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Featured Application: Fully automated and personalised radiotherapy treatment planning.

Abstract: Automated planning (AP) uses common protocols for all patients within a cancer site. This
work investigated using machine learning to personalise AP protocols for fully individualised plan-
ning. A ‘Pareto guided automated planning’ (PGAP) solution was used to generate patient-specific
AP protocols and gold standard Pareto navigated reference plans (MCOgs) for 40 prostate cancer
patients. Anatomical features related to geometry were extracted and two ML approaches (cluster-
ing and regression) that predicted patient-specific planning goal weights were trained on patients
1–20. For validation, three plans were generated for patients 21–40 using a standard site-specific
AP protocol based on averaged weights (PGAPstd) and patient-specific AP protocols generated
via regression (PGAP-MLreg) and clustering (PGAP-MLclus). The three methods were compared
to MCOgs in terms of weighting factors and plan dose metrics. Results demonstrated that at the
population level PGAPstd, PGAP-MLreg and PGAP-MLclus provided excellent correspondence with
MCOgs. Deviations were either not statistically significant (p ≥ 0.05), or of a small magnitude, with all
coverage and hotspot dose metrics within 0.2 Gy of MCOgs and OAR metrics within 0.7% and 0.4 Gy
for volume and dose metrics, respectively. When compared to PGAPstd, patient-specific protocols
offered minimal advantage for this cancer site, with both approaches highly congruent with MCOgs.

Keywords: automated planning; multicriteria optimisation; Pareto optimisation; prostate cancer

1. Introduction

Automated planning (AP) is fast becoming the state of the art in radiotherapy plan-
ning for intensity-modulated radiotherapy (IMRT) and volumetric-modulated radiotherapy
(VMAT) [1–3] and can be classified into one of two categories: knowledge-based planning
(KBP) or rules-based planning (RBP). KBP uses statistical techniques [2,4–7] trained on
historical clinical datasets, to inform planning for novel cases through prediction of optimi-
sation objectives [8], dose–volume histograms [9–11] or voxel-level dose [2]. RBP employs
logic to converge on a solution. For example, a lexicographic ordering that optimises plan-
ning goals (PGs) in strict sequential order [12–14] and protocol-based automatic iterative
optimisation (PBAIO) that uses algorithms to automatically adapt planning parameters
during optimisation. Various PBAIO approaches have been developed, including scripts
that manipulate dose-volume objectives by moving them a specified increment at the start
of every new pass [15] or modify weighting factors so objective values meet specified tar-
gets [16]. There are PBAIO scripts that record the iterative process during manual planning
and use this to generate an AP algorithm [17] and commercially available Auto-Planning
software that automatically generates new contours during optimisation to help meet
clinical goals [18]. The majority of these AP techniques have been shown to produce plans
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non-inferior to manual planning and are used in clinical practice. Comprehensive reviews
of all techniques are found in the literature [1,2,4].

The most clinically desirable plans are ‘Pareto optimal’. That is, no dosimetric im-
provements can be made to a PG except at the detriment of another. The various AP
methods therefore aim to converge upon this set. However, planning can be complex given
PGs may conflict with one another and clinical desirability is dependent upon appropriate
management of these trade-offs. Therefore, although the most clinically desirable plans are
Pareto optimal, achieving Pareto optimality does not guarantee clinical desirability.

For KBP, trade-off balancing is automatically determined by the underlying clinical
plans in the knowledge-base. For RBP, balancing must be explicitly defined in a process
known as ‘calibration’. Calibration is the process of balancing the relative priority of PGs
such that they align with the oncologists’ preferences. The dominant approach to RBP
calibration is trial-and-error [19–21] (TAE) where AP parameters are iteratively updated
until an acceptable solution for a given clinical site is obtained. The approach is time
consuming with improvements made only with respect to previously tried examples. It
does not allow for the intuitive exploration of competing PGs and, as with manual planning,
may yield solutions that are not fully congruent with oncologists’ clinical preferences [22].
One way to manage the limitations of TAE is to use a KBP calibration approach where AP
calibrations are derived from machine learning (ML) on historical clinical datasets [23,24].
This approach may be more efficient than TAE but will depend strongly on the knowledge
base composition. A third approach is to utilise Pareto navigation techniques during the
calibration process (‘Pareto guided automated planning’ or PGAP). This involves exploring
a set of unique and systematically produced Pareto optimal solutions, each representing
a differently balanced AP solution. Due to the number of solutions necessary for this to
be effective, it can be resource intensive. Nevertheless, it is an a posteriori multicriteria
optimisation (MCO) method allowing exploration of the trade-off relationships between
PGs [22,25,26]. Recent work has demonstrated the utility of PGAP in yielding plans
consistent with oncologists’ preferences for prostate patients with and without elective
nodal irradiation under conventional and extreme hypofractionation regimes [16,22,27].

Despite advances in available calibration methods, RBP calibration takes a ‘one size
fits all’ approach with a single AP protocol (or wishlist) used for all patients of a given
clinical site. This assumes an AP calibration that achieves a clinically optimum dose dis-
tribution for one patient is optimal for all patients within that clinical site. The validity of
a ‘one size fits all’ approach has not been explicitly explored in the literature and there is
evidence that points to site-specific RBP leading to sub-optimal or clinically unacceptable
plans for a reasonably large proportions of cases. For lung stereotactic body radiotherapy,
Vanderstraeten et al. observed that up to 24% of automated plans were considered clin-
ically unacceptable without further tweaking [28]. For locally advanced nasopharngeal
carcinoma, Zhang et al. conclude that “automatic VMAT is not good enough to completely
replace manual VMAT” [29]. Finally, though independent quality assurance of 229 prostate
cancer patients planned using AP, Janssen et al. demonstrated that 17% of plans were
suboptimal and could be improved [30]. This evidence highlights deficiencies in the ‘one
size fits all’ approach and indicates that personalisation of AP protocols to individual
patients may be required to ensure optimality.

In contrast, KBP utilises a fully individualised approach, with ML models using
anatomy based predictive factors to generate patient-specific optimisation objectives or dose
distribution parameters. The predicted parameters are used to form static objective function
inputs to a standard gradient decent optimisation. Whilst optimisations using this approach
are inherently patient tailored, the relationship between anatomy and objectives/dose
parameters is complex, with wide variances across a patient cohort. Accurate modelling is
therefore challenging, generally requires large training datasets and can yield models with
clinically relevant prediction errors [31]. Furthermore, the quality of the model is highly
depended on the optimality of the underlying training dataset [32], which is not guaranteed.
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In summary, modelling uncertainties for KBP and the ‘one size fits all’ approach for
RBP mean current AP solutions may not yield optimal, patient tailored plans. To address
this problem we propose a hybrid AP solution where KBP is utilised to predict patient
specific AP protocol parameters that act as an input for an already validated RBP solution.
In this regard RBP is no longer reliant on a ‘one size fits all’ set of protocol parameters,
but instead can utilise a protocol fully personalised to the individual patient. Application
of KBP in this manner has the advantage that a validated RBP approach, by its nature,
has suitably suppressed the relationship between anatomy and AP protocol parameters
such that a single parameter set can yield acceptable plans across a treatment site. In this
regard, the purpose of KBP is not to ensure RBP yields acceptable plans, but rather to
further refine and individualise AP protocol parameters with the aim of fully personalising
treatment plans. Importantly, with much of the variance already reduced through RBP, it
is theorised that unlike standalone KBP approaches, uncertainties in the KBP models in a
hybrid solution will be of low clinical significance.

