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Abstract: Most of the world’s crops can be attacked by various diseases or pests, affecting their quality
and productivity. In recent years, transfer learning with deep learning (DL) models has been used to
detect diseases in maize, tomato, rice, and other crops. In the specific case of coffee, some recent works
have used fixed hyperparameters to fine-tune the pre-trained models with the new dataset and/or
applied data augmentation, such as image patching, to improve classifier performance. However,
a detailed evaluation of the impact of architecture (e.g., backbone) and training (e.g., optimizer
and learning rate) hyperparameters on the performance of coffee rust classification models has
not been performed. Therefore, this paper presents a comprehensive study of the impact of five
types of hyperparameters on the performance of coffee rust classification models. Specifically, eight
pre-trained models are compared, each with four different amounts of transferred layers and three
different numbers of neurons in the fully-connected (FC) layer, and the models are fine-tuned with
three types of optimizers, each with three learning rate values. Comparing more than 800 models in
terms of F1-score and accuracy, it is identified that the type of backbone is the hyperparameter with
the greatest impact (with differences between models of up to 70%), followed by the optimizer (with
differences of up to 20%). At the end of the study, specific recommendations are made on the values
of the most suitable hyperparameters for the identification of this type of disease in coffee crops.

Keywords: deep learning; CNN; coffee rust; transfer learning; DenseNet; Xception; inception

1. Introduction

Plant pests and diseases are one of the major problems affecting food security world-
wide [1]. Due to the impact of climate change on the incidence of pests and diseases,
actions for their protection, e.g., crop monitoring, are mandatory [2]. However, this is a
time-consuming and costly task for the farmer [3]. Within the technological solutions for
crop monitoring, artificial intelligence (AI) and deep learning (DL) techniques have demon-
strated high accuracy values in the detection of pests and diseases [4]. However, challenges
remain when using these types of models in natural environments (e.g., variability of colors,
shapes, textures, and light) [5], while the number of examples in the image sets used to
train these models has not been very large. In turn, their images may contain distractors
(e.g., the hand or shoes of the farmer), which could divert the attention of the model into
false patterns that affect the decision about the presence of the disease in the plant [6,7].

In the state-of-the-art, there are numerous solutions for crop disease identification
using transfer learning with DL-based models. For example, a GoogLeNet-based model
allows the identification of 38 classes of 14 crop species and 26 diseases, under controlled
conditions using the Plantvillage dataset (54,303 images) [8]; the model achieved 99.25%
accuracy using weight transfer, and 98.24% accuracy with fine-tuning. However, when
the trained model was evaluated with a different dataset, the accuracy was reduced to
31%. Although these differences between the training/validation set and the test set may
be related to overfitting, they may also be due to the test set being more complex than
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the training/validation set, or to the fact that the test set is not necessarily more complex
but simply different than the training/validation set [9]. Similarly, a pre-trained network
based on GoogLeNet was used to classify leaf diseases of 12 plant species (56 classes in
total). In that study, the usefulness of a small dataset (i.e., 1383 images) was evaluated,
reaching accuracy values for the classes between 65% and 100% [10]. Likewise, the trained
model was evaluated with images of the dataset after background removal, obtaining
better accuracy values for most of the classes [11]. In another study, a combination of CNN
(Convolutional Neural Networks) architectures (specifically VGG16 + Inception) was used
for the classification of maize and rice diseases from the Plantvillage dataset (3852 images,
4 categories), and the accuracy obtained was 92% for rice and 80% for maize. Additionally,
this hybrid model was compared against other models obtained by transfer learning, whose
accuracy results were 65.19% for VGG19, 85.56% for Inceptionv3, 65.19% for ResNet50 and
80.27% for DenseNet [12].

Specifically in coffee leaf monitoring, several pre-trained models (e.g., AlexNet,
GoogLeNet, VGG16, ResNet50 and MobileNetV2) have been used for disease identifi-
cation [13,14]. For instance, DL-based models were trained with a dataset of Arabica coffee
leaves affected by 4 types of diseases and 5 levels of affectation (healthy, very low 0.1–5%,
low 5.1–10%, high 10.1–15% and very high >15%), obtaining accuracy results between
90% and 95%. However, the authors warn of the need to use images captured in real
environments, as they differ from images of controlled environments, for example, in terms
of illumination and the presence of shadows [10]. In another study, ResNet was used as
the backbone of the model, and two types of datasets were used to train and validate it.
The first one corresponds to raw images from the RoCoLe dataset, and the second one
corresponds to a mixture between binary segmentation and patches of the original images.
According to the results, the model trained with the second dataset provides an accuracy
of 98% versus 75% of the model trained with the first dataset [15].

