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Received: 14 February 2023

Revised: 27 March 2023

Accepted: 28 March 2023

Published: 2 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Inverse Kinematics for Serial Robot Manipulators by Particle
Swarm Optimization and POSIX Threads Implementation
Hasan Danaci , Luong A. Nguyen *, Thomas L. Harman and Miguel Pagan

Computer Engineering Department, University of Houston—Clear Lake, Houston, TX 77058, USA
* Correspondence: nguyenl@uhcl.edu

Abstract: Inverse kinematics is a fundamental problem in manipulator robotics: a set of joint angles
must be calculated so that the robot arm can be manipulated to the corresponding desired end effector
position and orientation (also known as “pose”). Traditional solution techniques include analytical
kinematics solvers, which provide the closed-form expressions for the joint positions as functions
of the end-effector pose. When analytical inverse kinematics solvers are not possible due to the
manipulator structure, numerical methods such as Newton–Raphson or Jacobian inverse can be used
to achieve the task, but at a much slower speed due, to the iterative nature of the computation. Recent
swarm intelligence technology has also contributed to manipulator inverse kinematics solutions.
In this paper, the use of the Particle Swarm Optimization (PSO) approach in solving the inverse
kinematics problem is investigated for the general serial robotic manipulators. Many of the reviewed
robotic manipulator inverse kinematics solvers using swarm intelligence only deal with end effector
position and not its orientation. Our PSO approach provides the convergence of a complete end-
effector pose and will be demonstrated using the Baxter Research Robot, which has two seven-joint
arms, although the method is applicable to any general serial robotic manipulator. For computational
efficiency, the inverse kinematic calculations were implemented in parallel using Portable Operating
Interface (POSIX) threads to take advantage of the independent swarm particle dynamics.

Keywords: inverse kinematics; Baxter Research Robot; particle swarm optimization;
Newton–Raphson; Jacobian inverse; swarm intelligence

1. Introduction

The Particle Swarm Optimization (PSO) approach, proposed by Kennedy and Eber-
hart [1], is a metaheuristic algorithm based on the concept of swarm intelligence [2], which
is a powerful technique for solving complex mathematical engineering problems. The PSO
solves problems by having multiple agents—called particles—investigate and compare
the quality of a population of candidate solutions. A particle iteratively moves from one
candidate solution to another based on a mathematical formula involving the particle’s
current state, its own local best state (lbest) as well as the influence from the particle with
the best solution (gbest) in the search space. This mathematical formula is given by the
following two equations:

vi = w vi + c1r1(plbest − xi) + c2r2(pgbest − xi) (1)

xi = xi + vi (2)

where
xi = State of the particle at iteration i
vi = Velocity of the particle at iteration i
w = Inertia weight
c1 = Cognitive parameter
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c2 = Social parameter
r1, r2 = Random parameters
plbest = Best local position
pgbest = Best global position
In Equation (1), w vi is the inertia term which makes the particle move in the same

direction and with the same velocity; c1r1(plbest − xi) is the personal influence term which
improves the individual by making the particle return to a previous position, better than the
current; and c2r2

(
pgbest − xi

)
is the social influence term which makes the particle follow

the best neighbors direction. This means that in the process of determining its movement
towards a promising global optimum, each particle modifies its position according to its
current position and velocity and the distance between its current position and pbest and
gbest, respectively. In applying the PSO algorithm to solve the inverse kinematics for a
serial robotic manipulator, the desired end-effector pose is set to be the target position XT ,
and a fitness function fi is defined to evaluate the local and global best positions among
the particles in the swarm:

fi = ||XT − Xi|| (3)

where Xi is the manipulator end-effector pose associated with the particle state xi at
iteration i. A complete table of definitions of all symbols is available in the Abbreviations
at the end of this manuscript and before the References section.

In this paper, an algorithm is developed to solve the inverse kinematics of a general
serial robotic manipulator using PSO and demonstrate its effectiveness on the manipulators
of the Baxter Research Robot.

2. Related Work

The PSO algorithm is a practical, fast and reliable optimization technique for complex
and challenging optimization problems. Thus, despite being relatively new algorithms,
PSO and other metaheuristics techniques have attracted the interest of several academics
for their ability to tackle a wide range of challenging issues in numerous domains. Due
to inverse kinematics (IK) being one of the most problematic concerns in robotics, many
papers have been published and have demonstrated how to optimize precise IK solutions
as quickly as possible.

