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Abstract: This manuscript presents three families of distributions, namely the Beta, Beta Prime and
Beta Exponential families of distributions. From all the distributions of these families, 14 statistical
distributions of three, four and five parameters are presented that have applicability in the analysis
of extreme phenomena in hydrology. These families of distributions were analyzed regarding the
improvement of the existing legislation for the determination of extreme events, specifically the
elaboration of a norm regarding frequency analysis in hydrology. To estimate the parameters of the
analyzed distributions, the method of ordinary moments and the method of linear moments were
used; the latter conforms to the current trend for estimating the parameters of statistical distributions.
The main purpose of the manuscript was to identify other distributions from these three families
with applicability in flood frequency analysis compared to the distributions already used in the
literature from these families, such as the Log-logistic distribution, the Dagum distribution and the
Kumaraswamy distribution. The manuscript does not exclude the applicability of other distributions
from other families in the frequency analysis of extreme values, especially since these families were
also analyzed within the research carried out in the Faculty of Hydrotechnics and presented in other
materials. All the necessary elements for their use are presented, including the probability density
functions, the complementary cumulative distribution functions, the quantile functions and the
exact and approximate relations for estimating parameters. A flood frequency analysis case study
was carried out for the Prigor RiverRiver, to numerically present the proposed distributions. The
performance of this distributions were evaluated using the relative mean error, the relative absolute
error and the L-skewness-L-kurtosis diagram. The best fit distributions are the Kumaraswamy, the
Generalized Beta Exponential and the Generalized Beta distributions, which presented a stability
related to both the length of the data and the presence of outliers.

Keywords: frequency estimates; frequency analysis; extreme value statistics; beta; Pearson VI;
Pearson XII; Lomax; estimation parameters; approximate form; method of ordinary moments; method
of linear moments

1. Introduction

An important part of the study of extreme events in hydrology involves frequency
analysis. Hydrological frequency analysis is important because it determines extreme
values with certain exceeding probabilities; these have a defining role in the design of dams
and in water management [1-5].

Analyzing the international literature [6—12], the most frequently used distributions
in flood frequency analysis are the distributions from the Gamma family (Pearson III,
Generalized Gamma, Log Pearson), and the distributions from the GEV family (Weibull,
Gumbel, Fréchet). From the Beta distribution family, the most used distributions for flood
frequency analysis are the Log-logistic distribution [11,12], the Dagum distribution [13],
the Burr distribution [14], the Kumaraswamy distribution [15].
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In hydrological frequency analysis, to estimate the parameters of the distributions, the
method of ordinary moments (MOM) and three-parameter distributions are used, as well
as the method of linear moments (L-moments) using distributions chosen based on the
L-skewness (13)-L-kurtosis (73) variation criterion, recommended for distributions of at
least four parameters. These parameter estimation methods are two of the most frequently
used parameter estimation methods in hydrology, which is the reason for presenting only
these two [3,6,11,16].

In the case of MOM estimation, it is recommended to use three-parameter distributions
because they can only calibrate moments up to order 3, namely the skewness that represents
the m3/mJ° ratio. In the case of series smaller than 100 values, the skewness requires
correction or can be chosen, as is the hydrological practice in Romania, depending on the
origin of the extreme values [2-5]. For moments of higher order, namely kurtosis (114 /m3),
this cannot be corrected or chosen for small series, because the distributions would generate
in some cases unrealistic values, especially in the area of small exceeding probabilities
where there is no observed data [3,17-19].

In the case of parameter estimation with L-moments, it is recommended to use distri-
butions that have 73 and 74 natural values and that are very close to those of the observed
data; distributions of at least four parameters are recommended, because the method
requires the calibration of moments up to the fourth order. An advantage of using the
L-moments method is that the method is more stable, being less affected by small data
lengths, although in some cases it requires a certain correction. The correction of the sta-
tistical indicators obtained based on the L-moments method can be done using the least
squares method. Taking into account the distributions from the Beta family applied in the
literature regarding the determination of maximum flows [11-15], one of the objectives of
this manuscript is the analysis of the applicability of other distributions belonging to the
same family of distributions.

Thus, this manuscript presents 14 statistical distributions of three, four and five pa-
rameters that are part of the families of Beta, Beta Prime and Beta Exponential distributions,
namely the Generalized Beta distribution of five parameters (BG5), the Generalized Beta
distribution of four parameters (BG4), the Kumaraswamy distribution (KUM4), the Pearson
XII distribution (PXII), the Five-parameter Generalized Beta Prime distribution (BPG5), the
Pearson VI distribution (PVI), the Lomax distribution (LMX), the Log-logistic distribution
(LL), the Dagum distribution (DG), the four-parameter Burr distribution (BR4), the Paralo-
gistic distribution (PR), the Inverse Paralogistic distribution (IPR), the Beta Exponential
distribution (BE), and the Exponential Exponentiated (EE) distribution [11-15]. The esti-
mation methods of the parameters of these distributions are MOM and L-moments, with
the latter being necessary to solve some nonlinear systems of equations, which leads to
some difficulties in using these distributions. Thus, for the ease of application, parameter
approximation relations are presented for some of these distributions using polynomial [20],
exponential or rational functions. All the mathematical elements necessary to use these
distributions in the analysis of extreme events, especially in flood frequency analysis, are
presented here.

In this manuscript, new elements such as the expressions of the cumulative comple-
mentary functions; the inverse functions for BG5, BG4, PXII, BPG5, PVI, LMX, BE, EE; the
approximation relations for parameter estimation for PXII, PR, IPR, EE; and the relations
for parameter estimation with MOM for LMX, PR, IPR, facilitate the ease of using these
distributions in flood frequency analysis. Some of the quantiles of the analyzed distribu-
tions do not have explicit forms; they are represented in this manuscript with the help of
the predefined function from Mathcad, which is equivalent to other functions from other
dedicated programs (e.g., the Beta.Inv function from Excel, etc.).

Thus, all these new elements for these distributions presented in Table 1 will help
hydrology researchers to use these distributions easily.
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Table 1. Novelty elements.

New Elements Distribution

Inverse function BG5, BG4, PXII, BPG5, PVI, LMX, PR, IPR, BE, EE

Complementary cumulative

distribution function PXIL, PVL, PMX, PR, IPR, EE

The characteristic function

which generates moments BG5, BPGS, BR4,

Approximate estimate

PXII, LMX, LL, PR, IPR, EE
of the parameters

The exact estimate

PXII, PVI, LMX, PR, IPR
of the parameters

This is the first time that the BG5, BPG5, LMX, PR, IPR, BE and EE distributions are
used in flood frequency analysis.