The purpose of this work was to develop and evaluate a novel KBP-RBP hybrid
planning solution for prostate cancer using PGAP. This new methodology utilised ML
to identify the relationships between anatomy and optimum patient-specific calibration
parameters (determined via Pareto navigation) such that individualised AP protocols could
be generated for novel patients. Recent studies illustrate the clinical relevance of incorpo-
rating geometric features in the AP process for robust optimisation [33] and development
of a hybrid approach in which geometric features are used as KBP inputs for calibration
of an RBP system [34]. The KBP-RBP hybrid solution developed in this work considered
advanced KBP techniques based on geometric features. It was trained on a representative
dataset and validated for an independent set of novel patients. For validation the solution
was compared against patient-specific expert-driven Pareto navigation (MCOgs), which
is considered the gold standard, and a standard PGAP approach using a ‘one size fits all’
site specific protocol (PGAPstd). The evaluation aimed to answer: (i) does personalising
protocols via ML improve plan quality compared to PGAPstd and (ii) Is there a significant
difference between the PGAP approaches and MCOgs.

2. Materials and Methods
2.1. Overview

This work was completed with reference to the RATINGS framework [35] and builds
on successful implementation of a PGAPstd system, which uses Pareto navigation tech-
niques to calibrate a PBAIO AP solution [16,36]. In this work, training and validation was
performed using ‘gold standard’ training and validation datasets, where patient-specific
PBAIO calibration parameters, alongside their corresponding plan and dose distribution
(MCOgs), were generated for individual patients by an expert operator using the in-house
PGAP solution’s Pareto navigation interface.

Figure 1 presents an overview of the solution developed and evaluated in this work,
with PGAPstd provided as a reference. Predictive ML models are trained on a MCOgs
calibrated dataset with the aim of identifying the relationships between anatomical features
and patient-specific PBAIO calibration parameters. Once trained, predicted calibration
parameters can be generated for novel patients and used to form the inputs for the PBAIO
system with the aim of generating plans of equivalent quality to MCOgs. This method con-
trasts with PGAPstd where all patients are planned with the same site-specific AP protocol.

Two ML techniques were employed: multivariate polynomial regression (PGAP-
MLreg) and k-means clustering (PGAP-MLclus). The process followed a traditional ML
model generation framework with validation on an independent dataset. MCOgs was used
as the reference and ground truth in all modelling. In this work, PGAPstd was defined
by taking the mean gold standard calibration parameters values for each patient in the
training dataset. PGAPstd, PGAP-MLreg and PGAP-MLclus were validated against MCOgs
using an independent set of patients.
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Figure 1. An outline of how the KBP-RBP process defined in this work (bottom) differs from the
more classic site-specific methods (top). Classic approaches define a single site-specific template
applied to all treatment cases. In this work, a ML approach is defined that achieves a patient-specific
planning template based on patient anatomy.

2.2. Patients

The full dataset for this study consisted of 40 randomly selected prostate seminal
vesicles (PSV) patients previously treated at Velindre Cancer Centre between January
and June 2018 (inclusive): 20 training (Patient 01–20) and 20 validation (Patient 21–40).
The number of patients selected for training reflected numbers found in previous work
related to RBP [8,16,36] and planning parameter prediction for PSV [37].

Computed tomography scans were in the head-first supine position with 3 mm slice
thickness. Delineated ROIs included prostate, seminal vesicles, rectum, bladder and
bowel delineated up to 2 cm superior of the prostate. Patients with non-standard areas of
avoidance such as hip prostheses or hernias were excluded from the patient datasets, as well
as patients with non-standard margins. Forty-five PSV patients were considered in total of
which five were excluded for not meeting the criteria: three having a non-standard area
of avoidance and two having non-standard margins. Two PTVs were derived: (1) PTV60
defined as prostate expanded 5 mm isotropically (6 mm craniocaudally) and (2) PTV48
defined as prostate and base seminal vesicles expanded by 10 mm isotropically. PTV
suffixes indicated the prescribed dose in Gy.

All plans in this study were generated within RayStation (Raysearch Laboratories,
Stockholm, version 8B) using a single 360◦ VMAT arc. Patients were planned according to
a 20 fractions simultaneous integrated boost technique with PGs derived from local clinical
goals based on the UK PIVOTAL trial [38].

2.3. Planning System Overview

The AP system used in this study is the Experience-Driven plan Generation Engine by
Velindre Cancer Centre (EdgeVcc). It is a PGAP system built on a PBAIO framework with a
Pareto navigation calibration interface. It is written in Python version 2.7 and implemented
in the RayStation TPS using its native scripting functionality. What follows is an overview
of the system, focusing on the definition and calibration the AP protocols that define the
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balancing of competing trade-offs during plan generation. A full description is provided
by Wheeler et al. (2019) [16].

With this PGAP system, plan generation is dependent upon a base site-specific ‘Au-
toPlan protocol’ containing a set of PGs which define the plan. The AutoPlan protocol
requires PGs be divided into three priority levels: P1, P2 and P3. Primary normal tissue
PGs (P1) are the highest priority and ensure necessary sparing to tissue at increased risk
of unacceptable toxicity when the dose received exceeds a certain level (e.g., serial organs
such as the spinal cord). Target PGs (P2) ensure target volume dose objectives are met
including PTV coverage and hot spots. All other planning objectives are known as trade-off
PGs (P3). Each PG is assigned a numeric weighting factor that the PBAIO AP solution
will use to determine prioritisation of each objective during plan generation. Weighting
factors are determined in one of two ways. Prioritisation of P1 and P2 are well defined
for all patients and sites and are managed by algorithms where PGs are assigned a fixed
weight, with P2 ROIs compromised in favour of P1 via ROI retraction to manage conflicts.
Appropriate balancing of P3 PGs is not as well defined and requires calibration to derive
suitable weighting factors.

Calibration is performed using the Pareto navigation interface. This allows for the
exploration of different P3 trade-off options and is equivalent to an a posteriori MCO
planning methodology. For calibration, a set of plans with differing P3 weighting factors is
generated using the PBAIO framework. A qualified professional navigates the different
options to select the optimum balancing of P3 weighting factors for a given patient. This
process is performed using a sliding interface that uses linear interpolation of neighbouring
Pareto plans to enable information in the TPS to update in real-time including dose-volume
histograms (DVHs), numerical information related to dose and 3D dose maps on CT
scans. The associated P3 weighting factors of the chosen distribution are then stored in the
AutoPlan protocol. In this study, these represent the gold standard set of PBAIO calibration
parameters for the given patient and are used as the PBAIO input to generate MCOgs.

