) C12 − R11 P20 − C20 − P21 + R20 (C13 + C14)P(A1/T)− C30 (C13 + C21)P(A2/S̄)− C33

λ1 < 0
λ2 > 0
λ3 < 0
λ4 > 0

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E3 = (0, 1, 0, 0) R11 − C12 C20 − P20 + P21 − R20 C14P(A1/T̄)− C31 (C13 + C21)P(A2/S)− C32

λ1 > 0
λ2 < 0
λ3 > 0
λ4 < 0

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E4 = (0, 0, 1, 0) (C13 + C14)[P(A1/T̄)−
P(A1/T)] + R11 − C12

P20 − C20 − P21 + R20
(−C13 − C14)P(A1/T̄)+

C31

(−C13 − C14)P(A1/T̄)+
(C13 + C21)P(A2/S̄)+

C31 − C33

λ1 > 0
λ2 > 0
λ3 < 0

Uncertain

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E5 = (0, 0, 0, 1) R11 − C12

C21[P(A2/S̄)−
P(A2/S)] + P20 − C20−

P21 + R20

(C13 + C14)P(A1/T̄)+
(−C13 − C21)P(A2/S̄)+

C33 − C31

(−C13 − C21)P(A2/S̄) + C33

λ1 > 0
λ2 > 0

Uncertain
λ4 < 0

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E6 = (1, 1, 0, 0) C12 − R11 C20− P20 + P21 − R20 C14P(A1/T)− C30 (C13 + C21)P(A2/S)− C32

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

3

E7 = (1, 0, 1, 0) (C13 + C14)[P(A1/T)−
P(A1/T̄)] + C12 − R11

P20 − C20 − P21 + R20
(−C13 − C14)P(A1/T)+

C30

(−C13 − C14)P(A1/T)+
(C13 + C21)P(A2/S̄)+

C30 − C33

λ1 < 0
λ2 > 0
λ3 > 0

Uncertain

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7
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Table 4. Cont.

Pure Nash
Equilibrium Solutions

Eigenvalues Sign of
Eigenvalues

Conditions for
Asymptotic Stability ESS

λ1 λ2 λ3 λ4

E8 = (0, 1, 1, 0)
C14[P(A1/T̄)−

P(A1/T)] + R11−
C12

C20 − P20 + P21 − R20 −C14P(A1/T̄) + C31

−C14P(A1/T̄)+
(C13+

C21)P(A2/S)+
C31 − C32

λ1 > 0
λ2 < 0
λ3 < 0

Uncertain

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E9 = (1, 0, 0, 1) C12 − R11

C21[P(A2/S̄)−
P(A2/S)] + P20−
C20 − P21 + R20

(C13
+C14)P(A1/T)+

(−C13−
C21)P(A2/S̄)+

C33 − C30

(−C13 − C21)P(A2/S̄)+
C33

λ1 < 0
λ2 > 0

Uncertain
λ4 < 0

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E10 = (0, 1, 0, 1) R11 − C12

C21[P(A2/S)−
P(A2/S̄)] + C20−
P20 + P21 − R20

C14P(A1/T̄)+
(−C13−

C21)P(A2/S)+
C32 − C31

(−C13
−C21)P(A2/S) + C32

λ1 > 0
λ2 < 0

Uncertain
λ4 > 0

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E11 = (1, 1, 1, 0)
C14[P(A1/T)−

P(A1/T̄)] + C12−
R11

C20 − P20 + P21 − R20 −C14P(A1/T) + C30

−C14P(A1/T)+
(C13+

C21)P(A2/S)+
C30 − C32

λ1 < 0
λ2 < 0
λ3 > 0

Uncertain

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7

E12 = (1, 1, 0, 1) C12 − R11

C21[P(A2/S)−
P(A2/S̄)] + C20 − P20

+P21 − R20

C14P(A1/T)+
(−C13−

C21)P(A2/S)+
C32 − C30

(−C13
−C21)P(A2/S) + C32

λ1 < 0
λ2 < 0

Uncertain
λ4 > 0

λ1 < 0
λ2 < 0
λ3 < 0
λ4 < 0

7
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The eigenvalue λ1 of Nash equilibrium solutions E1, E3, E4, E5, E8, and E10 is positive
because of (15). The eigenvalue λ2 of E2 and E7 is positive because of (16). Similarly, the
eigenvalue λ2 of E9 is positive because of (2), (7), and (16). From (13), we can see that the
eigenvalue λ3 of E11 is positive. Moreover, the eigenvalue λ4 of E12 is positive because
of (14). As a result, the Nash equilibrium solutions Ep (with p = 1, . . . , 12, p 6= 6) have at
least one positive eigenvalue. For this reason, they are not asymptotically stable.