The inverse kinematics solution for 7-DOF serial robotic manipulators utilizing quantum-
behaved particle swarm optimization (QPSO) was the focus of Dereli & Köker’s [3] research
in 2019. They also compared other swarm optimization techniques, including Particle Swarm
Optimization (PSO), the Firefly algorithm (FA) and the Artificial Bee Colony (ABC). As a result,
they proved that QPSO was more efficient than the other two techniques for solving inverse
kinematics. In their algorithm, they derive transformation matrixes using Denavit–Hartenberg
(DH) [4,5] parameters of the 7-DOF robot and obtain the position values in execution time
varying between 231 and 920 milliseconds. Although the goal of the inverse kinematic solution
is to move the end effector into the desired pose, which consists of orientation and position,
Dereli and Köker only obtained position values using forward kinematics. Both position
and orientation must match for the end effector to be moved to a point in cartesian space
as accurately as possible. Huang [6] attempted very similar research in 2012. Only the
PSO algorithm was employed to solve the inverse kinematics of the 7-DOF kinematically
redundant robot. The research, however, solely focuses on the position values and not the
orientation; execution time was not included in the analysis. In 2011, Durmus et al. [7]
proposed a particle swarm optimization (PSO) to obtain an inverse kinematics solution
for a six-jointed robot manipulator. Results are compared for the same problem using the
Harmony Search Algorithm (HSA) and show that PSO is faster than HSA in solving IK
problems. Unlike the other two studies above, he tested the algorithm on a 6-DOF robot, and
the execution time averaged around 36 milliseconds. However, the resulting comparison
would be meaningless, since other researchers used 7-DOF manipulators. Mustafa Ayyildiz
et al. [8] solved the inverse kinematic of a real 4-DOF serial robot manipulator, which
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was designed and built for pick-and-place operations of a flexible manufacturing system.
They compared four different optimization algorithms, including the genetic algorithm
(GA), the particle swarm optimization (PSO), the quantum particle swarm optimization
(QPSO) and the gravitational search algorithm (GSA), according to the execution time, and
the end-effector position error. Their result also reveals that QPSO is more efficient than
other methods. Sancaktar et al. [9], in 2018, adopted the PSO algorithm for the inverse
kinematic solution of the 6-DOF robot built for fracture therapy with an external fixator.
Unlike the original PSO algorithm, they relocate all the particles at the global best as the
beginning position after the predetermined iteration number is executed. According to
their outcome, better results were obtained in comparison with the classical PSO algorithm.
In 2012, Rokbani [10] used PSO to solve the inverse kinematics of a 3-DOF biped robot
during locomotion. PSO inverse kinematics, according to Rokbani, provides an inverse
kinematics solution that corresponds to the robot’s center of mass while respecting joint
constraints. According to Rokbani [11], inverse kinematics ensures the solution of joint
motions required to attain a unique reference frame position. Inverse kinematics correlates
to a geometry problem that can be settled using trigonometry and geometry paradigms.

Starke et al. [12] implemented an efficient hybridization of the Genetic Algorithm
(GA) and the Particle Swarm Optimization (PSO) to determine and solve the problem
regarding inverse kinematics on arbitrary joint chains. The approach was applicable,
since it ensures high accuracy and success rates of real-time full-pose objective solutions.
Starke et al. created a multi-objective fitness function—Hybrid Genetic Swarm Algorithm
(HGSA)—based on natural evolution across diverse and constantly changing environments.
Moreover, they used simultaneous local extrema exploitation to obtain more precise solu-
tions because dead ends could be solved using simple heuristics. Starke et al. demonstrated
that their solution is comparable to the Orocos KDL and TRAC-IK methods in terms of
success rate and computation time. Among all the methods above, the solution of Starke
et al. is the most powerful and efficient. Unfortunately, many of the reviewed swarm
intelligence robotic manipulator inverse kinematics solutions only deal with end effector
position rather than orientation. In 2022, L.A. Nguyen, H. Danaci and T.L. Harman [13]
demonstrated the convergence of a complete end-effector pose using PSO. The algorithm’s
precision is demonstrated using the Baxter Research Robot, which has two seven-joint
arms, but the method can be applied to any general serial robotic manipulator. However,
Nguyen et al. only concentrated on getting a complete solution of IK and benchmarked
execution time, which is critical in real-time applications. Particle swarm optimization ap-
plies to solving many other problems in robotics. For instance, based on the actuator power
consumption, Kucuk [14] proposes an optimization problem for the 3-degrees-of-freedom
RRR fully planar parallel manipulator (3-RRR). The optimization seeks to determine the
optimal link and platform masses in order to reduce the electrical energy consumed by the
actuators while adhering to kinematic, geometric and dynamic constraints by using PSO.