The raw and central moments of the analyzed distributions were determined using the
methodology presented in the Supplementary Materials, based on the probability density
functions.

In the case of estimation with L-moments, the determination of L-moments uses the
substitution methodology (variable change) using the expression of the inverse function.
This parameter estimation method is based exclusively on the inverse function of the distri-
bution; the presentation of the expressions of the inverse functions of some distributions
that have not been presented so far are novel elements, and are essential in the application
of distributions using the L-moments method.

In order to verify the performances of the proposed distributions, a flood frequency
analysis was carried out, using the Prigor River as a case study. All results are presented
in comparison with the Pearson III distribution, which is the parent distribution in flood
frequency analysis in Romania [2-5,21].

Comparing the results and choosing the best distribution was based on the perfor-
mance indicators: relative mean error (RME) [22], relative absolute error (RAE) [22] and
L-skewness—L-kurtosis diagrams [3,8,11].

The manuscript is organized as follows: The description of the statistical distributions
by presenting the density function, the complementary cumulative function and the quan-
tile function, is given in Section 2.1. The presentation of the relations for exact calculation
and the approximate relations for determining the parameters of the distributions is given
in Section 2.2. A case study applying these distributions to flood frequency analysis for the
Prigor River is presented in Section 3. Results, discussions and conclusions are presented
in Sections 3-5, respectively.

2. Methods

This section presents 14 probability distributions from Beta families with applicability
in flood frequency analysis. All the mathematical elements necessary for the use of these
distributions are presented.

The parameter estimation methods are the method of ordinary moments and the
method of linear moments. Both the exact equations and the approximate relations for
estimating the parameters of the distributions are presented. To estimate the parameters
using the L-moments method, in the case of distributions where the inverse function
does not have a close form and depends on more than two parameters, the estimation
of the distribution parameters is carried out numerically using the Gaussian Quadrature
method [23-25].

Figure 1 shows the membership of each analyzed distribution relative to the Beta
family of which it is a part [26].



Appl. Sci. 2023, 13, 4640 4 of 27

FAMILIES
OF
BETA
DISTRIBUTIONS

A4

GENERALIZED GENERALIZED BETA
BETA (BG5) BETA PRIME (BPG5) EXPONENTIAL (BE)
BG4 KUM4 PXII LL BR4 || DG || PvI || LMX || PR IPR EE
=1
B=c—a =1 a=1 a=1|| a=1 B=1l| 7=0|| a=1|| a=1|| a=2 a=1
y=a S=2-a 5=1 s=1|| s=1|| 1=1 =21 s=1

Figure 1. The relationships of Beta distribution families with other distributions.

The determination of the maximum flows was carried out in stages according to
Figure 2. The verification of the character of outliers, normality and homogeneity were
carried out in the data curation phase.

FLOOD FREQUENCY ANALYSIS

.

Data analysis
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Statistical analysis
Probability distributions
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Estimation of flows for
exceeding probabilities
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Apply Performance indicators:
RME, RAE, Confidence intervals,
T4~T3 diagram

A
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Figure 2. Methodological approach.
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2.1. Probability Distributions

Table 2 presents the probability density function, f(x), the complementary cumulative
distribution function, F(x), and quantile function, x(p), for the analyzed distributions.
All F(x) and x(p) of the analyzed distributions were determined using the methodology
presented in the Supplementary Materials, using only f(x) [11-15,26].

Table 2. The analyzed probability distributions.

Distr.

flx) F(x) x(p)
BG5 FT,S;?()Z) . ‘2’ . (";7)&'/\71 . <1 — (%)»071 ibetu((%){a,&) Y+ B gbeta(1 — p,a,&)%
BG4 et (- =) (=) 1 ibeta(£=4, 0, ) a-+(c—a)-qbeta(1 - p,a, B)
y—y\ a1 e\ &\ BT 1
Kumé a.ﬂ»(A—w A(j;(A—l) ) 17<17(}t:>a)ﬁ (Affy)-<lfp%>&+7
PXII (%}2:;(2:ﬁ‘)m 1- ibeta(%,tx,Z—tx) v+ B -In(gbeta(l — p,a,2 — a))
A1 A\ 0w o 1
was iy () (00 (7)) v es) e ()
X —(a+A) x abe Con,
PVI o (1+(€))M 1 —ibeta(l f%,a,A> ] bt
B
NI IR B\ _ i
LMX (5) ‘;,;Tv) 1- ibeta(ll,l,/\> R
w5
(=) (=) ) _ -1 i
LL (5 (55 (1+(52)) 7+ (1-1)
a—1 — 1
vr(5) _< x *“) ! -t q)E
DG . 1- (14 g-((1—p) 7 -1
Pl () ) ( )
£ () 1—— 1 ;
BR4 TS 14 (2 B\ YA —1
(1+(%)ﬁ) (*( 7) ) ((11;;)111
(5 - =)\ " 1 @
PR — ) 1+ y+B-(pa—1
B-((5) ) ( ( B ) ) p (P )
a2-1 a2 1
) () ( (1-p? )
IPR _VF) - Ug) s p
() () et
BE % -exp(—a- %) . (1 —exp(—"?))/\il 1-— ibeta(exp(—"?),a,/\) ¥ — B - In(gbeta(p, a, 1))
EE % -exp(—%) . <1 — exp(—%))/\il 1- ibeta(exp(—%),l,/\) ¥ — B -In(gbeta(p,1,A))

where I'(x) returns the value of the Euler gamma function of x; I'(a, x) returns the value of the incomplete gamma
function of x with parameter a; ibeta(a, x,y) returns the value of the incomplete beta function of x and y with
parameter a; and gbeta(p, s1,s2) returns the inverse cumulative probability distribution for probability p, for beta
distribution. All predefined functions are presented in Appendix D.

2.2. Parameter Estimation

The parameter estimation of the analyzed statistical distributions is presented for
MOM and L-moments, two of the most used methods in hydrology for parameter estima-
tion [3,9,11,16].
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2.2.1. Beta Generalized by Five Parameters (BG5)

The equations needed to estimate the parameters with MOM have the following
expressions:

F(“Jr%) T(x+9)
r(a+%+5) I'(a)

p=7+p" 1)

2
2 T(atd) T'(a+32) F(”“"X) T(a+9)

2
TP T | T 249 M(aries) @

@)

where y, 02 represents the expected value and variance.