The solutions proposed in the literature for the classification of coffee leaf diseases (Rust,
Phoma, Cercospora, Leaf Miner an others) have used a diversity of hyperparameters that do
not facilitate specific conclusions. In the case of the optimizer, SGD [14,16–18], Adam [18,19],
or RMSprop [18] have been used, both with fixed learning rates ([0.01, 0.001] [17,20]) and learning
rate values selected from a range ([0.001–0.3], [0.01–0.00001] [14,18]). The number of units in the
fully connected layer, prior to the classification layer, was also implemented with values in the
range 20–200 [14], or 256–1024 [21]. Dropouts of 0.5 [18], or 0.8 [19] have also been applied. These
models have been trained from 20 to 300 epochs [16,17,19–21], with batch sizes including 16, 32
or 64 images [17,19,21]. Regarding the architecture types, models with specific design [17] and
models by transfer learning have been evaluated, including MobileNetV2 [19], DenseNet [19],
InceptionResNetV2 [19], ALexNet [20], GoogLeNet [17], VGG16 [21], ResNet50 [16,17,19], and
Xception [21]. Also, fine tuning [18] or data augmentation [21] have been involved.

In summary, the state-of-the-art works have assumed the values of hyperparameters
for both architecture (e.g., network type, network depth, neurons in fully connected lay-
ers) and training (e.g., optimizer, learning rate), but have not performed an exhaustive
evaluation of their impact on model performance. Neither have they proposed a concrete
methodology to rank the hyperparameters and make decisions on their values for the
in-crop disease detection problem. For this reason, this study proposes a model-centered
methodology for image classification tasks (specifically crop disease detection) that allows
answering the following questions: what types of hyperparameters are the most influential
on the classifier performance? and how to organize an experiment that allows selecting the
best values of these hyperparameters?

The main contributions of this study include the following results:

• We propose a methodology for model-centric deep learning projects that allows
hierarchization of hyperparameters and selection of the most appropriate values for
the performance of crop disease detection models.

• This methodology was applied to the problem of rust detection in coffee crops and
allowed to rank five types of hyperparameters (type of network, depth, number of
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neurons in the FC layer, optimizer and learning rate), as well as to identify values that
allow to improve classifier performance.

• With this methodology, it was possible to improve the F1-score of the classifier from
18.4% to 92.71%, without making any adjustments to the image set.

The remainder of the study is organized as follows. Section 2 explains preliminary
concepts related to convolutional neural networks (CNN) and transfer learning. Section 3
is focused on the materials and methods of the current study, specifically the coffee leaf rust
dataset and the proposed methodology to identify the hyperparameters with the greatest
impact on the performance of coffee rust classification models. Section 4 shows the results
of the study, and Section 5 is the discussion of the research. Finally, Section 6 concludes
the study.

2. Preliminary Concepts

This section explains some concepts associated with CNNs and transfer learning.

2.1. Convolutional Neural Networks

In general, an artificial neural network is constructed from the weighted sum of many
simple functions (each executed by a single neuron), whose output feeds a nonlinear
function or activation function (e.g., ReLU). The function of each neuron is determined by
adjustable parameters, which can be iteratively updated (from initial values and examples
of inputs and outputs) until the trainable function performs the desired task. The training
process refers to the adjustment of the parameters (e.g., weights and biases) that relate the
units of the network in order to reduce the error between the actual value and the value
predicted by the model. Based on this concept, recent models have been developed such
as CNN, recurrent neural networks, and transformers that allow pattern recognition in
images, text, speech, or video.

Convolutional neural networks are a type of neural network that allow the extraction
of features in images without the need to elaborate complex rules; consequently, they have
been mainly used in computer vision applications for object classification and detection
tasks in images. They are mainly composed of convolutional layers, pooling layers, and
dense layers [22]. Convolutional layers are the main component of these models, which
involve a set of spatial filters that apply a cross-correlation operation on a neighborhood.
The pooling layers are used to synthesize the information in each neighborhood, either by
calculating the average value (average pooling) or by extracting the maximum value (max
pooling). In addition, there are layers that operate on the entire input feature map, either
through a global pooling operation that extracts a single value or through the use of dense
layers or fully connected (FC) layers that are usually applied at the end of the network for
classification purposes [23].