Among the traditional solution techniques for robot manipulator inverse kinematics,
the Inverse Kinematics (IK) algorithms in the open-source Orocos Kinematics and Dynamics
Library (KDL) are considered the most popular generic IK solvers worldwide.

In an effort to find a better IK solver for generic manipulator chains, Patrick Beeson and
Barrett Ames [15] performed quantitative comparisons, using several different humanoid
robots, between an improved implementation of the KDL inverse Jacobian algorithm and
various sequential quadratic programming IK algorithms. Another powerful inverse kine-
matics solver, IKFast, is also available within Rosen Diankov’s Open Robotics Automation
Virtual Environment (OpenRAVE) motion planning software [16].

3. Baxter Robot

The University of Houston Clear Lake Control & Robotics Laboratory has a Baxter
Research Robot (Figure 1), manufactured by Rethink Robotics, Inc., Boston, Massachusetts,
USA [17]. Baxter is a humanoid, anthropomorphic robot sporting two seven-degree-of-
freedom arms and state-of-the-art sensing technologies, including force, position, and
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torque sensing and control at every joint, cameras in support of computer vision appli-
cations and integrated user input and output elements such as a head-mounted display,
buttons, knobs and more. The Baxter Research Robot joint control architecture includes
joint position, joint velocity and joint torque control modes, and also supports gravity
compensation and zero-G mode.
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Figure 1. Baxter Robot.

4. Baxter Manipulator Kinematics

The Baxter Research Robot has two identical seven-joint manipulator arms. The
coordinate frames and Denavit–Hartenberg [4] standard parameters convention used
in [18] for manipulator kinematics computation were adopted in this paper. The resulting
Denavit–Hartenberg parameters are shown in Table 1.

Table 1. Denavit–Hartenberg parameters.

i αi−1 ai−1 di θi

1 0 0 L0 θ1

2 −90◦ L1 0 θ2 + 90◦

3 90◦ 0 L2 θ3

4 −90◦ L3 0 θ4

5 90◦ 0 L4 θ5

6 −90◦ L5 0 θ6

7 90◦ 0 L6 θ7

EE 90◦ 0 L6+L7 θ7

where
L0 = 281.35 mm L4 = 374.29 mm

L1 = 125 mm L5 = 10 mm

L2 = 364.35 mm L6 = 229.525 mm

L3 = 69 mm L7 = 100 mm
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The homogeneous transformation matrix from frame {i} to frame {i − 1} is given
as follows:

i−1
i T =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (4)

where
cθi = cos(θi) sθi = sin(θi)

cαi−1 = cos(αi−1) sαi−1 = sin(αi−1)

The end effector frame {7} to the base frame {0} homogeneous transformation matrix
can be computed by:

0
7T = 0

1T1
2T2

3T3
4T4

5T5
6T6

7T (5)

The matrix 0
7T is a function of the joint angles θ1, θ2, · · · , θ7 and has the form [18]:

0
7T =

[
0
7R 0

→
P EE

0 1

]
(6)

where 0
7R is the rotation matrix from frame {7} to frame {0}, and 0

→
P EE is the position vector

of the end effector in frame {0}.
The end-effector pose Xi of the particle i can be constructed from the components of 0

7T :

Xi =

[
0
⇀
P T

EE [q0 q1 q2 q3]

]T
(7)

where [q0 q1 q2 q3] is the quaternion equivalence of 0
7R.

The time rate of change of Xi is then:

Vi =

[
0

.
→
P T

EE
[ .
q0

.
q1

.
q2

.
q3
]]T

=

[
0
→
V T

EE
[ .
q0

.
q1

.
q2

.
q3
]]T

(8)

which can be converted to joint rates of particle i using the following relationships [18–21]:

0→ω EE = 2

−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0




.
q0.
q1.
q2.
q3

 (9)

.
θi =

[ .
θ1

.
θ2

.
θ3

.
θ4

.
θ5

.
θ6

.
θ7

]T
= JT

(
JJT
)−1

[
0
→
V EE

0→ω EE

]
(10)

where 0→ω EE is the angular velocity of the end effector relative to frame {0} and J is the
Jacobian matrix of the manipulator [18–21].