Because they are too long, the relations for estimating skewness and kurtosis are
presented in Appendix C.

The parameter estimation with the L-moment method is carried out numerically
(definite integrals) based on the equations using the quantile of the function.

T@+%).rm+®

L1:7+ﬁ'r(a+i+§) ) 3)
Lzzj(ﬁqwma—pﬂjﬂ)x1—zpydp )
L3:Zj(ﬁ~ﬂwm(1—pﬂméﬂ>-(6~p2—6-p+ﬂ)-dp )
0
L4::j;<ﬁ-qbda(l——pﬂn5)i)~(1——20~p34—30-p2——12-p)~dp ©)
0

where Ly, Ly, L3, Ly represents the first four linear moments.

2.2.2. Beta Generalized by Four Parameters (BG4)

The equations needed to estimate the parameters with MOM have the following
expressions [26]:
_a-ctpP-a

o+ @
_(c—a\ a B (p—a)-(c—p)
02_(a+5>'a+ﬁ+1_ 7 ®)

_2-(B—a) x+pB+1
C“_a+ﬁ+2'v x-p ©)

3-(B+a+1)- 2 (a+p)]+u-B-(x+p—6)]
a-B-(B+a+2)- (B+a+3)

The parameter estimation with the L-moment method is carried out numerically
(definite integrals) based on the equations using the quantile of the function.

Cr =

(10)

_a-ct+p-a
Ly = et p (11)
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1
J qbeta(1—p,a,p)- (6-p*—6-p+1)-dp
=0 (12)

1
qubeta(l—p,lx,ﬁ) -(1=2-p)-dp

1
[ qbeta(1 —p,a,B) - (1—20-p>+30-p*> —12-p) - dp
0

T4 = (13)

1

qubeta(l—wfﬁ) (1-2-p)-dp

where 13, T4 represents the L-skewness and L-kurtosis, respectively.

2.2.3. Kumaraswamy (KUM4)
The equations needed to estimate the parameters with MOM have the following

expressions:
r(1+1)-rp
p=r (A=) BT (14)
r(1+p+1)
2 r(1+1)2-r(ﬁ)
2 _ A— 2 T . r(1+a) _R. x (15)
2= Q=BT | g b —
: r(1+p+1)
Because they are too long, the relations for estimating skewness and kurtosis are
presented in Appendix C.
The equations needed to estimate the parameters with L-mom have the following
expressions:
Li=v9+B; (16)
Ly=B1—2-B (17)
L3 =6-B3—6-By+ By (18)
Ly =By —12-By+30-B3 —20- By (19)
1).r(r
where By = (A — ) - g LUF8) 0B 5 34

T(1+rp+1)

2.2.4. Pearson XII (PXII)

The equations needed to estimate the parameters with MOM have the following
expressions [26]:

p=r+ Bt 20)
cep 503 o

2.0 —53-42 3
C, = a—3-a"+u 22)

(519"
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The shape parameter can be obtained approximately depending on the skewness
coefficient, using the following rational function (0.1 < Cs < 9):

, — 10003631 +0.2101096 - C; +0.0136862 C2 —0.0007348 - C3

23
14 0.7921435 - Cs + 0.4505945 - C2 + 0.2041907 - c3 @3)
(%
b= 24)
§-(1-3)
(N4
y=u-E2 25)

The parameter estimation with the L-moment method is carried out numerically
(definite integrals) based on the equations using the quantile of the function.

An approximate form can be adopted based on the parameter estimation depending
on L-skewness (0 < 13 < 1), as follows:

a« = 1.000119258 — 1.999964052 - 73 — 0.110940785 - T32 +4.915113247 - 7337

7.287825998 - T3 + 4.545489583 - T3 — 1.059896657 - 15 (26)
_L
P=- (27)
X
r=1,-£2¢ 28)

1
where z = [ gbeta(l — p,a,2 — ) - (1 —2-p) - dp, which can be approximated with the
0

following equation:

z = 0.000068524 + 0.495907748 - a — 0.768887496 - &> + 1.02025564 - &> — 1.043420944 - a*+

0.624074705 - «® — 0.161412167 - a® (29)

2.2.5. Beta Prime Generalized by Five Parameters (BPG5)

The equations needed to estimate the parameters with MOM have the following
expressions:

r(a+4)-r(s-1)
e S (Y0 .
o = b (r(a+ 1) T@-3%) - W) G1)

Because they are too long, the relations for estimating skewness and kurtosis are
presented in Appendix C.

The parameter estimation with the L-moment method is carried out numerically
(definite integrals) based on the equations using the quantile of the function.

r(a+4)-r(s-1)
T(a)-T(0) (2)

>l=

1
beta(1—p,a,A
{ <1iqeb:t(a(lf;,a,l\)) ' (6 ' p2 —6-p+ 1) ~dp

1
beta(1—p,u,A A
(1qugt(a(lﬁp,rx3\)) ’ (1 -2 p) ~dp

3 (33)

[STS
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1 1
beta(1—p,a,A) \ A

J (1qqe;:tu(1p;xa2\)>A (1-20-p*+30-p*—12-p) -dp

0 (34)

T4 = 1 I
gbeta(1—p,a,A) \ %
g‘(l gbeta(1— pou\)) (1=2-p)-dp

2.2.6. Pearson VI (PVI)

The equations needed to estimate the parameters with MOM have the following
expressions [26]:

_ B
2:/32~uc-(uc+)\—1) 36)
(A-17-(1-2)

. A—=2 0.5 2-(2-a+A—1)
C“‘(a4a+A_n> R e (37)
. 3-(A=2) 2. (A=1)

Ck_(A—3)‘(A—4)'(oc-(oc+A—1)+)‘+5> (38)

The parameter estimation with the L-moment method is carried out numerically
(definite integrals) based on the equations using the quantile of the function.

(A-1) / gbeta(1 —p,a, M)
o / 1 —qgbeta(l—p,a,A)

T = ~(1=2-p)-dp (39)

gbeta(1—p,a,\)
fl —qbeta(1—p,a,A) (6'P2—6-p+1)-dp

3 = (40)
b o,
fque;:ta(lppacg\) (1*2'P)'d}7

p=t @D @)

[44

2.2.7. Lomax (LMX)

The equations needed to estimate the parameters with MOM have the following
expressions:

u:7+% (42)
2 _ g A
T2 (- @)
c_ 2-0-(A+1) . )

15
(A=3)-(A—2)-(A-1)°- (Mw)

The parameter A can be obtained approximately depending on the skewness coefficient,
using the following rational functions (2 < Cs < 9):

3.9284194 — 3.0914822 - C, + 6.9762716 - C2
N 1—5.2706252 - Cs + 2.385356 - C2

(45)
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B=0o-(A—1)- 1—% (46)

r=n- s @)

The parameter estimation with the L-moment method is carried out numerically
(definite integrals) based on the equations using the quantile of the function.