In addition, hyperparameters are those values that are not learned by the model but
adjusted by the designer in relation to the architecture (e.g., type of architecture, network
depth, number of filters or neurons), or the training (e.g., type of optimizer, learning rate,
number of epochs, batch size) [24].

In terms of architecture, there are different typologies of CNN. Sequential networks
(e.g., VGG11, VGG16, and VGG19) have different depths based on sequential blocks and
pooling layers [25]. Residual networks (e.g., ResNet50, ResNet101, ResNet152) use addi-
tional connections between convolutional layers of different depth levels [26]. Parallel
networks (e.g, InceptionV3) use concatenation connections between convolutional layers
of the same depth level [27]. InceptionResNet is a combination of architectures within
Inception and ResNet blocks [28]. Separable convolution networks (e.g., MobileNet, Xcep-
tion) use a depth-wise convolution followed by a point-wise convolution [29,30]. Dense
networks exploit the potential of the network by reusing features and connecting lay-
ers in a feed-forward manner to ensure maximum information flow between them [31].
Table 1 presents a summary of the number of parameters and layers of some representative
state-of-the-art networks for image classification tasks.



Appl. Sci. 2023, 13, 4565 4 of 16

Table 1. Information of some pre-trained models for image classification tasks. FC stands for fully
connected layer.

Pre-Trained Model Authors Default Input Size No. of Layers
(FC Included) No. of Parameters

VGG19 [25] (Simonyan, 2014) 224 × 224 19 143,667,240

ResNet50 [26] (He, 2016) 224 × 224 152 25,636,712

InceptionV3 [28] (Szegedy C. V., 2016) 299 × 299 159 23,851,784

Xception [30] (Chollet, 2017) 299 × 299 126 22,910,480

MobileNetV2 [32] (Sandler, 2018) 224 × 224 88 3,538,984

DenseNet201 [31] (Huang, 2017) 224 × 224 201 20,242,984

EfficientNetB5 [33] (Tan, 2019) 456 × 456 30,562,527

InceptionResNetV2 [34] (Szegedy C. I., 2016) 299 × 299 572 55,873,736

2.2. Transfer Learning

Transfer learning is a design strategy in which information from a pre-trained model
for a specific machine learning task is used in a new problem, either with differences in
the complexity of the two tasks, or from one model trained with more data to another
with less data (using a different dataset) [35–37]. At the image classification level, state-
of-the-art landmark models were trained with the ImageNet dataset, initially made up of
1 million images with 1000 per class [38]. Furthermore, much of the model is transferred
(except at least the classification layer) and retrained with a new set of images, which
is typically smaller than ImageNet. The advantage of using transfer learning is that the
pre-trained model is able to identify different types of features (e.g., edges, shapes, textures,
and colors), due to the great variety of images with which it was pre-trained, allowing
the transferred weights require only a small fine-tuning for the new classification task.
In Figure 1, a schematic diagram of the transfer learning process is presented, where the
pre-trained feature extraction block is used for a new classification task application.

Figure 1. Schematic representation of transfer learning. Typically, dataset B is much smaller than
dataset A. The classifier block contains new fully-connected (FC) layers and the output of the model.

3. Methodology

The methodology used in this study is presented in Figure 2. It is mainly composed
of four parts: (1) collection and preparation of the dataset; (2) hyperparameter selection;
(3) modelling; and (4) evaluation.
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Figure 2. Proposed methodology for quantitative evaluation of coffee rust detection models using
transfer learning.

Each of the phases of the proposed methodology applied to the detection of coffee leaf
rust will be explained below.

3.1. Collection and Preparation of the Dataset

The process of preparing and consolidating the data used in the research was devel-
oped in three steps: collection, pre-processing and distribution. First, images were collected
from different datasets for coffee leaf rust detection. Specifically, we collected images from:
RoCoLe [39], Bracol [40], Digipathos [10], D&P [41], and Licole [21]. The purpose was to
have images that vary in background (e.g., natural background or white background), rust
severity (see Figure 3), and image brightness.

(a) Healthy (b) Level 1 (c) Level 2 (d) Level 3 (e) Level 4

Figure 3. Different levels of coffee rust severity. The higher the level, the more the coffee leaf is
affected by coffee rust. Level 1 implies that between 1% to 5% of the leaf has rust, level 2 means that
between 6% to 20% of the leaf is affected, level 3 has an affectation between 21% to 50% of the leaf,
while level 4 implies that more than 50% of the leaf has rust.