AutoPlan Protocol

The base AutoPlan protocol used in this study (presented in Tables 1–4) was based on
a clinically approved and implemented solution for PSV. It was created in-line with local
practice and similar PGs have been considered appropriate to manage dose distribution for
this clinical site in other work [8,37]. The AutoPlan protocol contains seven P1 and P2 PGs
which aim to control maximum bowel dose and PTV homogeneity within fixed tolerances.
It also contains seven trade-off (P3) PGs: (1) average dose to the rectum, (2) average dose
to the bladder, (3) PTV dose conformality, (4) maximum dose to the rectum, (5) intra-PTV
dose fall-off, (6) maximum dose to the bladder and (7) medium–high dose to the bowel.

Table 1. Priority 1—Primary OAR Goals.

ROI Name Dose Parameter Target (Gy) Weighting Factor

Bowel Dmax 51.0 1000

Table 2. Priority 2—Target Goals. Target represents percentage of PTV prescription dose.

ROI Name Dose Parameter Target (% Dose) Weighting Factor

PTV60 Dmin 96.5 250
PTV60 Dmax 102.5 250
PTV60 D50% max 99.5 250
PTV48 Dmin 96.5 250
PTV48 Dmax 105.0 250
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Table 3. Priority 3—Trade-off Goals (Standard). Target represents dose in Gy (i.e., Dmean and Dmax)
or percentage of ROI volume (i.e., V36.0Gy and V45.6Gy). Targets are automatically adjusted during
optimisation (via the PBAIO algorithms) to ensure PGs are minimised. Therefore initial values have
negligible influence on the final plan, but may decrease planning time if correctly defined.

ROI Name Dose Parameter Target Goal Weighting
(Gy or % Volume) Number Factor

Rectum Dmean (Gy) 5.0 1 21.3
Bladder Dmean (Gy) 5.0 2 6.86
Rectum Dmax (Gy) 60.0 4 195
Bladder Dmax (Gy) 54.0 5 0.880
Bowel V36.0Gy 0.0 7 0.762
Bowel V45.6Gy 0.0 7 0.762

Table 4. Priority 3—Trade-off Goals (Dose Fall Off). Dose Gradient represents the percentage of the
overall treatment prescription.

ROI Fall Off High Dose Low Dose Dose Gradient Goal Weighting
Name Type Level (Gy) Level (Gy) (% Dose) Number Factor

PTV48 Falloff 57.0 40.8 50% 3 23.6
PTV48 Intra PTV 54.0 52.8 50% 6 1.47

Falloff

2.4. Generation of Ground Truth Dataset (MCOgs)

For each patient, an expert medical physicist generated a gold standard set of PBAIO
calibration parameters using the Pareto navigation functionality to explore and select the
optimum P3 weighting factors. For a given PG, typically 5 different weighting factors were
sampled for navigation. When navigating multiple PG, all weighting factor combinations
were sampled, therefore the total number of plans required increased as an exponential
function of the number of PG [39]. Preliminary work showed PGs 1–3 exhibited the most
notable trade-off relationships with negligible influence on PGs 4–6. Therefore, navigation
was performed in two stages to ensure reasonable computational times when generating
Pareto sets with PGs 1–3 and PGs 4–6 forming stage one and two, respectively. PG 7
(bowel V36.0Gy and V45.6Gy) was not navigated due to minimal proximity of the associated
OAR to PTV contours for the majority of patients resulting in a negligible influence on the
overall plan.

PGs 1–3 were navigated simultaneously whilst the latter four were held constant at
the level defined in the clinically approved AutoPlan protocol (Tables 1–4). The observer
navigated this set of PGs in three separate sessions, each at least one week apart, with the
mean weighting factor taken as the final MCOgs values and stored in the patient-specific
AutoPlan protocols. PG 4–6 were then navigated in a similar way with PGs 1–3 held at
their newly defined values. Following calibration MCOgs plans were generated for each
patient using their patient-specific AutoPlan protocols.

2.5. Sample Size Justification

The majority of KBP studies in the literature utilise historical datasets of previous
clinical plans and therefore substantial training datasets can be curated with low effort.
In contrast, the approach in this study required Pareto navigation on each training patient
to define the ground truth dataset. Autonomous generation of the Pareto plans for a
three PG navigation took 31 h (125 plans each taking 15 min), with approximately five
minutes of operator time required for navigation. Whilst Pareto plans could be generated
for 3 patients concurrently on a single application server, the time required to generate
the ground truth dataset was non-trivial. The size of the training dataset therefore had to
balance the competing demands of model accuracy and practicality.
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Boutilier et al. [40] presented evidence on the sample size requirements for KBP
in prostate cancer. For DVH curve prediction using principle components and linear
regression, 75 and 20 samples were required to minimise modelling errors for bladder and
rectum DVHs, respectively. For objective function weight prediction, 150 patients were
required for a k-nearest neighbour clustering methodology before a statistically insignificant
difference from the benchmark was observed. However, only 10 were required for a logistic
regression model. The large difference in dataset size requirements is because regression
can exploit underlying distributions of the data (e.g., linear or logistic relations), whereas
clustering cannot as it is a non-parametric approach.

In our study, it is not objective function weights or DVH curves that were to be
predicted, but rather patient specific weighting factors for an already validated AP solution.
In this regard we hypothesised that the underlying variance of the data had already been
substantially reduced through utilisation of a PBAIO framework. Therefore we considered
that sample size requirements would therefore align with the lower of those proposed
by Boutilier et al. (i.e., 10 < n < 20). A training dataset size of 20 patients was therefore
selected for our application application as an appropriate balance between model accuracy
and practicality.

2.6. Modelling
2.6.1. Predictive Features

Geometric anatomical variables relating to ROIs were chosen as predictive factors
in-line with previous work [5,6,41,42]. Features included volumes of ROIs, distances
between ROIs and other variables such as volume ratios. A summary of the selection
can be found in Table 5. Over 100 features were initially extracted and data cleaning
performed to ensure: robustness during modelling [43], better modelling performance
(reduction in type I and II errors) [44] and computational efficiency [45]. Data cleaning
involved eliminating incomplete features, removing zero-variance features (e.g., all zeros)
and removing those with low variance. No features were removed for missing data as
the data were fully homogeneous and no variables were considered low variance. Only
variables with zero variance were removed and all remaining variables did not differ from
a standard normal distribution.

Table 5. Summary of variables considered for FeatureDS1 and FeatureDS2. Features fall into three
categories: volume related (volumetric), distance related (spatial) and derivations of volumetric
and/or spatial (derived). Variants are denoted where multiple features of their kind are generated.