—ny P
Ll—’)/—|—/\_1 (48)
1
(v+B)-gbeta(l—p,LA)—y =
/ gbeta(1 —p,1,A) —1 (1-2-p)-dp (49)

0

1
_ [ (y+B) -gbeta(1—p,1,A) — -
fs = / gbeta(1—p,1,A) — 1 (6 pr—6-pt 1) dp (50)

An approximate form can be adopted based on the parameter estimation depending
on L-skewness, as follows (13 > 0.35):

_ 7.7817436 + 257.3810019 - 15 + 330.3408356 - 732

5 (51)
1—296.9737484 - 13 + 882.1944808 - 75
Ly
=2 2
p=- 2)
P
-, —
v=Li-3— (53)
where the exact form of the z parameter is:
I gbeta(1—p,1,A)
- _ qoetatl —p, 14, (1—2.p).
2= O/qbeta(l —p,1,A) =1 (1=2-p)-dp G4
or a simplified form can be adopted using a rational function:
~ —0.3686598 + 0.4493708 - A — 0.0010038 - A? (55)

1—1.8121107 - A + 0.8536406 - A2

2.2.8. Log-Logistic (LL)

The equations needed to estimate the parameters with MOM have the following

expressions [11,26,27]:
1 1
y—’y—i—[ﬂ-l"(l—i—a)-l"(l—a) (56)

A ()00 0)) e

Because it is too long, the relationship for estimating skewness is presented in
Appendix C.

The shape parameter can be obtained approximately depending on the skewness
coefficient, using the following rational function:
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2.2464005 — 0.8505518 - In(Cs) + 0.1224968 - In(Cs)*+

a=exp| 0.0509751-In(Cs)> + 0.0033792 - In(Cs)* — 0.0066062 - In(Cs)°— (58)
0.0021326 - In(Cs)® + 0.0002985 - In(Cs)” + 0.0002292 - In(Cs)® + 0.0000263 - In(C;)°
(%
B= (59)

Jra+2)ma-2-r(1+ 1) (-1

7:;{‘5-F(i>~r<li> (60)

The equations needed to estimate the parameters with L-moments have the following

expressions:
1 L
= — = — 1
o o I (61)
2
-L

B (62)

r2) (=)

72&5-1‘({1)&“(13‘) (63)
2.2.9. Dagum (DG)

The equations needed to estimate the parameters with MOM have the following
expressions [13,26,28]:

o-2) o
p=5- ) (64)
2 r 2).1(1 -2 _I(+d)r(-g)
(72:?7)-( (y+32) T(1-32) ) ©5)

Because they are too long, the relations for estimating skewness and kurtosis are
presented in Appendix C.
The equations needed to estimate the parameters with L-moments have the following

expressions:
1), _1
Li=8- r<7 +ra(1 :1()1 a) 0
r(2-y+i)y.r(1-1) r(y+21)-r(1-1
LFW'(Z' ( r(2.27+1<) ) 4 r(2r+1<) )> )

TG 7+1) -6 T2 7+1) + Ty +1)

LB_M.(6,f(3-v+i)'f(l—i) ro+i) r(-d) F(H)'f(l—i)) )

2.2.10. Burr of Four Parameters (BR4)

The equations needed to estimate the parameters with MOM have the following

expressions [14,26]:
r(-4) 1o 1) o

p=v+A (@)
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L4:/\-F<

B

e (e )

Because they are too long, the relations for estimating skewness and kurtosis are
presented in Appendix C.
The equations needed to estimate the parameters with L-moments have the following

expressions:
. —1). 1
M—V+AFO ﬁ&;@+ﬁ) o
. 1 1
LQ—AI(l—é)-C(;;:f)—rqgf)> (72)

B TG-a)  T2.a) | T@

L3—A.r(1_1)-<2’r(3'“é) 3-1(2-a+ ) I“(a—k/lg)) )

T4-«) TG | Tea T

) (Frfed) mrfed) orleend) ),

2.2.11. Paralogistic (PR)

The equations needed to estimate the parameters with MOM have the following

expressions:
1). _1
ﬂ=v+ﬁ~r(1+“2(‘;(“ ) (75)
2 r1+§2.ra—§2
Aol ) ) )

Because it is too long, the relationship for estimating skewness is presented in
Appendix C.

The parameter & can be obtained approximately depending on the skewness coefficient,
using the following rational functions (0 < Cs < 4):

5185064722 + 14.441621221 - C; + 7.41534611 - C2 + 3.251478763 - CJ

77
1+ 3.712917717 - C; + 3.852064136 - C2 + 1.822992333 - c3 @7)
o
p= — 78)
r(1+1)°r(a=1
ety (1) ra - - TCee)
r(1+1).r(a-1
'y:y—ﬁ- ( al)—v(‘x)( lX) (79)

The equations needed to estimate the parameters with L-moments have the following

expressions:
ﬁoF(l#*%)-F(ag—%) )

e M)




Appl. Sci. 2023, 13, 4640 13 of 27

I'(a) (2 a)

ngﬁ.r(ui)(r(ai) +2-r(3.¢r%) _3'r(2~ai)> )

Lz:ﬁ.r<1+i>.<f(«-;)_f(m-i)) -

I'(w) I'(3-a) r2-a)

An approximate form can be adopted based on the parameter estimation depending
on L-skewness, as follows:

0.000006321 — 0.499775727 - In(3) + 0.126690856 - In(13)+
a=exp| 0.067638333-In(13)° 4 0.002255123 - In(13)* — 0.00279206 - In(13)°— | (83)
0.000477164 - In(73)® — 0.000016444 - In(73)” + 0.000001032 - In(73)®

Ly
p= I 1 (84)
1"(1 + %) ) <F(I‘j‘<a)a) _ r(g(}ﬂ;))
. 1), _1
o B-T(1+ ;()“)r(a 1) )

2.2.12. Inverse Paralogistic (IPR)

The equations needed to estimate the parameters with MOM have the following

expressions:
1) _1
ﬂ=7+ﬁ~r(a+“2(;)(1 ) (86)
2 r(i-1 ‘1 o+ 1 ’
A U R R I

Because it is too long, the relationship for estimating skewness is presented in
Appendix C.