As a result, Table 2 summarizes the number of images used from each dataset for the
three classes: healthy, rust and other diseases: leaf miner, phoma, cercospora, red spider
mite, bacterial blight, blister spots and sooty molds.

Table 2. Number of images used for coffee leaf rust classification in the present study from state-of-
the-art datasets: H (Healthy), R (Rust), and Other.

Dataset Healthy Rust Other

Bracol [40] 272 272 751

RoCoLe [39] 789 602 167

D&P [41] 0 285 257

Digipathos [10] 4 49 139

Licole [21] 621 515 614

Total 1686 1723 1928
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Second, several data preparation tasks were applied with the objective of having a
clean dataset. For example, distractors in the images that could bias the classification
process were removed. More specifically, the tasks focused on:

• Apply crop to have a single leaf per image.
• Remove background that does not belong to the white background or natural environ-

ment of the leaf.
• Discard images that contain rust along with other diseases on the same leaf.
• Enlarge the image to fit the coffee leaf.

Finally, the new dataset was divided into training, validation, and testing according to
the distribution shown in Table 3.

Table 3. Summary of the distribution of images in the proposed dataset.

Classes Training Validation Testing

Healthy 1378 146 162
Other 1378 176 202
Rust 1566 159 170

Total 4322 481 534

3.2. Hyperparameter Selection

This is the most important phase of a model-centered methodology. First, when
selecting the hyperparameters for the study, both architecture and training hyperparameters
should be considered. According to state-of-the-art publications, the most commonly
used architectural hyperparameters are the type of network, the depth of the network,
and the number of neurons in the FC layers. On the other hand, at the level of training
hyperparameters, the most used are the optimizer and its learning rate. Second, for each
hyperparameter, the number of options and their corresponding values must be defined.
At this stage, it is recommended to evaluate at least three options per hyperparameter. In the
case of network type, it is common to select pre-trained models of different architecture
types, for example, sequential, parallel, residual, and sparse convolutions. For the depth
of the net, it is possible to select a shallow layer, a medium depth layer or a deep layer.
Regarding the number of neurons in the fully connected layer prior to the classification
layer, it typically ranges from 256 to 1024 neurons. In the case of the Optimizer, options
such as Adam (or one of its variations), SGD, and RMSprop are usually chosen. Finally,
in the case of the Learning Rate, values close to the default values are usually selected in
each optimizer, varying them in powers of 10 (positive and negative).

For the search and selection of hyperparameters, a first alternative is to use an al-
gorithm to automatically search the entire space of possible configurations, which is not
practical because the space of possible configurations is extremely large. The second alterna-
tive is to start with a base configuration and add features based on solid testing, constantly
updating a more limited search space. Each round of experiments should have a clear
objective and be narrow in order to achieve the goal [42].

Accordingly, the objectives of each round of experiments conducted in this research
were assigned as follows: evaluation by pre-trained model used as backbone (for eight
pre-trained models), evaluation by the optimizer (between three optimizers), evaluation by
the learning rate (LR, using three values), evaluation by the number of neurons in the top
FC layer (three values) and evaluation by the network depth (four network depths) (see
Table 4). Although a greater number of options per hyperparameter allows a better selection
of its value, it must be taken into account that the number of models to be trained is equal
to the multiplication of the options of each hyperparameter. For this study, 864 models
were trained.
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Table 4. Stage 2: Hyperparameters and values selected in this study.

Type Hyperparameter Number of Options Values

Architecture

VGG19, ResNet50, InceptionV3
Pre-trained model 8 InceptionResNetV2, MobileNetV2

DenseNet201, EfficientNetB5, Xception
Network Depth 4 L1 (deeper), L2, L3, L4 (shallower)

Neurons (FC layer) 3 256, 512 and 1024

Training Optimizer 3 SGD, Nadam, RMSprop
Learning Rate (LR) 3 1 × 10−4, 1 × 10−5, 1 × 10−6

3.3. Modelling

In this phase, the 864 models were trained with the dataset obtained in the collection
and preparation phase. All models were trained with the same number of epochs (i.e., 30)
and batch size (i.e., 32). The input images were set to a size of 224 × 224 pixels.