Type of Feature Variant Example
Feature

Volumetric

Volume individual OARs and total
OARs volume of rectum (cm3)

Overlap of OAR with PTV None OVbladder,PTV48: volume of bladder in PTV48 (cm3)

Volume-in-field of PTV: OAR volume
within the superior-inferior slices of a PTV

None bladder VIFPTV60: volume of the bladder within the superior-
inferior slices of PTV60 (cm3)

Volume-out-of-field of PTV: OAR volume
above the superior slices and below the in-
ferior slice of a PTV

None rectum VOFPTV48: volume of the rectum above superior slice
and below the inferior slices of PTV48 (cm3)

Volume defined by nested PTVs (i.e., PTV
annulus)

None volume of PTV48 minus PTV60 (cm3)

Spatial Distance between ROIs

minimum, maximum and av-
erage surface-to-surface dis-
tance and distance between
centres-of-mass

minimum distance between rectum and bladder (cm)

Derived

Overlap volume with expanded PTV 0.2 cm increments of isotropic
expansion up to 2.4 cm OVrectum,PTV601.4cm : volume of rectum in PTV601.4cm (cm3)

Rate of change (slope) between overlap
volumes of adjacent expanded PTVs with
OARs

None slope between OVrectum,PTV601.4cm and OVrectum,PTV601.6cm

(cm3)

Ratio of two ROI volumes None ratio of volume of rectum to volume of PTV48
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Collinearity between variables can leading to modelling bias [46], so associations
between features were also explored. A subset of the master set of features was therefore
defined. For any two features with a Pearson correlation coefficient of 0.85 or higher, one
of the two features was randomly removed. A value of 0.85 was considered a reasonable
cut-off and is in-line with other ML studies in the general ML literature [47–49]. Two feature
datasets are therefore defined: the full set of cleaned features (FeatureDS1) and a subset of
FeatureDS1 containing uncorrelated features (FeatureDS2).

2.6.2. Modelling Overview

For an overview of the modelling process, see flowchart in Figure 2. ML solutions were
built on the training dataset using FeatureDS1 and FeatureDS2. Code was written in Python
2.7 and packages used were sourced from Scikit-learn 1.0.2 version library (SKlearn). Model
formations for regression varied in terms of the feature dataset used (FeatureDS1 or Feature
DB2), the number of features in the model (up to five for raw and 20 PCA features), and the
degree of the regression Equation (linear, quadratic or cubic fit). Cluster models could vary
in the number of clusters defined and the feature dataset used to define them. Models for
every different formation combination were built for comparison and final models chosen
from among them using a leave-one-out cross validation (LOOCV) approach.

Training database 
of PSV patients

Expert-driven Pareto 
navigated calibrations for 

the database (MCOgs)

FeatureDB1

MCOgs WFs linearly, 
quadratically and cubically 

regressed (i.e. up to 3 
degrees) against feature 

sets

All K-means clusters 
identified using all 
features available
e.g. 1 – 20 clusters

Anatomical variable 
extraction

e.g. volume of the 
rectum (cm3)

FeatureDB2

No

REGRESSIONCLUSTERING

Take the mean MCOgs WF over each 
cluster as the prediction weights

No

Start

Predict left-out patients cluster and 
assign it a predicted weight

Generate predicted WFs for the 
left-out patient for each 

formation (feature set and 
degrees)

Add current 
left-out patient 

back to 
database

Data cleaning
Remove one in every 

pair of highly correlated 
features

Yes

Transform features of left-in 
patients to Principal Components 
and use to transform the left-out 

patient

Leave a patient out of the 
database, apply a standard 

normalisation transformation to 
the  remaining database + use to 

transform left-out patient

Leave a patient out of the 
database, apply a standard 

normalisation transformation to 
the  remaining database + use to 

transform left-out patient

Optimal formation identified by 
lowest MSE

Final model generated using whole training 
database

Calculate MSE between MCOgs and modelled 
values for each model formation

End

Optimal formation identified by 
lowest MSE

Final model generated using whole training 
database

Calculate MSE between MCOgs and modelled 
values for each model formation

Yes

Reduction of feature 
set combinations

Has each 
training patient been 

left out?

Add current left-
out patient back 

to database

Has each 
training patient 
been left out?

Figure 2. Flowchart illustrating the ML process.
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In all cases, ‘left-in’ patient features were scaled to a mean of zero and standard
deviation of 1 using the SKlearn StandardScaler package. This ensured consistency and
uniformity during modelling. The left-out patient was scaled according to the left-in data
before prediction. Two approaches were explored for each model type: (1) modelling with
raw features (not reduced by Principal Components) and (2) modelling with Principal
Components. The SKlearn Decomposition package was used for PCA transformation of
FeatureDS1. Principal Component generation was performed on left-in patients and the
same transformation applied to the left-out patient prior to prediction.

It is not known a priori which models will be most appropriate for clinical use. There-
fore an evaluation of all candidate models was implemented using the mean squared error
(MSE) between predicted values and MCOgs during LOOCV as a quality score. The model
minimising MSE was selected. Once the model was identified, it was retrained using the
entire training dataset (i.e., no patients left out) to create the final ML solution. This solution
could then be used to generate patient-specific AutoPlan protocols for novel patients with
their features transformed with respect to the training datasets scaling and PCA parameters
(where applicable) before prediction, as was the case with the left-out patients during
model selection. The patient-specific protocol was then used as the input for the PGAP
solution for patient-specific AP (PGAP-MLreg or PGAP-MLclus).

2.6.3. Regression

Regression is a least squares machine learning method that uses one or more indepen-
dent continuous variables to define a continuous model with predetermined parameters
that minimise squared error from the raw data. Two approaches were explored for re-
gression modelling: (1) modelling using combinations of raw features within FeatureDS2
(reg-raw) and (2) forward selection using Principal Components generated using Fea-
tureDS1 (reg-PCA). In all cases the same method was followed and regressions built using
the SKlearn Linear Model and Preprocessing algorithms. Linear and polynomial regression
models were explored in-line with the literature [5,37,50,51] and preliminary research.
Modelling and prediction was performed for each PG individually.

As raw features are not ordinal, all possible combinations of features (feature sets)
were considered in the reg-raw approach. To limit the search space, up to a maximum
of 5 features were allowed within a feature set. With over 100,000 possible feature sets,
a separate ‘feature set selection’ step was performed prior to model selection to identify
the optimum feature set per model formation. The methodology involved identifying the
feature set with the largest mean adjusted R2 under each model formation. Although MSE
could have been used to define this optimum feature set, it would increase computational
demand due to the additional calculations required and was considered impractical.

As Principal Components are ordinal, in the reg-PCA approach the dataset was
transformed to Principal Components and models generated using forward selection,
i.e., the first Principal Component (PC1) was used for all one feature models, PC1 and PC2
for all two feature models and so on up to the maximum 20 features. For both approaches
(reg-raw and reg-PCA), models explored were linear, quadratic and cubic, i.e., 15 model
formations for reg-raw and 60 for reg-PCA. The performance of each model formation
was assessed using LOOCV and one of these 75 model formations was chosen as the
optimal formation.

2.6.4. Clustering

Clustering refers to any class of unsupervised machine learning methods related to
grouping data points together such that the degree of difference between variables within
a cluster are minimised and therefore smaller than differences observed with data points
outside of that cluster. K-means clustering is one such technique. Cluster centroids are
defined based on the mean across the data points on each axis in a cluster.

K-means clustering was facilitated by the SKlearn Cluster package. The two ap-
proaches considered were: (1) clustering over FeatureDS2 (clus-raw) and (2) clustering
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over Principal Components of FeatureDS1 (clus-PCA). Training patients were clustered
over all data available using a random initial state of 42 and 300 maximum iterations with
all possible values of K considered (i.e., 20 models). Validation patients were assigned to
a cluster based on the cluster centroid that minimised the Euclidean distance. The mean
weight over the training patients was considered the prediction weight for unseen patients
assigned to that cluster.