The parameter « can be obtained approximately depending on the skewness coefficient,
using the following rational functions (1.3 < Cs < 7):

9.1148085 — 48.5411515 - In(Cs) + 178.4282739 - In(C,)? — 411.0985176 - In(Cs )3+

a=exp| 611.4661111-In(Cs)* —596.305336 - In(Cs)° + 378.4065467 - In(C )°— (88)
150.2898201 - In(Cs)” + 33.8871674 - In(Cs)° — 3.3074833 - In(Cs )°
o
p= — (89)
T 1—; - lX-‘r&
ety (-2 res - 1Ot
r(i-1)-r(a+1)
’)/:‘u_‘B' r(‘x) (90)

The equations needed to estimate the parameters with L-moments have the following

expressions:
T(L . _1
! F(”s()a)r(l ) 91)

L1:’Y+
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Lz:ﬁ.r@_i).(f(hz.a)_F(iw)) -

2 a) T'(a)
Fla+l) 2.T(3-a+1) 3.T(2-a+!
ngﬁ'r(l_i)'( (F(zx))+ 1§(3.a) >_ I<‘(2.tx) )) ©3)

An approximate form can be adopted based on the parameter estimation depending
on L-skewness, as follows:
if0.17 <1, < 1/3:

L _ 507675 10% — 7.55684 - 10* - 73 4 5.36797 - 10° - T2 — 1.35970 - 10° - 75 + 1.30233 - 10° - 7

94
1—4.59437 -10% - 13 +2.70167 - 10* - 2 GY
if1/3 <1 < 1:
o =5.37952 - 10 — 4.84016 - 102 - 73 + 2.02215 - 10° - 15 — 4.79644 - 10° - 15+ 95)
6.86370 - 10° - T3 — 5.88301 - 10% - 73 +2.78592 - 10° - 7§ — 5.61108 - 10? - 77
_ La

=N (1w () 0

F<1 - &) \Teo” T T

1 1

B F(&—i—oc) ~F<1—E>

2.2.13. Generalized Beta Exponential (BEG)

The equations needed to estimate the parameters with MOM have the following
expressions [26]:

p=7+p Yla+A)—p)) (98)
o =p- (foéw(a) - %w + A)) (99)

where ¢(.) is the digamma function.

Because they are too long, the relations for estimating skewness and kurtosis are
presented in Appendix C.

The parameter estimation with the L-moment method is carried out numerically
(definite integrals) based on the equations using the quantile of the function.

Li=v+p (Yla+A)—ya)) (100)
1
Lo = [ (v B-In(gbeta(p,a,1))) - (12 p) - dp (101)
0
1
Ly = /('y — B -In(gbeta(p,a, ))) - (6 . p2 —6-p+ 1) -dp (102)
0

1
Ly = [ (v = B-In(gbeta(p,,1)) - (1-20-p° +:30- p2 ~12-p) -dp  (103)
0
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2.2.14. Exponential Exponentiated (EE)

The equations needed to estimate the parameters with MOM have the following
expressions [26]:
p=a+B-(P+A)+7) (104)

2
2 =g (72 - %1;7(1 +A)> (105)

25—y A)
2 d 15
(? -y + )\))

Cs = —sign(p) - (106)

12~\/€-1%6 %
where (3 = T’le = 1.20206 represents the Apéry constant; -, is the Euler constant.
The parameter A can be obtained approximately depending on the skewness coefficient,
using the following rational functions:

if1.14 < C; < 3.5:

~ —5.7038508 4 52.1673063 - Cs — 13.12714 - C2 + 1.3289768 - C3

A 107
1 —38.9615308 - C; + 33.4202875 - C2 (107)
If35 < Cs < 6:
) — 3:3925215 +0.846506 - C; — 0.0917235 CZ +0.0039149 - C3 (108)
B 1 —2.7850046 - Cs + 2.3792237 - C2
p=— (109)
VE — &Psi(1+A)
vy=p—pB-(Psi(1+A)+7) (110)

The parameter estimation with the L-moment method is carried out numerically
(definite integrals) based on the equations using the quantile of the function.

An approximate form can be adopted based on the parameter estimation depending
on L-skewness, as follows:

if0.2 <13 <0.5:

. —12.004042281 — 47.743332457 - In(|13]) — 85.899138968 - In(| 73|)% — 80.388606858 - In(|13/)° — a11)
37.480240859 - In(|13|)* — 7.01919696 - In(|73])°

if05 <3 <1:

N\ — exp[ —5:364702604 —34.021073341 - In(|73|) — 188.611284247 - In(|73])? — 646.938215195 - In(| 3])° — a12)
1242.386890647 - In(| 3] )* — 1234.11526034 - In(|13])° — 492.882068577 - In(| 13| )°

_ Ly
= Psi(1+A)+ 7. +2-z

(113)

y=L—B-(Psi(1+A)+ ) (114)

1
where z = [In(gbeta(p,1,A)) - p - dp, which can be approximated with the following
0

equation:

z = 0.016876369 — 0.245383036 - A — 0.065754 - A% 4 0.063041485 - A3 —

0.018734017 - A* + 0.002522947 - A5 — 0.00012935 - \° (115)
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3. Case Study

The presented case study consists of the determination of maximum annual flows on
the Prigor River, Romania, using the proposed probability distributions.

The Prigor River is the left tributary of the Nera River, and it is located in the south-
western part of Romania, as shown in Figure 3. The geographical coordinates of the location
are 44°55'25.5” N 22°07'21.7” E.

Prigor river

Figure 3. The location of Prigor River and Prigor hydrometric station.

The main morphometric characteristics of the river are presented in Table 3 [29].

Table 3. The morphometric characteristics.

Length Average Sinuosity Average Watershed
[km] Stream Slope [%o] Coefficient [-] Altitude, [m] Area, [km?]
33 22 1.83 713 153

In the section of the hydrometric station, the watershed area is 141 km? and the average
altitude is 729 m. There are 31 annual observed data values with their values presented in
Table A1l from Appendix B.

The main statistical indicators of the observed date are presented in Table 4.

Table 4. The statistical indicators of the data series.