5. Numerical Results

This section presents the results of simulations based on the analyses conducted in
Section 4. First, we show graphically that E6 is an ESS. Next, we investigate the impacts
of cybersecurity investment costs and benefits on E6. We choose the parameter settings
described in Table 5 to illustrate the numerical results.

Table 5. List of parameter values used in the numerical results.

Parameters Values

P(A1/T) 0.3
P(A1/T̄) 0.6
P(A2/S) 0.1
P(A2/S̄) 0.8

C12 0.1
C13 0.2
C14 0.6
C20 0.2
C21 0.8
C30 0.4
C31 0.15
C32 0.7
C33 0.25
P20 0.25
P21 0.1
R11 0.2
R20 0.15

Seven kinds of initial values
(x(0), y(0), z1(0), z2(0)):

initval1, . . . , initval7

(0.05, 0.1, 0.4, 0.5); (0.1, 0.05, 0.2, 0.3);
(0.01, 0.2, 0.6, 0.3); (0.4, 0.1, 0.3, 0.6);
(0.2, 0.3, 0.4, 0.1); (0.1, 0.7, 0.1, 0.2);

(0.7, 0.1, 0.3, 0.1).

5.1. Numerical Validation of the Stability of E6

We start by demonstrating that the proposed system is asymptotically stable by
using the n-dimensional phase portraits by state combinations [40]. According to this
method, Figure 3 illustrates the phase portrait views for the m = 6 combinations of states
where m = n!

2(n−2)! with n = 4. In addition to the vector fields, we plot the system
trajectories using different colored lines (blue, brown, orange, purple, green, cyan, and
maroon) based on the seven initial values described in Table 5. Figure 3a–f shows that the
vector fields converge to (x, y) = (1, 1), (x, z1) = (1, 0), (x, z2) = (1, 0), (y, z1) = (1, 0),
(y, z2) = (1, 0), and (z1, z2) = (0, 0), respectively. The analysis of the view of each state
combination reveals that the vector fields converge to the Nash equilibrium E6 = (1, 1, 0, 0).
Figure 4a,b shows the evolution of population fractions x, y, z1, and z2 over time under the
initial values initval1 and initval7, respectively. We can confirm from Figure 4a,b that the
system converges to the Nash equilibrium E6. The convergence of the directional fields and
the asymptotic stability of the evolution of x, y, z1, and z2 over time validate the correctness
of our theoretical analysis regarding the stability of E6.

In the following, we examine the effects of various parameters on the ESS, i.e., E6.
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Figure 3. Four-dimensional phase portraits by state combinations.
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Figure 4. Population evolution of x, y, z1, and z2 over time. (a) Evolution of population fractions
over time with initial values x(0) = 0.05, y(0) = 0.1, z1(0) = 0.4, and z2(0) = 0.5. (b) Evolution of
population fractions over time with initial values x(0) = 0.7, y(0) = 0.1, z1(0) = 0.3, and z2(0) = 0.1.

5.2. Analyzing the Effects of Cybersecurity and Cyberattack Costs on E6

We have shown that E6 can be a desirable ESS under the rational conditions provided
in Section 3.2. In actual systems, however, certain parameter settings may violate the
rational conditions due to various reasons, e.g., mis-estimation of costs, profits, and/or
rewards. In this section, we first classify the cost, profit, and reward parameters into four
categories: cybersecurity costs, rewards for commitment to cybersecurity, cyberattack costs,
and costs of setting up cyberattack operations. Then, we numerically evaluate how these
affect the system stability and change its equilibrium. We use the initial values initval1 of
variables, as in Figure 4a, and apply the parameter settings in Table 5 as default values.
In the following, we show the impact of a certain parameter, e.g., C12, on the system
behavior by changing its value while maintaining the same values for the other parameters.
Considering the convergence property in Figure 4, we show (x(t), y(t), z1(t), z2(t)) for
t = 300 in the following simulations. We use a solid blue line, a dashed cyan line, a dotted
red line, and a dashed magenta line to describe the evolution of population fractions x(t),
y(t), z1(t), and z2(t), respectively.