To aid the analysis of cluster performance, two metrics were calculated for each model
formation: (1) the sum of the squared differences between each point and its cluster centroid
(SSE) and (2) a silhouette coefficient—a value between −1 and 1 that scores the goodness-
of-fit of each formation based on average inter- and intra-cluster distances. SSE values close
to zero and silhouette scores close to 1 indicate models that are well defined.

2.6.5. Validation and Statistical Analysis

All patients in the validation dataset were planned according to the four approaches:
MCOgs, PGAPstd, PGAP-MLreg and PGAP-MLclus. For the purposes of analysis all weight-
ing factors, which carry little intrinsic value on their own, were converted to relative
weights (expressed as a percentage) through division by the summed weight of all PGs.
For the validation cohort, the difference between the modelled relative PG weights and
gold standard (MCOgs) relative PG weights was the primary metric used to assess model
quality, with MSE additionally calculated to aid in the comparison with training results.
Plans were dosimetrically compared against MCOgs using a pairwise two-way Wilcoxon
signed rank statistical testing with dose metrics of interest adapted from the UK PIVOTAL
trials [38]. PTV homogeneity index (HI) and Paddick’s conformality index (CI) were also
calculated for the analysis [52]. All outliers were defined as values outside of the range
[Q1 − (1.5 × IQR), Q3 + (1.5 × IQR)], where Q1, Q3 and IQR are quartile 1, quartile 3 and
inter-quartile range (Q3–Q1), respectively.

3. Results
3.1. Predictive Features

FeatureDS1 contained 139 features: 23 volumetric, 14 spatial features and 102 derived.
The data therefore contained 139 columns (number of features) and 20 rows (number of
patients) and when transformed by PCA reduced to 20 Principal Components. The first
Principal Component accounted for 46.5% of the variance in FeatureDS1 and the first 11
accounting for over 95% combined variance.

Of the features in FeatureDS1, 27 were chosen for FeatureDS2: 11 volumetric, 5 spatial
and 11 derived. Of the 112 features excluded from FeatureDS2, 45 were correlated with one
of the kept features, 58 to two features and 9 to three features. For a comprehensive list of
features in FeatureDS2, see Supplementary File S1.

3.2. Model Selection
3.2.1. Regression

See Table 6 for a summary of the LOOCV, associated feature sets and performance
following training across all 20 training patients. PCA features were not found to minimise
MSE for any PG, therefore all chosen models use raw features. Of the 27 features considered
during modelling, 16 were among the final models. Of these 16, 8 were volumetric, 3 spatial
and 5 derived. The spatial feature ‘distance from the centre of PTV48 to the centre of the
rectum’ was used in four of the six PG models. Six features were each present in two PG
models including ‘volume of the rectum’, ‘volume of PTV48’, ‘distance from the centre
of the bladder to the centre of the rectum, ‘rectum VIFPTV48’, ‘ratio of the bladder to the
rectum’ and ‘slope between OVrectum,PTV480.2cm and OVrectum,PTV480.4cm ’.
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Table 6. Summary of PGAP-MLreg model formations defined during the automated leave-one
out process.

Planning Regression Features Training Validation

Goal Equation Av adj R2 MSE MSE

Rectum 3 features Volume of the external (cm3) 0.835 368 7025
Dmean quadratic Rectum VIFPTV48 (cm3)

Slope between OVrectum,PTV480.2cm and OVrectum,PTV480.4cm

Bladder 5 features Volume of the rectum (cm3) 0.858 24.5 271
Dmean linear OVrectum,PTV48 (cm3)

Total OAR VIFPTV60 (cm3)
Distance from centre of PTV48 to the centre of rectum (cm)
Ratio between PTV48 and rectum volume

PTV 5 features Volume of the PTV48 (cm3) 0.907 1441 19,442
Conformality linear Distance from centre of PTV48 to the centre of rectum (cm)

Slope between OVrectum,PTV480.2cm and OVrectum,PTV480.4cm
Ratio between bladder and rectum volume
Ratio between PTV48 and bladder volume

Rectum 4 features Volume of the rectum (cm3) 0.997 0.125 5.82
Dmax quadratic Distance from centre of PTV48 to the centre of rectum (cm)

Distance from centre of PTV48 to the centre of PTV60 (cm)
Ratio between bladder and rectum volume

PTV Dose 4 features Volume of the PTV48 (cm3) 0.998 2.62 495
Falloff quadratic Rectum VIFPTV48 (cm3)

Distance from centre of bladder to the centre of rectum (cm)
Distance from centre of PTV48 to the centre of rectum (cm)

Bladder 4 features OVrectum,PTV60 (cm3) 0.999 0.309 69.3
Dmax quadratic Total OAR VIFPTV48 (cm3)

Distance from centre of bladder to the centre of rectum (cm)
Slope between OVbladder,PTV481.2cm and OVbladder,PTV481.4cm

The model formations were strong for PTV dose falloff, rectum Dmax and bladder
Dmax with mean adjusted R2 greater than 0.990. The quality of the models were reduced,
but still adequate, for rectum Dmean, bladder Dmean and PTV conformality, with R2 between
0.835 and 0.907.

3.2.2. Clustering

See Table 7 for a summary of cluster model performance. A single cluster yielded
the most optimal model of one PGs: intra-PTV dose falloff. Therefore, a single value was
defined for all patient for this PG and feature datasets were not essential in generation
of the predicted weight. Silhouette and SSE values suggest clusters had high degrees of
dispersion within clusters and/or low variance between clusters. However, comparable to
regression, validation MSE values were overall more desirable. PCA feature types were
selected for 3 out of 6 PG.

Table 7. A summary of final PGAP-MLclus models defined using the training dataset.

Planning Number Feature SSE Silhouette MSE Validation
Goal of Clusters Type Average MSE

Rectum Dmean 2 Raw 416 0.173 698 1273
Bladder Dmean 11 Raw 123 0.058 9.89 298

PTV Conformality 9 PCA 562 0.162 2320 4037
Rectum Dmax 7 PCA 802 0.182 0.592 6.42

PTV Dose Falloff 1 n/a 540 n/a 10.8 133
Bladder Dmax 12 PCA 416 0.128 0.791 37.9
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3.3. Performance of Final ML Models
3.3.1. Weights

See Table 8 for an overview of relative weight calibrations across the validation dataset
(as see Supplementary File S1 for an illustration). Statistically significant differences (at the
95% level) were observed between MCOgs and the three alternative methods (PGAPstd,
PGAP-MLreg and PGAP-MLclus) for three PGs: rectum Dmean rectum Dmax and PTV dose
falloff. For PGAPstd and PGAP-MLreg significant differences were also observed for bowel
V36.0Gy and V45.6Gy and the higher priority P1 and P2 goals (PGhigher). Differences were
generally small (<3.58%), with PGAP-MLclus closest to MCOgs on average with differences
<1.17%. Mean differences from MCOgs were also closest to zero for PGAP-MLclus for six
of the eight PG. PGAP-MLreg was the poorest performer overall with deviations <2.49%
and 3.57% for PTV conformality and PGhigher, respectively.

Table 8. Summary of PG relative weights. Values are mean averages across the the validation dataset
± one standard deviation. Boldface indicates statistically significant differences from MCOgs at the
95% level.