Statistical Indicators

Prigor u o C’(J Cs Ck L1 L2 L3 L4 T2 T3 T4
[m3/s]  [m3/s] [-] [-] [-] [m3/s]  [m3/s] [m3/s] [m3/s] [-] [-] [-1
27.6 21.1 0.762 1.66 5.17 27.6 10.7 4.26 243 0.386 0.399 0.228

where y, 0, Cy, Cs, Cx, L1, L2, L3, Lg, T2, T3, T4 represent the mean, the standard deviation, the coefficient of variation,
the skewness, the kurtosis, the four L-moments, the L-coefficient of variation, the L-skewness, and the L-kurtosis,
respectively. For parameter estimation with L-moments, the data series must be in ascending order for the
calculation of natural estimators, respectively L-moments [3,8,11].

4. Results

The proposed distributions were applied to perform a flood frequency analysis using
the maximum annual flows (AM) on the Prigor River.

MOM and L-moments were used to estimate the parameters of the distributions.
For the MOM, the skewness coefficient was chosen depending on the origin of the flows
according to Romanian regulations [2], based on some multiplication coefficients for Cs.
For the Prigor River, the multiplication coefficient of 3 applied to the coefficient of variation
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of the observed data was used, resulting in a skewness of 2.29 compared to 1.66 of the
observed values.
Tables 5 and 6 present the results values of quantile distributions, for some of the most

common exceedance probabilities in flood frequency analysis.

Table 5. Quantile results of the analyzed distributions for MOM.

Method of Ordinary Moments (MOM)

Exceedance Probability [%]

Distr. 0.01 0.1 0.5 1 2 3 5 10 20 40 50 80
PE3 214 160 122 106 90.7 81.5 69.9 54.5 39.4 249 20.5 12
BG5 236 166 122 105 88.4 79.2 68 53.5 39.7 26.3 219 11.9
BG4 177 149 122 109 94.1 84.9 727 55.6 38.4 229 18.8 13.3

KUM4 214 160 123 107 90.6 81.4 69.8 54.4 39.4 25 20.6 12
PX1I 134 128 118 109 98.1 89.8 77 4 57.3 36.1 20 17.2 15.4

BPG5 141 127 114 107 97.3 90.2 79.1 58.9 35.1 18.8 17 16.2
PVI 248 166 121 103 87.1 78.1 67.3 53.4 40 26.8 22.3 11.7
LMX 225 162 122 106 89.6 80.4 69.1 54.2 39.6 255 211 11.8
LL 279 169 117 98.7 82.7 74.2 64.3 51.9 40.4 28.6 243 12
DG 278 163 113 95.6 81 73.3 64.3 53 419 29.2 241 10
BR4 256 167 120 102 85.8 77 66.4 529 40.1 274 23 11.8
PR 269 167 117 99.6 84 75.6 65.6 529 40.7 28 235 114
IPR 262 169 120 102 85.4 76.5 66 52.7 40.1 27.5 232 11.9
BEG 210 158 122 107 91.2 82.1 70.7 55.1 39.6 24 19.1 12.7
EE 212 159 122 107 90.9 81.7 70.2 54.6 394 24.7 20.3 12.1
Table 6. Quantile results of the analyzed distributions for L-moments.
Method of Linear Moments (L-Moments)
Exceedance Probability [%]

Distr. 0.01 0.1 0.5 1 2 3 5 10 20 40 50 80
PE3 231 172 130 113 95.4 85.3 727 55.9 39.7 244 19.8 11.4
BG5 298 202 143 119 97.9 86 719 54.2 384 244 20.2 11.8
BG4 238 176 133 115 96.7 86.3 73.3 56 39.4 24 19.5 11.5

KUM4 248 181 136 116 97.4 86.5 73.1 55.6 39.1 24 19.6 11.6

PXII 106 103 98.2 94 87.8 82.9 75.1 61.1 43.1 23.6 18.2 11.2

BPG5 342 211 144 119 97.1 85.2 71.3 54 384 244 20.2 11.8
PVI 559 270 159 125 97.8 84 68.9 51.5 37 24.6 20.8 12.3

LMX 329 207 142 118 96.8 85.1 71.4 54.2 38.6 245 20.2 11.7
LL 799 320 169 128 96.7 82.1 66.6 49.6 36.2 24.7 21.2 12.5
DG 792 319 168 128 96.8 82.2 66.7 49.7 36.2 24.7 21.2 12.6

BR4 600 265 151 119 93.7 81.3 67.7 52.1 384 25.1 20.6 11.3
PR 647 286 161 125 96.7 82.9 67.9 51 36.9 24.7 20.9 12.2
IPR 719 305 166 128 97.4 82.9 67.4 50.2 36.3 24.6 21 12.6
BEG 238 176 133 115 96.7 86.3 73.3 56 39.4 24 19.5 11.5
EE 225 169 129 112 95.1 85.2 72.8 56.2 39.8 24.3 19.7 114
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The results are presented comparatively, both for the method of ordinary moments and
for the method of linear moments, with the Pearson III distribution which is the “parent”
distribution in Romania for flood frequency analysis.

Figure 4 shows the fitting distributions for annual maximum flow for the Prigor River.
For plotting positions, the Nguyen formula was used [30,31].

3004 500%
m Observed data — PE3 m Observeddata — PE3
— L KUM4 450 — ) — KUM4
= DG —BR ] S
BG4 — BG5 400 — BG5
—PVI - - PXIl 350 == PXi
BPGS -+ - BEG -« - BEG
T == - LMX w3001 - LMX
E - PR PR E 2501 IPR
2 g
E o 2001
1501 i
100F=========mmmmee. —
501 %\Qr
0 L 0 T —r
0.01% 0.1% 1% 10% 100% 0.01% 0.1% 1% 10% 100%
Exceedence probability [%] Exceedence probability [%]
(a) MOM (b) L-moments
Figure 4. The fitting distributions.
Table 7 shows the values of the distributions’ parameters for the two methods of
estimation.
Table 7. Estimated parameter values.
Methods of Parameter Estimation
Distr. MOM L-Moments
o B 0% A é a c [ B 0% A J a c
PE3 0.766 24.1 9.2 - - - - 0.694 26.9 9.0 - - - -
BG5 554 17,088 1.1675 0.1375 83.9 - - 3049 3558 6.51 0.1193 28.73 - -
BG4 0.404 5.59 - - - 12.7 235 0.645 3937 - - - 9.43 11,125
KUM4 0.88 59.4 8.72 1853 - - - 0.799 423 9.03 1853 - - -
PXII 0.203 121 15.38 - - - - 0.354 95.9 10.7 - - - -
BPG5  0.0227 141 16.2 6.3042 11.1 - - 0.0632 103 —102 —104.68 560.3 - -
PVI 2.7164 75.8 - 8.446 - - - 10.31 6.29 - 3.34 - - -
LMX - 45442 749 23.556 - - - - 120.9 7.95 7.137 - - -
LL 5.230 52.8 —28.5 - - - - 2.51 20.3 0.90 - - - -
DG 4.34 46.1 0.24 - - - - 2.53 19.84 1.13 - - - -
BR4 57.95 7.641 —83.5 59.7 - - - 0.226 2.760 8.54 36.1 - - -
PR 22531 4495 511 - - - - 1.6775 24.39 4.545 - - - -
IPR 6.9615 66.76 —69.1 - - - - 27342 1722 —6.092 - - - -
BEG 0.0648 1.45 12.7 0.1236 - - - 28.17 790 9.43 0.645 - - -
EE - 22.8 9.68 0.703 - - - - 24.5 9.164 0.662 - - -