5.2.1. The Impact of Cybersecurity Costs

We first focus on the cybersecurity costs (C12 and C20) and numerically evaluate
their impacts by changing one of them. Recall that C12 < 0.2 is required by (15) for
making E6 ESS. Similarly, C20 < 0.3 is required by (16). Figure 5a presents the evolution
of population fractions over C12. We can see that the system converges to E6 = (1, 1, 0, 0)
and E8 = (0, 1, 1, 0) when C12 < 0.2 and C12 > 0.38, respectively. On the other hand,
the population fractions x and z1 fluctuate when 0.2 < C12 < 0.38. Figure 5b presents
the evolution of population fractions over C20. The system converges to E6 = (1, 1, 0, 0)
and E9 = (1, 0, 0, 1) when C20 < 0.3 and C20 > 0.86, respectively. On the other hand,
the population fractions y and z2 fluctuate when 0.3 < C20 < 0.86. The evaluation of
cybersecurity cost parameters shows that C12 < 0.2 and C20 < 0.3 satisfy the ESS conditions
for E6.
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Figure 5. The impact of cybersecurity costs on the ESS E6. (a) Evolution of population fractions x, y,
z1, and z2 over C12. (b) Evolution of population fractions x, y, z1, and z2 over C20.

5.2.2. The Impact of Rewards for Commitment to Cybersecurity

We now numerically evaluate the impacts of rewards (R11 and R20) and profits (P20)
for commitment to cybersecurity. Recall that R11 > 0.1 is required by (15) for making
E6 ESS. Similarly, R20 > 0.05 and P20 > 0.15 are required by (16). Figure 6a presents
the evolution of population fractions over R11. We can see that the system converges to
E6 = (1, 1, 0, 0) when R11 > 0.1. On the other hand, the population fractions x and z1
fluctuate when R11 < 0.1. Figure 6b,c shows that the population fractions x, y, z1, and z2
over R20 and P20 remain constant and equivalent to E6 when R20 > 0.05 and P20 > 0.15,
respectively. When R20 < 0.05 and P20 < 0.15, y and z2 fluctuate. The evaluation of the
profit and reward parameters shows that R11 > 0.1, R20 > 0.05, and P20 > 0.15 satisfy the
ESS conditions for E6.
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Figure 6. The impact of rewards for cybersecurity commitment on the ESS E6. (a) Evolution of
population fractions x, y, z1, and z2 over R11. (b) Evolution of population fractions x, y, z1, and z2

over R20. (c) Evolution of population fractions x, y, z1, and z2 over P20.
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5.2.3. The Impact of Cyberattack Costs

Next, we investigate the cyberattack costs and numerically evaluate their impacts by
changing one of them. Recall that C14 < 0.8 and C21 > 0.6 are required by (8) for making
E6 ESS. Figure 7a presents the evolution of population fractions over C14. We can see that
the system converges to E6 = (1, 1, 0, 0) when C14 ≤ 1.333. Otherwise, it converges to
E11 = (1, 1, 1, 0). Figure 7b presents the evolution of population fractions over C21. The
system converges to E6 when C21 < 6.8. Otherwise, it converges to E12 = (1, 1, 0, 1). The
evaluation of cyberattack costs shows that C14 ≤ 1.333 and C21 < 6.8 satisfy the ESS
conditions for E6.
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Figure 7. Impact of cyberattack costs on the ESS E6. (a) Evolution of population fractions x, y, z1, and
z2 over C14. (b) Evolution of population fractions x, y, z1, and z2 over C21.

5.2.4. Costs of Setting Up Cyberattack Operations

Finally, we investigate the operation costs of cyberattacks and numerically evaluate
their impacts by changing one of them. Recall that C30 > 0.15 is required by (9) for making
E6 ESS. Similarly, C32 > 0.25 is required by (10). Figure 8a shows that the system converges
to E6 = (1, 1, 0, 0) and E11 = (1, 1, 1, 0) when C30 > 0.18 and C30 < 0.18, respectively.
Figure 8b shows that the system converges to E6 and E12 = (1, 1, 0, 1) when C32 > 0.1 and
C32 < 0.1, respectively. The evaluation of cost parameters of implementing cyberattacks
shows that C30 > 0.18 and C32 > 0.1 satisfy the ESS conditions for E6.
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Figure 8. The impact of operation costs of cyberattacks on the ESS E6. (a) Evolution of population
fractions x, y, z1, and z2 over C30. (b) Evolution of population fractions x, y, z1, and z2 over C32.