Weight Metric MCOgs PGAPstd PGAP-MLreg PGAP-MLclus

Rectum Dmean 3.46% ± 0.999% 4.18% 4.82% ± 2.32% 4.17% ± 0.257%
Bladder Dmean 1.10% ± 0.421% 1.18% 1.24% ± 0.368% 1.14% ± 0.404%

PTV Conformality 8.86% ± 2.252% 10.7% 11.3% ± 3.22% 9.55% ± 1.75%
Rectum Dmax 0.163% ± 0.0800% 0.102% 0.107% ± 0.0341% 0.102% ± 0.00820%

PTV Dose Falloff 0.926% ± 0.390% 0.695% 0.649% ± 0.552% 0.705% ± 0.0153%
Bladder Dmax 0.487% ± 0.239% 0.459% 0.400% ± 0.106% 0.481% ± 0.116%

Bowel V36.0Gy and V45.6Gy 0.0575% ± 0.00204% 0.0559% 0.0551% ± 0.00243% 0.0568% ± 0.00123%
Higher Goals 85.0% ± 3.02% 82.6% 81.4% ± 3.59% 83.8% ± 1.82%

Figure 3 illustrates relative weight deviations from MCOgs at a per-patient level for all
three methods. In general per-patient deviations were considered small with maximum
deviations of 7.39%, 9.88% and 5.58% for PGAPstd, PGAP-MLreg and PGAP-MLclus respec-
tively. PGAP-MLreg was considered the poorest performer of the three methods given the
largest range and inter-quartile range differences from MCOgs in all cases. PGAPstd and
PGAP-MLclus were considered highly comparable.

In terms of outliers, patient 25 was considered the most noteworthy patient with
outlying values in six cases: bladder Dmax (PGAP-MLclus only), intra-PTV dose falloff
(PGAPstd and PGAP-MLclus) and rectum Dmax (all methods). MCOgs absolute weights
for rectum and bladder Dmax and intra-PTV dose falloff were lower for patient 25 than
any patient in the training dataset and this was considered the likely underlying cause.
Patient 36 was also a notable outlier with outlying values in five cases: bladder Dmean and
Dmax (PGAP-MLclus), and rectum Dmax (all methods). Patient 36 had the largest bladder
volume in the validation set with a volume 1.36 times the maximum volume in the training
dataset. Patient 24 had outlying values for bladder Dmean and intra-PTV dose falloff for
PGAP-MLclus which were attributed to OVbladder,PTV60 being the largest in the validation
dataset (1.97 times the median training value) and the absolute value for PTV dose falloff
being outside the range defined by the training dataset (which bound PGAP-MLclus weight
predictions). Finally, outlying values were observed for patient 21 in three cases: bladder
Dmean (PGAP-MLclus) and rectumDmean (PGAPstd and PGAP-MLclus). This patient had
the smallest OVrectum,PTV60 but also had rectum and bladder Dmean weights outside of
the training dataset range. Other patients with 1–2 outliers (patient 27, 30, 31, 38, 39 and
40) were as above, identified as being anatomically atypical or cases where the validation
MCOgs weights were out of range of the training values.
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Figure 3. Plots showing relative weight difference from MCOgs for the validation dataset. Bar chart
are order patient 21–40 and box plot represent the overall distribution.
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3.3.2. Dosimetry

See Table 9 for a dosimetric summary of MCOgs against the three AP solutions. Fur-
thermore, see Figure 4 for an illustration of dosimetric differences from MCOgs for key
dose-related metrics for each patient in the validation dataset and Figure 5 for an example
dose distributions of each solution.

Table 9. Summary of key dose metrics. Values shown are mean ± 1 standard deviation. Statistical
difference at the 95% level of significance is indicated by boldface.

Metric MCOgs PGAPstd PGAP-MLreg PGAP-MLclus

PT
V

60

D98% (Gy) 57.5 ± 0.200 57.5 ± 0.171 57.5 ± 0.189 57.5 ± 0.134
D50% (Gy) 60.0 ± 0.0748 59.9 ± 0.0611 59.9 ± 0.0723 59.9 ± 0.0395
D2% (Gy) 61.7 ± 0.0879 61.7 ± 0.0853 61.7 ± 0.0896 61.7 ± 0.0794

CI 0.853 ± 0.00910 0.851 ± 0.0108 0.843 ± 0.0368 0.848 ± 0.0112
HI 0.0700 ± 0.00435 0.0696 ± 0.00358 0.0706 ± 0.00441 0.0694 ± 0.00309

PT
V

48

D98% (Gy) 46.3 ± 0.532 46.1 ± 0.407 46.0 ± 0.440 46.2 ± 0.422
D50% (Gy) 53.3 ± 1.32 53.2 ± 1.20 53.4 ± 1.35 53.3 ± 1.22
D2% (Gy) 59.1 ± 0.277 59.2 ± 0.242 59.2 ± 0.347 59.1 ± 0.236

CI 0.812 ± 0.0327 0.823 ± 0.0210 0.810 ± 0.0638 0.813 ± 0.0291
HI 0.241 ± 0.0112 0.246 ± 0.00892 0.248 ± 0.00115 0.243 ± 0.0101

R
ec

tu
m

V24.3Gy (%) 29.1% ± 8.47% 28.5% ± 7.94% 28.7% ± 9.36% 28.4% ± 8.21%
V32.4Gy (%) 23.7% ± 7.44% 23.2% ± 7.14% 23.3% ± 7.89% 23.3% ± 7.29%
V40.5Gy (%) 18.6% ± 6.17% 18.2% ± 6.01% 18.2% ± 6.31% 18.3% ± 6.11%
V48.6Gy (%) 12.8% ± 4.41% 12.6% ± 4.38% 12.5% ± 4.43% 12.7% ± 4.46%
V52.7Gy (%) 9.32% ± 3.28% 9.23% ± 3.26% 9.21% ± 3.31% 9.32% ± 3.37%
V56.8Gy (%) 5.32% ± 2.12% 5.48% ± 2.20% 5.23% ± 2.21% 5.46% ± 2.31%
V60Gy (%) 0.299% ± 0.445% 0.271% ± 0.221% 0.222% ± 0.213% 0.180% ± 0.168%

V60.8Gy (%) 0.0690% ± 0.129% 0.0430% ± 0.0419% 0.0220% ± 0.0357% 0.0223% ± 0.0351%
Dmean(Gy) 18.7 ± 3.72 18.4± 3.50 18.5 ± 4.18 18.3 ± 3.69

Bl
ad

de
r V40.5Gy (%) 18.0% ± 11.3% 18.0% ± 11.3% 17.9% ± 11.1% 18.1% ± 11.4%

V48.6Gy (%) 12.2% ± 7.83% 12.0% ± 7.70% 12.1% ± 7.55% 12.3% ± 7.83%
V52.7Gy (%) 9.46% ± 6.33% 9.37% ± 6.25% 9.35% ± 6.17% 9.47% ± 6.29%
V56.8Gy (%) 6.49% ± 4.58% 6.54% ± 4.65% 6.40% ± 4.51% 6.44% ± 4.59%
Dmean(Gy) 20.2 ± 8.72 20.3 ± 8.77 20.2 ± 8.87 20.3 ± 8.91

At a population level all three methods provided excellent correspondence with
MCOgs with deviations either not statistically significant (at the 95% level), or of a small
magnitude. For example, PTV coverage and hotspot metrics were within 0.28 Gy of MCOgs,
and OAR objectives within 0.66% and 0.34 Gy for volume and dose metrics, respectively.
The most noticeable statistically significant deviation was CIPTV48 for PGAPstd which
was an improvement on MCOgs by +0.01; however, this was not considered a clinically
significant difference.