The performance of the analyzed distribution was evaluated using the relative mean
error (RME) and relative absolute error (RAE) criteria [22,32,33]. For the L-moments
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method, the selection criterion is represented by the values and the L-skewness-L-kurtosis
diagram.

RvE = L. |3 (520 116)
- \& i
_ 1 |xi—x(p)
RAE = - -; xz‘ (117)

where n, x;, x(p) represent sample size, observed value, and estimated value for a given
probability, respectively.
The distributions’ performance values are presented in Table 8.

Table 8. Distributions performance values.

Statistical Measures

Methods of Parameter Estimation

Distr. MOM L-Moments Observed Data

RME RAE RME RAE T s 3 7
PE3 0.0231 0.0841 0.0219 0.0885 0.192
BG5 0.0186 0.0871 0.0165 0.0712 0.228
BG4 0.0432 0.1198 0.0237 0.0912 0.228
KUM4 0.0214 0.0804 0.022 0.0843 0.228
PXII 0.0660 0.2092 0.0329 0.1338 0.118
BPG5 0.0742 0.2481 0.0171 0.0734 0.228
PVI 0.0233 0.1098 0.0149 0.0639 0.271

LMX 0.0184 0.0784 0.0181 0.0765 0.399 0.221 0.399 0.228

LL 0.0537 0.2060 0.0165 0.0715 0.299
DG 0.0480 0.2141 0.0164 0.0714 0.300
BR4 0.0330 0.1424 0.0214 0.0910 0.228
PR 0.0398 0.1696 0.0155 0.0672 0.272
IPR 0.0357 0.1506 0.0158 0.0678 0.295
BEG 0.0441 0.1399 0.0237 0.0912 0.228
EE 0.0250 0.0872 0.0224 0.0907 0.188

5. Discussions

Flood frequency analysis is necessary to determine the maximum flows with certain
exceeding probabilities necessary for the design of hydrotechnical constructions and estab-
lishing the bankfull discharge. The choice of distributions and the methods of estimating
the parameters of these distributions have an important role in the correct performance of
such an analysis.

In Romania, the regulations [34] do not provide sufficient rigorous mathematical
criteria. The normative approach is deficient, analyzing in a random way distributions
with two or three parameters, and only the method of ordinary moments is treated as
the method of parameter estimation. Thus, taking into account the modern approaches
of using the L-moments method in estimating the parameters of the distributions in the
frequency analysis of extreme events, this manuscript presents 14 statistical distributions,
from three families of Beta distributions, with applicability in flood frequency analysis,
which use the method of ordinary moments and L-moments for parameter estimation.
An important criterion for choosing the distributions in the analysis with L-moments is
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the 13-74 variation; it is recommended to use distributions that have the values of these
indicators very close to those of the observed data. Figure Al from Appendix A shows the
graph and 13-74 variation relations for some of the most used distributions in hydrology,
including some of the distributions analyzed in this manuscript.

All the results obtained in the case study are presented compared to the Pearson III
distribution, which is considered the parent distribution in Romania.

From the obtained results it can be seen that for the distributions with three parameters,
the calibration is satisfactory for MOM, the skewness being chosen according to the genesis
of the flows, as is the hydrological practice in Romania. It should be mentioned that for
the MOM estimation, both for the three-parameter distributions and for the four- and five-
parameter distributions, the resulting values are characterized by a degree of uncertainty
due to the fact that a proper calibration of the kurtosis cannot be done.

For the L-moments method, the results obtained using the three-parameter distri-
butions are generally unsatisfactory, generating unrealistic values in the area of small
exceedance probabilities (left hand), and do not achieve a proper calibration of the high-
order linear moments. The PIII and EE distributions are an exception, but this is due to
the fact that the variation of the shape parameter for the two estimation methods does not
differ much. For example, Figure 5 shows the variation graph of the shape parameter for
the Pearson III and Log-logistic distributions, for both estimation methods. Both skewness
and L-skewness depend only on the shape coefficient «.

8 <
75 N — MoM 75], == MOM.
7 N —— L-moments (0.9 71 —— L-moments 0.9
08 08

07 0.7

06 06

05 05

skewness
L-skewness

skewness
L-skewness

04 04

03 03
0.2 0.2

0.1 0.1

0 0 0
0.001 0.01 0.1 1 10 100 1000 10000 1 2 5 10 20 50 100 200 500 1000

parameter a parameter a

(a) Pearson III (b) Log-logistic
Figure 5. The variation of parameter «.

It can be seen that the Pearson III distribution is more stable. A significant difference in
the variation of the shape coefficient was registered for a narrow area, namely for 73 > 0.8,
and Cs > 6.5, values that are not usually found in flood frequency analysis.

In the case of the Log-logistic distribution, the variation of the parameter differs
greatly for the two methods, over almost the entire range of values of skewness, and
L-skewness, an aspect also observed in the results presented in the graph of Figure 4.

Among the analyzed distributions with four or five parameters, including follow-
ing the research carried out within the Faculty of Hydrotechnics, as well as the results
obtained following the case study in this manuscript, the distributions from the Beta fami-
lies recommended in flood frequency analysis using the L-moments method to estimate
parameters, are the distributions KUM4, BEG, BG4, and BG5, which showed a stability
related to both the length of the observed data and the presence of outliers. It can also be
observed that these distributions exactly approximate all the indicators obtained based on
linear moments.