3.4. Evaluation

Typically, the analysis of the performance of image classification models in balanced
problems (with a similar number between classes) is completed by means of a confusion
matrix. In short, the confusion matrix is a table that cross-references information about the
actual class and the class predicted by the model. From the confusion matrix, it is possible
to compute metrics such as accuracy (Equation (1)), precision (P) (Equation (2)), recall (R)
(Equation (3)), or F1-score (Equation (4)). These metrics are calculated from the number
of correct classifications (TP:True Positives and TN:True Negatives), and the number of
incorrect classifications (FP: False Positives and FN: False Negatives).

Acc =
TP + TN

FP + TP + TN + FN
(1)

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 = 2
P × R
P + R

(4)

For example, for the Healthy class, TP corresponds to correctly classified healthy
images, FN corresponds to incorrectly classified Healthy images, TN is correctly classified
unhealthy (i.e., rust and other) images, and FP is incorrectly classified unhealthy images.
The total result of the metric corresponds to the weighting of the values obtained per class
according to the number of images.

All of the above metrics range from 0 to 1, with 0 being the worst performance and 1
being the best. The goal is to select the model with the highest value of the chosen metric,
which in this study is the F1-score.

4. Results

According to the purpose of the methodology, we want to determine the importance
of the hyperparameter in the performance of the classifier as well as select its best value
from the set of defined options. First, the influence of the pre-trained network used as the
backbone of the model is evaluated, and then the other hyperparameters grouped by the
pre-trained network are assessed.

4.1. Evaluation by Pre-Trained Model Used as Backbone

How much does the pre-trained network selected as the backbone influence the F1-
score? To answer this question, the 864 models are grouped according to the backbone
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used, i.e., 108 models per case in this study, and their results are plotted as mean, first, and
third quartiles using box plots (see Figure 4).

Figure 4. Summary of evaluation results by pre-trained model used as a backbone, in terms of
F1-score. Points marked with + represent outliers beyond the first and third quartiles.

According to Figure 4, an inappropriate choice of pre-training model will provide F1-
score below 20%, while an appropriate choice will provide values above 90%. Specifically,
EfficientNetB5 is the least appropriate pre-trained network of the set of options defined in
this study, while DenseNet201 is the best option. Other backbones have similar behavior to
DenseNet such as: Xception, InceptionV3, MobileNetV2, VGG19, and InceptionResNetV2
(from best to worst). Finally, ResNet50 is not a competitive pre-trained model for this
classification problem.

In summary, this hyperparameter has a very high impact on model performance (with
variations of up to 70% among them).

4.2. Evaluation by the Optimizer

Given the strong influence of the backbone used, the next step in the evaluation
is to group the results by optimizer for each pre-trained network; it means grouped by
36 models in this study (see Figure 5). This is because an optimizer may work very well for
one network but poorly for another, and the analysis must be performed separately.

Figure 5. Summary of evaluation results by optimizer, in terms of F1-score.

For all the backbones selected in this study, except for ResNet50, the optimizer that
provides the lowest F1-score is SGD. For example, when using MobileNetv2 as the backbone
and SGD as the optimizer, the F1-score result is 64.4%, while when the optimizer is changed
to RMSprop, the value is 88.4%. In another example, when using InceptionResNetV2 and
SGD as the optimizer, the F1-score is 52.8%, but when the optimizer is Nadam, the value
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is 76.3%. The results obtained with Nadam and RMSprop are very similar to each other,
and in general SGD is not a suitable optimizer for this type of classification problem.

In summary, this hyperparameter has a moderate impact on model performance (with
variations of up to 25% among them).

4.3. Evaluation by the Learning Rate (LR)

In association with the optimizer, the learning rate affects the performance of the
classifier. Then it is necessary to know which LR value for each of the optimizers gives
the highest F1-score results. Furthermore, this analysis must be performed for each back-
bone, grouping the models by the triplet [backbone, optimizer, and learning rate], i.e., by
12 models for this study.