At patient level, deviations in the performance of the three methods was observed,
with PGAPstd and PGAP-MLclus highly comparable and PGAP-MLreg the poorest per-
former. For PGAP-MLreg the most notable deviations from MCOgs were for PTV48 D50%,
CIPTV60, CIPTV48, rectum Dmean and bladder Dmean with deviation ranges of [−1.05, 1.22]
Gy, [−0.114, 0.0378], [−0.172, 0.0925], [−2.05, 1.93] Gy and [−1.52, 2.03] Gy, respectively.
For PGAPstd and PGAP-MLclus, bladder deviations were similar to PGAP-MLreg, but sub-
stantially reduced for other metrics with PTV48 D50%, CIPTV60, CIPTV48 and rectum Dmean
deviations less than ±0.60 Gy, ±0.02, ±0.06 and ±1.18 Gy, respectively. In general, for PGAP-
MLclus and PGAPstd deviations from MCOgs across all patients were considered small and
likely not of clinical significance.
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Figure 4. Plots showing absolute difference from MCOgs. Distributions are across the validation
dataset of key dose related metrics for each of the three calibration techniques.
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Figure 5. Transverse CT slice of the first validation patient (patient 21) showing dose distributions for
each calibration method. Delineated volumes are rectum (brown), PTV60 (red) and PTV48 (orange).
Tiles are: (a) MCOgs, (b) PGAPstd, (c) PGAP-MLreg and (d) PGAP-MLclus.

In terms of individual outliers there was a low correspondence with those identified
in the weight analysis. In the weight analysis, patients 21, 24, 25 and 36 were identified
as notable outliers, with a total of 16 outlier weights across the three techniques. In the
dosimetric analysis only 3 of these weights corresponded to dosimetric outliers: patient 24,
bladder Dmean for all techniques and patient 21 rectum Dmean for PGAP-MLclus.

4. Discussion

In our previous work we developed a PGAP solution (built on a PBAIO framework)
that utilised a single ‘one size fits all’ AP protocol for all patients in a given treatment site.
The approach was evaluated against traditional TAE manual planning and considered
non-inferior. This study builds upon that work in two key ways. Firstly, we introduced
ML upstream of the PBAIO AP algorithm to develop a novel hybrid KBP-RBP planning
approach, where ML is utilised to generate fully bespoke AP protocols for individual
patients. Secondly, PGAPstd, PGAP-MLclus and PGAP-MLreg were evaluated against a
Pareto navigated gold standard, rather than traditional TAE manual planning that is prone
to sub optimality [53]. In this regard the efficacy of each automated approach could be
comprehensively assessed.

Plans generated from this novel approach and plans generated via PGAPstd were
compared to a Pareto navigation gold standard (MCOgs). All approaches yielded plans
acceptable for clinical use and at a population level demonstrated excellent congruence with
MCOgs. At an individual patient level, PGAP-MLreg was considered the weakest solution,
due to algorithms being influenced by anatomical outliers. Both PGAPstd and PGAP-
MLclus yielded very good agreement with MCOgs across all patients, with PGAP-MLclus
considered marginally superior due to fewer extreme outliers.

ML techniques used in this work are not new to radiotherapy planning. PCA [5],
regression [5,50] and clustering [54] have all been used in KBP to make predictions based
on anatomical features with notable success. This work builds upon this knowledge in
two ways. Firstly, previous ML implementation would typically seek to generate a patient-
specific input to a native treatment planning optimiser. In contrast this novel approach
aimed to generate patient-specific AP protocols to further personalise an already validated
RBP solution. Secondly we present a methodology to evaluate the performance of different
model formations using a LOOCV decision framework, such that the optimal model for
a given site can be selected. This allowed for an automatic and unbiased choice among
different models comprised of various feature sets, types of features and types of model.
This approach helps to resolve the challenge of defining a ML formation prior to training
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and allows for bespoke architecture to be utilised for individual PGs, thus removing the
requirement for a homogeneous ML approach, which may not be appropriate. Results
of this study support this assertion, with different model formations selected during the
LOOCV model selection process.

ML in this work relied on a dataset of numerical geometric information derived
from delineated patient anatomy. Whilst this methodology is based on previous KBP
work, inclusion of other features may improve the versatility and modelling accuracy of
the developed approach. A promising method would be utilisation of neural network
generated features, which has been implemented successfully for dose prediction [55,56].
Neural networks could be utilised to directly generate patient-specific AP protocols or used
in a two step approach to generate dosimetric features (rather than anatomical features)
from which PG weights are derived [57]. However, as plan generation is a geometry-based
optimisation problem, modelling wholly on anatomy based features may hold intrinsic
value as they can be interpreted and therefore reduce the risk of developing an automated
planning ‘black box’.

The largest variances in difference from MCOgs for both input parameters (weights)
and outputs metrics (dose distribution) was observed for PGAP-MLreg. This is thought to
be related to the size and composition of the training dataset not adequately representing
the patient population. PGAPstd and PGAP-MLclus were more robust to the limited dataset
size, with small deviations from MCOgs observed for outlier patients. Given regression
allows predictions to be extrapolated beyond the bounds defined by the training dataset,
increased robustness of PGAPstd and PGAP-MLclus compared to PGAP-MLreg is thought
to be due to PGAPstd and PGAP-MLclus prediction weights being bounded by the training
data. For outlier patients PGAP-MLreg could therefore lead to inconsistent or spurious
predictions. As generating the ground truth training data is time consuming, curation of a
suitably large dataset for accurate regression modelling may be challenging, especially for
busy radiotherapy clinics. Therefore, these results indicate PGAP-MLreg may not be the
best suited ML approach for routine clinical application. Across the three methods, PGAP-
MLclus was considered the most comparable to MCOgs based on the number of significant
differences observed following Wilcoxon testing, the magnitude of dose differences and the
fact fewer outliers were observed. However, the superiority of PGAP-MLclus over PGAPstd
was considered marginal. As PGAPstd is equivalent to PGAP-MLclus when K = 1, these
results indicate that for the majority of patients individualisation via clustering may not
be necessary if a simple site-specific protocol based on an average weight is implemented.
However, marginal improvements may be gained when using PGAP-MLclus for patients
who are anatomical outliers, most likely for ROIs where large anatomical variances are
common, such as for bladder and patient outline ROIs.