This criterion of calibration 73-74 is the most important criterion in the correct selection
of distributions in analysis with L-moments. The results obtained with the RAE and RME
performance indicators, both for MOM and for L-moments, provide relevant information
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only in the area of the probabilities of the observed values; outside this area (left-hand,
upper part of the graph) it loses its relevance.

The manuscript does not exclude the applicability of other distributions from other
families (Gamma, GEV, Pareto) in frequency analysis of extreme values, especially since
these families were also analyzed within the research carried out in the Faculty of Hy-
drotechnics and presented in other materials [3,19,24].

In general, the L-moments method is a much more stable method than other estimation
methods, being less influenced by the length of observed data as well as by the presence of
extreme values (outliers), [8,9,17,18]. However, in certain situations (small length of data, n
< 20), the statistical indicators obtained with this method require some correction, which
can be achieved using the least squares method [35].

In the Supplementary Materials, the graphs of the analyzed distributions are presented,
highlighting the confidence intervals determined based on the simplified Chow relation-
ship [11] for MOM, along with those based on the simplified relationship for L-moments
presented in [19], both using the frequency factors specific to the distributions.

6. Conclusions

This manuscript presents 14 statistical distributions of three, four and five parameters,
from three families of Beta distributions. Some of these distributions have received limited
attention for frequency analysis of extreme values, especially flood frequency analysis.

These families of distributions, along with other families of distributions, were ana-
lyzed in the research carried out in the Faculty of Hydrotechnics regarding the improvement
of the existing legislation for the determination of extreme events, respectively the elabora-
tion of a norm regarding frequency analysis in hydrology [3,19,27].

To estimate the parameters of the analyzed distributions, the method of ordinary
moments and the method of linear moments were used, two of the most used methods for
estimating parameters in hydrology.

All the necessary elements for their use are presented, including the probability density
functions, the complementary cumulative distribution functions, the quantile functions and
the exact and approximate relations for estimating parameters. Approximation relation-
ships of distribution parameters eliminates the need for iterative numerical calculation; in
many cases this was an inconvenience in the application of certain probability distributions.

A flood frequency analysis case study was carried out for the Prigor River to verify
the performances of the proposed distributions. The performance of these distributions
was evaluated using relative mean error and relative absolute error [23]. Performance
indicators are only valid for the range of recorded values, thus, additional selection criteria
are required., The selection criterion for parameter estimation with the L-moments method
is the 13-14 diagram, because it is also valid outside the range of recorded values (low
exceedance probabilities) [3,21]. In Romania, short series of data are available, and so the
L-moments method is recommended because it also eliminates the often arbitrary criteria
for choosing the skewness as practiced with MOM. The L-moments method is a more
stable method than MOM, and is generally less influenced by relatively small lengths of
data [8,10,18,19,36,37].

Among the distributions from the analyzed Beta families, for flood frequency analysis
and the L-moments estimation method, good candidates are the KUM4, BEG, BG4 and BG5
distributions, which presented a stability related to both the length of the observed data
and the presence of outliers.

The future scope of the research is to establish the necessary guidelines for a robust,
clear and concise norm regarding the determination of extreme events using the L-moment
estimation method, using distributions from a wide range of families (Gamma, Beta,
Generalized Extreme Value, Generalized Pareto, etc.).

The methods and the new elements presented in the manuscript will be used to create
computer applications specialized in flood frequency analysis, which will be open source,
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to facilitate the application of the new standard and a proper transition from MOM to
L-moments method.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/app13074640/s1, Figure S1: The fitting distributions with Confi-
dence Intervals.
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Abbreviations

MOM the method of ordinary moments

L-moments the method of linear moments

U expected value; arithmetic mean

o standard deviation

Cy coefficient of variation

Cs coefficient of skewness; skewness

Ck coefficient of kurtosis; kurtosis

Ly,Ly, L3 linear moments

Ty, LCy coefficient of variation based on the L-moments method
13, LC; coefficient of skewness based on the L-moments method
T4, LCy coefficient of kurtosis based on the L-moments method
mq, myp, m3, my  central moments (with MOM)

gr, By represents the function that generates characteristic moments
Distr. Distributions

RME relative mean error

RAE relative absolute error

Xi observed values

Appendix A. The Variation of L-kurtosis-L-skewness

In the next section, we present the variation of L-kurtosis, depending on the positive
L-skewness, obtained with the L-moments method, for certain theoretical distributions
often used in hydrology and in this manuscript [3,11,19].
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Pearson III:

7 = 0.1217175 + 0.030285 - 3 + 0.0266125 - 73 + 0.8774691 - 75 — 0.0564795 - T4

Log-logistic:

14513
y=-—23

Paralogistic:

~ 0.16667 + 0.83333 - 3

74 = 0.1262814 4 0.0078207 - 734-0.9179335 - T3 — 0.0328508 - 75 — 0.0190348 - 7§

Inverse-Paralogistic:

74 = 0.0577651 4 0.5568896 - 73 — 0.2198157 - 75 + 0.9069583 - 75 — 0.3025029 - 75

Appendix B. The Annual Maximum Observed Data from the Prigor River

The annual maximum observed data are presented in Table A1.

Table Al. The observed data from the Prigor hydrometric station.

Annual Maximum Flows

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Flow [m3/s] 9.96 15 10.1 14.8 7.30 21.2 18.2 214 13.1 14.5 35
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Flow [m3/s] 19.9 22.1 11.8 80.3 88 51.6 72.2 16.2 42.6 28.5 12.8
2012 2013 2014 2015 2016 2017 2018 2019 2020
Flow [m3/s] 31.2 241 52.2 21.1 18.9 6.40 249 15.1 36.6

Appendix C. The Relationships for Estimating Skewness and Kurtosis

Five-parameter Generalized Beta distribution (BG5):
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The Log-logistic distribution (LL):
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Four-parameter Burr distribution (BR4):
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Ep(@) ~ Fplet 1) +3- (9(@) " 6 Fyl@) -yt 1) +3- (Fpla+ 1))

(L@ ~ fpa+n)

Appendix D. Built-In Function in Mathcad and Excel

I'(x)—returns the value of the Euler gamma function of x;

I'(«, x)—returns the value of the incomplete gamma function of x with parameter a;
ibeta(a, x, y)—incomplete Beta, returns the value of the incomplete beta function of x and y
with parameter g;

gbeta(p, s1, sp)—returns the inverse cumulative probability distribution for probability p,
for beta distribution. This can also be found in other dedicated programs (BETA.INV
function in Excel).

(.)—the digamma function; returns the derivative of the natural logarithm of the gamma
function I'(z).
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