As an example, Figure 6 shows the consolidated results for the VGG19 backbone,
with the three optimizers, and for each of the learning rates. In each case, the box plot
shows the average of the 48 cases, with their first and third quartiles, as well as the outliers.
For the Nadam optimizer, when LR = 1× 10−6 (the lowest of the LRs selected in this study),
the F1-score obtained with the 48 models has less dispersion among them compared with
the results for LR = 1 × 10−4 and LR = 1 × 10−5. However, the highest F1-score for this
backbone and optimizer is obtained for LR = 1 × 10−5 (intermediate value of the LRs in this
study). For the SGD optimizer, the results are the opposite of Nadam. In this case, the worst
performance is obtained for the lowest LR (i.e., LR = 1 × 10−6), while the best results
are obtained for the highest LR (i.e., LR = 1 × 10−4). Finally, for RMSprop, the greatest
dispersion is obtained in the models that use the intermediate LR value (i.e., LR = 1× 10−5),
but at the same time, it is with this value that the best F1-score is obtained.

Figure 6. Evaluation results for VGG19 model by learning rate and Optimizer, in terms of F1-score.
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In the second part of the analysis of this hyperparameter, the results are grouped by
LR value for each backbone, regardless of the optimizer used. The purpose is to see if
one of the three LR values in the study generally gives better results than its competitors.
The result is shown in Figure 7, where each bar represents 36 models.

Figure 7. Summary of evaluation results by learning rate and model type, in terms of F1-score.

According to the results obtained, for six of the eight backbones in this study, the aver-
age results are higher when using LR = 1 × 10−4 (the higher of this study), with significant
differences for some backbones. For example, for InceptionResNetV2, F1-score = 77.2%
when LR = 1 × 10−4 and drops to F1-score = 57.9% when LR = 1 × 10−6. Another point to
consider in Figure 7 is the slight increase of the F1-score value, in relation to the value of
the learning rate for six architectures except ResNet50, which presents a decreasing trend,
and for Xception architecture, where the highest value was obtained for the intermediate
value (LR = 1 × 10−5).

In summary, this hyperparameter has a moderate impact on model performance (with
variations of up to 20% among them).

4.4. Evaluation by the Neurons in FC Layers

The next hyperparameter to analyze was the number of neurons in the top fully
connected layers (except the output layer). Considering that the models are obtained
by transfer learning with new FC layers (i.e., the FC layers of the pre-trained model are
removed), this hyperparameter could affect the performance of the classifier for the dataset
obtained in the collection and preparation phase.

Figure 8 shows the results grouped by the number of neurons in the FC layers (except
for the output layer, which has three neurons). In this case, the differences between the
three selected values of neurons for FC layers is very small. For example, when using
VGG19 as backbone with 256 neurons the F1-score is 81.1%, for 512 neurons is 79.6% and
for 1024 is 79.1%. These small differences also predominate in the other backbones. The dif-
ference between the best and worst result for the same backbone is up to 5% (i.e., using
MobilNetV2 as backbone with 256 neurons the F1-score is 84.5% and with 1024 neurons is
79.8%. Considering that the results are slightly better when using 256 neurons in the FC
layers, and also that the computational cost of training the models decreases, this is the
value chosen for this architectural hyperparameter.

In summary, this hyperparameter has a low impact on model performance (with
variations of up to 5% among them).
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Figure 8. Summary of evaluation results by the number of neurons in the last FC layer (except the
output layer), in terms of F1-score.

4.5. Evaluation by the Network Depth

When transfer learning is performed, the entire network (except the FC layers) or part
of the convolutional layers can be transferred. Depending on the depth of the transferred
network, the features extracted by the model will vary, such as edges, color, texture, shape,
and others. Therefore, it is important to train the network at different depths, since not all
classification problems make the decision with the same type of features.

For each of the backbones selected in this study, four depth levels were chosen, so that
part of the convolutional network is transferred. For the analysis of this hyperparameter,
the results were consolidated by backbone and network depth, with a total of 27 models
for each case. Figure 9 shows the results.

Figure 9. Summary of evaluation results by the last layer transfered, in terms of F1-score.

Overall, the shallowest models perform best for Xception, InceptionV3, MobileNetV2,
and DenseNet201. For VGG19, the best performance was produced with the second-
deepest, while for ResNet50 it was the third. For EfficientNetB5, it has no significant
impact. Although the impact of this hyperparameter is not as significant as some previous
ones, it reaches differences between 2% and 3% for VGG19, Xception, or DenseNet201,
and between 6% and 7% in InceptionV3 and MobileNetV2 architectures, for two different
depth values. As a result, this hyperparameter showed a low impact on model performance
(with variations of up to 7% between different depth levels).
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4.6. Comparison between the Best Models by Pre-Trained Network

Taking into account the validation results obtained in the previous section, the best
model is chosen for each of the following backbones: DenseNet201, Xception, InceptionV3,
MobileNetV2, VGG19, and InceptionResNetV2. For each trained model, inference was
performed with the corresponding test images, and from the confusion matrices (Figure 10),
four metrics were calculated, taking into account correct and incorrect classifications.
Table 5 presents the values of acc, P, R, and F1 for the best model from each backbone
obtained by transfer learning.