A key strength of this study was that training and evaluation was performed with
plans generated using a posteriori multicriteria optimisation methodology (MCOgs), which
we consider to be a gold standard in patient-specific plan generation [22]. This contrasts
with the majority of KBP training approaches and AP comparative studies in the litera-
ture, which use manual plans generated with TAE [29,58,59]. Our ML models and study
results are therefore not confounded by unwarranted variation or sub-optimality of plans
within the training and validation datasets, which are known issues associated with TAE
manual planning [53]. Across all three methodologies at a population level there was
excellent correspondence with MCOgs, with all volume and dose metrics within ±0.66%
and ±0.34 Gy, respectively. In terms of trade-off balancing, PGAP-MLreg and PGAPstd
led to a marginal reduction in PTV48 D98% (0.17 and 0.28 Gy, respectively), resulting in
a corresponding minor reduction in rectum V40.5Gy and V48.6Gy (0.3–0.4%). This was
considered a clinically insignificant difference. No other trade-off differences were ob-
served. In terms of individual patients PGAP-MLclus and PGAPstd, yielded plans with high
correlation to the gold standard MCO generated comparator (MCOgs). The correlation was
weaker for PGAP-MLreg, which as discussed was attributed to the small training dataset
size. Results provide strong evidence that PGAPstd, (built on a PBAIO AP framework),
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generates individualised plans, even when a site-specific protocol is utilised. This is an
important finding, not only in validating the use of PGAPstd for prostate cancer, but also
providing evidence that a posteriori multicriteria optimisation yields minimal benefits over
AP in terms of the individuation of patient plans. In terms of the utility of patient-specific
protocols, whilst PGAP-MLclus and PGAP-MLreg did not yield marked improvements,
anatomical variances were shown to be an important factor in the prediction of weights
during training. For example, regression models yielded R2 values > 0.83, with reasonable
MSE during LOOCV. This suggests ML may yield improvements over PGAPstd where
larger anatomical variations cause the optimality of the PBAIO framework to break down,
as has been demonstrated in the application of Pinnacle3 Auto-Planning for lung [28] and
nasopharynx [29] where poor quality planning was associated with anatomical outliers.

Whilst training and validating using MCOgs was a major strength in this work, due to
the resource intensive nature of generating these ground truth plans, the size of the training
dataset was constrained to 20 patients. This represents a key weakness in the approach,
resulting in weak associations between training and validation MSE and, as discussed,
the poor performance of PGAP-MLreg for outlier patients where weights were generated
via extrapolation. However, despite this weakness, agreement with MCOgs was very good
across all methods. It was therefore considered that training and validating on small high
quality datasets was preferable to using large low quality manually generated datasets,
where variation in plan quality could lead to poor models and/or spurious validation
results. To improve the efficacy of training on small datasets a potential solution is to
actively select a cohort of patients that suitability samples the extent of variation in the
population (including outliers). This contrasts with the random selection approach taken
in this work, as this approach does not explicitly screen for outlier geometries to model on.

In terms of similar studies, the most relevant are those assessing the modelling per-
formance of KBP solutions for prostate cancer. For DVH prediction using the commercial
KBP system Rapid Plan (Varian, Palo Alto), Cagni et al. [31] demonstrated that even when
trained using a set of Pareto optimal plans, clinically relevant prediction errors were ob-
served. Specifically, for rectum and bladder, errors in mean dose of up to 6 Gy (7.7% of the
prescribed dose of 78 Gy) and 5 Gy (6.4% of 78 Gy) were observed, respectively. In our
study, rectum and bladder mean dose errors were <2.0 Gy (3.3% of 60 Gy) across all three
methods. In terms of KBP via objective weight prediction, Boutilier et al. [8] presented a
dosimetric assessment of logistic regression and k-nearest neighbour models. Performance
of the models were similar, with 95% percentile errors in volume dose metrics of 1.5%
and 3.5% for bladder V88% and V68% respectively, and 2% and 4.5% for rectum V88% and
V68% respectively. In our study, equivalent metrics were all ≤1.5% for both rectum and
bladder. The performance of all three of our approaches is therefore considered very good
in the context of previous work and highlights the effectiveness of the PBAIO framework
in yielding bespoke plans, even without utilising ML for personalised protocols.

In this study, the absolute weights generated during MCOgs calibration were mod-
elled and each PG were considered individually with their own optimal model defined.
This made performing regression and clustering straight forward and helped to identify
anatomical features that are important considerations when optimising a given trade-off.
An intuitive alternative approach may have been to use a multi-output ML technique such
as multi-output regression or deep learning to predict not only PG weights but relative
PG weights. There is the potential that such an approach is more generalisable as weights
are strongly relative in plan optimisation. Additional improvements would be to replicate
these results with larger patient datasets. This would lead to greater statistical power and
minimise the discrepancies in model performance between the calibration and validation
cohort, which was observed for PGAP-MLreg. Inclusion of more expert observers could
lead to a definition of MCOgs with even better congruence with clinical preferences. Finally,
repeating the study on a more heterogeneous patient dataset (e.g., head and neck cancer)
may yield substantially different results. In this study, MCOgs and PGAPstd were highly



Appl. Sci. 2023, 13, 4548 19 of 22

aligned, which was not expected, meaning any potential benefit of ML was minimal. This
may not be the case for different clinical sites of increased complexity and heterogeneity.

5. Conclusions

A machine-learning methodology for generating patient-specific AP protocols via
clustering and regression was developed and validated for prostate cancer. Unlike current
RBP approaches, which use a ‘one size fits all’ site-specific protocol, this novel KBP-RBP
hybrid approach sought to fully personalise the automated planning process. The relation-
ships between anatomy and AP calibration parameters was explored, with key predictive
features identified for each optimisation planning goal. Compared to site-specific protocols,
patient-specific protocols offered minimal advantage, with both approaches yielding plans
of nominal equivalence to gold standard plans generated via a posteriori multicriteria opti-
misations. Future work should include application to additional treatment sites, training on
datasets activity (rather than randomly) curated to represent the broad patient population
and if practicable, replication of findings using larger datasets.
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Abbreviations
The following abbreviations are used in this manuscript:

Degree Degree of a polynomial model, e.g., a quadratic model has two degrees
Feature Anatomical variable that defines a geometric characteristic relating to regions-

of-interest. May be used in raw form or as Principal Components
Feature set Set of Features. May be a subset of FeatureDS2 or a subset of Principal

Components of FeatureDS1
FeatureDS1 Dataset of all raw Features used for generating Principal Components. Con-

tains no variables with missing data or low variance
FeatureDS2 A subset of FeatureDS1. No pair of Features in this dataset has a correlation

coefficient greater than 0.85
Model Formation Type of model, e.g., 2 features 3 degrees regression or 15 clusters. Formation

of the model irrespective of the feature types used.
OV‘ROI1’,‘ROI2’ Sub-region defined by the overlap of two regions-of-interest (i.e., ROI1 and

ROI2). Measured in cm3

PTV‘x’cm PTV expanded isoptropically by ‘x’ cm, e.g., PTV480.02cm is PTV48 + 0.02 cm
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‘ROI1’ VOF‘PTV1’ Total volume of a region-of-interest (ROI1) above the most superior slice
and below the most inferior computed tomography slice of a PTV (PTV1).
Measured in cm3

‘ROI1’ VIF‘PTV1’ Volume of a region-of-interest (ROI1) within the most superior and most
inferior computed tomography slices of a PTV (PTV1). Measured in cm3,
e.g., rectum VIFPTV48 is the rectum volume within slices containing PTV48

Slope Rate of change, i.e., change in y ÷ change in x
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