6. Discussions

This section discusses the findings of this study, highlights its limitations, and presents
avenues for future work.
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6.1. Interpretation of the Results

For the purpose of verifying whether it is worthwhile for smart-home users to invest
in cybersecurity over time, we defined and analyzed a smart-home ecosystem-based game
model using evolutionary game theory. Our numerical results show that the best strategy
set for smart-home users is E6 = (1, 1, 0, 0) = (T, S, A0). This implies that smart-home
users and smart-home stakeholders must invest in cybersecurity and follow security best
practices. If they commit to cybersecurity as recommended, we find that adversaries abstain
from attacking because the costs of setting up cyberattack operations are higher than the
expected gain. Thus, it is beneficial for smart-home users to incur the cost of engaging in
cybersecurity awareness training.

On the basis of these findings, we now discuss the essential parameters used in
this study.

6.1.1. Cybersecurity Costs

The results indicate that low cybersecurity costs (C12 < 0.2 and C20 < 0.3) maintain the
desired equilibrium solution E6, while increasing costs of cybersecurity awareness training
and implementing security best practices for IoT technology lead smart-home users and
manufacturers to stop investing in cybersecurity strategies. This outcome is consistent with
the finding that reducing investment costs promotes information security investment [30].
Moreover, smart-home users are willing to commit to cybersecurity awareness training if
the training costs are zero [17]. Indeed, not all smart-home users have the means to pay
for additional training outside of spending on everyday goods and services. Therefore,
governments might encourage smart-home users to take an interest in cybersecurity by
giving it greater prominence in national cybersecurity plans and subsidizing training costs.

6.1.2. Rewards

Our results indicate that offering rewards and benefits (R11 > 0.1, R20 > 0.05, and
P20 > 0.15) based on a commitment to cybersecurity helps to maintain the desired equi-
librium solution, E6, in which smart-home users are involved in cybersecurity. These
findings align with previous research [17] showing that, through a static game model,
providing smart-home users with tangible rewards can engage them in cybersecurity ed-
ucation programs. Indeed, both financial and non-financial rewards can have positive
effects on users’ cybersecurity behavior [41]. From this perspective, additional research on
non-financial rewards that might motivate smart-home users to engage in cybersecurity
would be appropriate.

6.1.3. Cyberattack Costs

The results of this study indicate that if the respective costs incurred by cyberattacks
on smart-home users and manufacturers are low (C14 ≤ 1.333 and C21 < 6.8), adversaries
become less interested in carrying out cyberattacks. Therefore, the desired equilibrium
E6 remains intact. This outcome is obtained because the proposed model considers that
attackers incur costs to carry out cyberattacks. Even though this is true in reality, it is clear
that with the sources of information available in the digital era attackers can carry out
cyberattacks at almost no cost. Thus, even with low costs incurred by cyberattacks on smart-
home users and manufacturers, attackers may not refrain from attacking. This pattern
would break the desired equilibrium and expose smart-home users and manufacturers
to potential cyberattacks. It is therefore essential to strengthen the cybersecurity of smart
homes by taking into consideration international standards such as ISO/IEC 27403 [42],
which is currently under development. The objective is to not tolerate any costs due to
cyberattacks, thereby deterring attackers.

6.1.4. Operation Costs of Cyberattacks

Our results indicate that if the costs of setting up cyberattack operations, i.e., C30 > 0.18
and C32 > 0.1, become very expensive, adversaries abandon attack strategies, which in
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turn helps to preserve the desired equilibrium solution E6. On the other hand, the results
show that smart-home users and manufacturers are continuously exposed to cyberattacks
when the costs of implementing cyberattacks are low or negligible. In an increasingly
digitalized world, attackers can afford to develop targeted attack scenarios that could have
a significant global impact at little or no cost. Based on this observation, it is apparent that
if attackers can develop attacks at a lower cost, it is necessary to in turn allow smart-home
users to become educated and trained in cybersecurity at a lower cost. Thus, it is important
to ensure cybersecurity for all, by all, and of all in the near future in order to lessen the
likelihood of successful cyberattacks.

6.2. Limitations and Future Work

The existing literature on cost–benefit analysis of cybersecurity investment for indi-
viduals such as smart-home users is limited. This may be because home users in the past
were not as exposed to cyberattacks as they are today in an increasingly digitalized world.
It should be stressed that cyberattacks on smart-home users can affect their physical and
moral security. As such, we encourage more research on the cybersecurity of smart-home
users to protect users from these risks.