Figure 10. Confusion matrices of the models obtained from DenseNet201, Xception, MobileNetV2,
Inception, VGG19 and InceptionResNetV2, by transfer learning. Multi-class classification with 0:
Healthy, 1: Other, and 2: Rust. The darker the grid, the greater the number of cases located in
that condition.

Table 5. Performance metrics on test data of the best classification model for each architecture. P is
precision, R is recall, F1 is F1-score and acc is accuracy. Values are in percentages, with 100% being
the best result and 0% being the worst performance result.

Pre-Trained Model Learning Rate Neurons Optimizer P R F1 Acc

DenseNet201 1 × 10−5 256 Nadam 94.60 94.80 94.70 94.80
InceptionV3 1 × 10−5 256 RMSprop 94.10 94.30 94.20 94.20

Xception 1 × 10−4 256 RMSprop 93.20 93.20 93.20 93.30
MobileNetV2 1 × 10−4 256 RMSprop 91.50 91.80 91.60 91.60

VGG19 1 × 10−4 256 Nadam 88.90 89.00 88.90 89.10
InceptionResNetV2 1 × 10−4 256 RMSprop 88.57 88.77 88.59 88.58

Regarding the computational cost of the models, Table 6 presents the name of the last
layer transferred, the training time of each epoch/step, the size in MB, and the number of
model parameters. From this point of view, it is clear that VGG19 and MobileNetv2 are
the fastest models to train, and the latter is significantly one of the lightest models in terms
of disk size and number of parameters. Although the F1-score performance of these two
models is relatively competitive, it is slightly lower than those obtained from DenseNet201
and InceptionV3.

Table 6. Classification models specification in terms of training time and size for models with the
best result in present study.

Architecture Last Layer Time (s/epoch) Avg ms/Step Size (MB) Param Num

Densenet201 conv5_block31_concat 112 93.2 219.1 30,112,963
Inceptionv3 mixed6 329 135.5 263.9 26,494,243

Xception block13_sepconv1_act 398 310.0 378.7 40,899,419
MobileNetv2 block_14_add 30 25.9 16.9 2,066,755

VGG19 block4_pool 82 90.0 269 29,461,571
InceptionResnetv2 block8_8_mixed 177 59.3 199 47,164,995
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5. Discussion

In several state-of-the-art manuscripts that use transfer learning for disease identifica-
tion, specifically coffee leaf rust, ResNet has been used as a backbone [13,15,43]. Specifically
in [15], the authors use ResNet with two approaches: raw images from the RoCoLe dataset
and a mixture between segmented and patches of the original images. Their results are 75%
and 98% of accuracy, respectively. It is important to mention this paper since in our study it
was found that the models obtained using ResNet50 as a backbone have an accuracy of
less than 70%, whose results are significantly lower than models obtained with another
type of backbone, such as DenseNet201, whose values of accuracy are greater than 90%
(see Table 6). This evidences the importance of carrying out a comprehensive study of the
impact of the backbone used in crop disease recognition problems, given that, according
to our results, it is the hyperparameter with the greatest impact on the performance of
the classifier. Additionally, it is emphasized that the values obtained with ResNet in [15]
are slightly higher than those obtained in this study for the same type of backbone, since
they used a single dataset (i.e., RoCoLe), while our research used images from five dif-
ferent datasets (i.e., Bracol, RoCoLe, D&P, Digipathos, and Licole) with diversity of light
conditions, image size, type of background, among others.

On the other hand, some state-of-the-art works have made a comparison of different
backbones, but with a low number of pre-trained networks or by leaving out those that
have high Top1-accuracy values for the ImageNet dataset. For example, the article by [13]
compares five backbones (AlexNet, GoogleNet, VGG16, ResNet50, and MobileNetV2),
where none of them have a Top1-accuracy above 75%, leaving out pre-trained models such
as InceptionResNetV2 (80.3%), Xception (79%), ResNet152V2 (78%), DenseNet201 (77.3%),
NASNetLarge (82.5%), EfficientNetB7 (84.3%), among others. It is important to note that
according to the results (see Figure 4), the pre-trained networks that present high values of
Top1-accuracy (with the ImageNet dataset) are the ones that obtained the highest values
of accuracy, precision, recall, and F1-score for our dataset obtained from Bracol, RoCoLe,
D&P, Digipathos, and Licole.

It should be noted that in similar works, the optimizer is a hyperparameter that is
left fixed, e.g., SGD [13] or RMSprop [15]. However, this type of hyperparameter has the
second-highest impact on model performance, with variations of up to 20% in accuracy.
According to the results (see Figure 4), the models that used SGD obtained significantly
lower results than those obtained with Nadam and RMSprop. Therefore, it is necessary not
only to select a suitable model as the backbone, but also the optimizer with which the fine-
tuning of the network will be carried out for the new dataset. The third hyperparameter in
order of importance was the learning rate (suggesting that its value is greater than 1× 10−5).
For the set of hyperparameters evaluated, it was found that the number of neurons in the
FC layer and the depth of the model ranked fourth and fifth in model impact. Overall,
256 neurons in the FC layer and shallower models performed better.

It is observed that the best models obtained in this study, whose results are presented in
Table 5, have the four metrics (P, R, F1, and Acc) very similar to each other, with differences
of less than 0.3%, for example, for DenseNet201, it is obtained that P = 94.60%, R = 94.80%,
F1-score = 94.70% and Acc = 94.80%. This implies that the models are unbiased, i.e., they
classify equally well in all classes. Furthermore, the model with the best performance
(DenseNet201) according to Table 5 corresponds to the model with the lowest dispersion
among the architectures evaluated in Figure 6.

Due to the conformation of a dataset from diverse datasets available in the literature,
we inferred that the best models were less influenced by the covariance change factor [7,11]
compared with previous works using a specific dataset in their work [14,16,19–21], there-
fore, the importance of the proposed methodology for the selection of a coffee leaf rust
classification model applicable to other types of crops is emphasized.

Finally, the lower performance presented in the EfficientNetB5 and ResNet50 models
observed in the present study, along with the slight trend of increasing performance values
relative to decreasing LR for ResNet50, could be due to the fact that the search space may
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have left out the best values for these models, in agreement with what was presented by
Martinez et al. [16]. Therefore, it may be necessary to expand this space for these specific
models and analyze the change in covariance for the coffee leaf rust classification.

6. Conclusions

When realizing image classification solutions using models that learn from data,
there are two main approaches: data-centric and model-centric. In the state-of-the-art of
coffee leaf rust recognition, many solutions have been focused on data pre-processing,
for example, by including patches from the raw images, deleting the background, and
cropping the image, among others. However, little has been discussed about the impact
of hyperparameters, and solutions have used values that are not necessarily the most
appropriate for this specific problem (for example SGD as optimizer). For this reason,
it is necessary to have exhaustive studies of the impact of hyperparameters that allow
selecting the best ones for coffee leaf rust recognition using transfer learning. According
to the results of the more than 800 trained models, the type of backbone used is the most
important hyperparameter, since the variations between the models can reach 70% in terms
of accuracy. In second place is the optimizer, with variations of up to 20% between the three
optimizers used. Finally, the learning rate is the third most important hyperparameter,
with variations of 10% in some cases, although its impact depends largely on the optimizer
and the pre-trained network used as the backbone. Other types of hyperparameters, such
as the number of neurons in the FC layer before classification and the depth of the model,
had less impact with respect to the other three parameters evaluated. It is recommended to
use 256 neurons due to the computational cost and shallower models with respect to the
base models obtained by transfer learning.

The presented methodology concludes with different suitable models based on different
architectures, including practical considerations to be applied to coffee leaf rust classification
problems on a diverse dataset. In consideration, and although model architectures are not
defined as hyperparameters in the literature, they could be handled as one of them.

7. Future Work

In future work, it is proposed to integrate the data-centric approach with the model-
centric approach to improve the classification results of coffee leaf images in the three
categories defined in this study: healthy, other, and rust. That is, select the four best models
(taking into account the type of backbone, optimizer, learning rate, number of neurons,
and depth of the network) related to this study, and apply new pre-processing tasks to the
dataset, for example, creating patches of the images with automatic sizes according to the
type of information contained, for example, small when there is rust and larger when the
leaf is healthy. The above helps generate a solution that includes an attention mechanism
and thus improves decision-making by the model.
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