Regarding the proposed model, it is essential to note that the smart-home envi-
ronment includes several independent stakeholders, such as IoT device manufacturers,
network providers, and cloud service providers. For the sake of simplicity, we have
grouped them into a single entity, i.e., population2, to provide a holistic study, as in
essence all of these entities must choose between investing or not investing in cybersecurity.
We recommend additional research to model the interaction between smart-home users and
different stakeholder groups. Moreover, in our model the attacker can target smart-home
users either directly or indirectly via stakeholders, and cannot target smart-home users and
stakeholders at the same time. Future research might address the latter scenario.

It is challenging to accurately model the real world with its numerous variables using
only a few parameters. While our model is built on realistic assumptions, it is uncertain
whether it perfectly captures the reality of smart-home users. To enhance the practicality
of our results, future studies must design more sophisticated game models that illustrate
greater depth and volume of agents’ choices in order to improve the applicability of the
findings. Using the Monte Carlo method to simulate such a model is an approach that we
recommend. Note that we omitted Monte Carlo simulations in our results, as they were
deemed redundant based on previous research [43]. This study demonstrates, both theo-
retically and through experimental simulations, that multi-agent simulations with Monte
Carlo dynamics and evolutionary games with replicator equations produce equivalent
results. This could be one of the reasons that other works [15,16] using evolutionary game
theory did not compare directly their evolutionary game-based results with other methods
such as Monte Carlo simulations.

Verifying the correctness of the parameter values used in our simulation is another
challenge. Collecting empirical data to compare theoretical and empirical results is highly
recommended. An additional limitation is related to the cost parameters used in our system.
Our model focuses only on monetary costs as the study problem; future studies could
consider time-related costs in the model. Indeed, while the monetary costs of conducting
cyberattacks may be close to zero, the time taken to identify vulnerabilities and develop
cyberattacks may be very long, and could be a determining factor that might lead the
attacker to refrain from attacking.

It is worth noting that our game-theoretic approach works in reality if smart-home
users observe the punishments and rewards through their experience. This evidence-based
approach is one way to stress the importance of cybersecurity awareness in smart homes.
However, achieving the goal of evidence-based security is just as challenging as providing
evidence-based healthcare [44]. Interested researchers can investigate evidence-based
effects of punishments and rewards on smart-home users’ security practices and behaviors.
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Furthermore, our study does not focus on the content of cybersecurity training, and
assumes the effectiveness of such training in preventing cyberattacks. Considering the
existence of unknown vulnerabilities, for example, it is evident that cybersecurity training
cannot cover all possible vulnerabilities and attack scenarios. This is one of the reasons why
our study looked at investing in cybersecurity over the long term through an evolutionary
game-theoretic approach. In the real world, smart-home users have to frequently update
their cybersecurity knowledge and skills in order to continuously protect themselves
against cyberattacks.

Finally, it is necessary to promote strengthened IoT cybersecurity regulations, such
as the European Union (EU) Cyber Resilience Act [45], to mandate security-by-design
and essential cybersecurity requirements for manufacturers, importers, and distributors
of IoT devices and services and ensure compliance through certification, reporting, and
conformity assessments. This can reduce the need for in-depth cybersecurity awareness
training on the part of smart-home users and consequently lower the cost of cybersecurity
education.

7. Conclusions

In this work, we study the costs and benefits of cybersecurity investment strategies for
smart-home users through an evolutionary game-theoretic approach. We aim to demon-
strate the long-term advantages of investing in cybersecurity for smart-home users, as the
cost of cybersecurity training can be a barrier for many individuals. To achieve this, we
model the interactions between smart-home users, smart-home stakeholders, and attackers
using different strategies and associated payoffs. The numerical results show that the
optimal strategy for smart-home users involves both users and stakeholders investing
in cybersecurity, thereby reducing the likelihood of successful attacks and discouraging
attackers from continuing their attack efforts unless they are willing to incur losses. On the
other hand, in order to prioritize cybersecurity, smart-home users must have low training
costs and receive rewards for their commitment. Thus, subsidizing cybersecurity training
costs and exploring non-financial rewards to motivate smart-home users are potential
strategies to consider. In addition, our study highlights the importance of user behavior
in securing smart homes. In our future work, we plan to investigate this further using
behavioral game theory and Monte Carlo simulations. This upcoming research will provide
a comprehensive understanding of how to ensure the privacy and security of individuals
living in smart homes.
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