5. Baxter Inverse Kinematics

The PSO algorithm (shown in Figure 2) to solve the inverse kinematics of the Baxter
manipulator arm was implemented in MATLAB and is described below.
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Figure 2. Flowchart of the PSO implementation.

The solution to the inverse kinematics problem is the set of joint angles of the particle
with the final global best fitness function.

Experiment: Target Pose is Baxter’s left arm end effector pose when the arm is at the
default untuck configuration. Three runs were performed with 60 particles, which yielded
three different sets of solution joint angles corresponding to this Target Pose. This result
was expected, since Baxter’s arm has seven joints (kinematically redundant); thus, the
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number of possible solutions is infinite. The Baxter robot (shown in Figure 1 was used to
test all obtained results via our algorithm at the University of Houston Clear Lake Robotics
and Control Laboratory. The Baxter robot arms have a default joint configuration called
“untuck” where the arms are deployed and ready to run applications. After adjusting the
untuck joint angle values using our results, a python program was run to move the robot’s
left arm into the untucked position. All communications between the robot and the python
code are established using Linux Ubuntu 16.04 and the Robot Operating System software
framework. More details can be found in Fairchild and Harman [22].

Table 2 documents the solution joint angles and corresponding final end-effector pose
for the three runs. Figures 3 and 4 illustrate how quickly the inverse kinematics solution
converges for run 1, after roughly 100 iterations. Although not shown here due to space
limitation, runs 2 and 3 have similar speeds of convergence. Figure 5 shows the global
best fitness function for run 1, and Figure 6 shows the three Baxter left-arm configurations
corresponding to the three different sets of solution joint angles from the three runs.

Table 2. Results of three runs with Target Pose at Baxter’s Untuck Configuration.

Run 1 Solution Run 2 Solution Run 3 Solution

Joint angles (degrees)

θ1
θ2
θ3
θ4
θ5
θ6
θ7





−68.401
−77.656
25.576

120.917
173.673
−44.975
−157.931





−101.024
−21.994
90.5023
110.675
108.897
−80.278
−110.091





−5.6836
17.4950
−116.247
113.035
101.1241
120.000
−49.540



Default Untuck Joint angles

−4.5837
−57.2958
−68.182
111.153
38.388
59.014
−28.647


Final pose

0 pEEx
0 pEEy
0 pEEz

q0
q1
q2
q3





0.5758
0.1770
0.2605
0.0255
0.1408
0.9896
0.0116





0.5758
0.1770
0.2605
0.0255
0.1408
0.9896
0.0116





0.5758
0.1770
0.2605
0.0255
0.1408
0.9896
0.0116



Target Pose XT

0.5758
0.1770
0.2605
0.0255
0.1408
0.9896
0.0116


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From Figure 6, it is clear that the Baxter left—arm end—effector pose is the same even
though the three different sets of joint angles are completely different. This is due to the
inherent kinematic redundancy of the seven-joint Baxter arm and the randomness of the
initial configuration of the swarm joint angles. The next paragraph will address how a
more customized solution can be obtained for Baxter and other kinematically redundant
manipulator arms.

It must be emphasized that our approach to solving the inverse kinematics for serial
robotic manipulators can be applied to manipulators with any number of joints and not
restricted to just seven. In the case of manipulators with kinematic redundancy (seven or
more joints in six-dimensional space), the algorithm can easily be manipulated to obtain
certain desirable solutions by simple modifications such as adding the joint angle error
from its desired value for any number of joints to the calculation of particle i’s fitness
function fi, i.e.,

fi =

√√√√ 7

∑
j=1

(
XTj − Xij

)2
+ ∑

k

(
θdes

k − θik
)2 (11)

where θdes
k is the desirable value of joint angle k in the solution of the inverse kinematics

problem. As an example, another run was made setting the desired value of the 6th joint to
θdes

6 = 59.014 deg, which corresponds to that of the default untuck configuration. For this
run, the final joint configuration is that of the default untuck configuration as shown below,
although the speed of convergence is slower than when the 6th joint is not constrained to a
desired value.

Target joint angles in degrees:

[−4.584 −57.296 −68.182 111.154 38.388 59.014 −28.6479]

Final joint angles in degrees (Figure 7):

[−4.5837 −57.2958 −68.1820 111.1538 38.3882 59.0147 −28.6479]
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6. Parallel Processing of the PSO Algorithm

The results described in the previous section were obtained with the inverse kinematics
algorithm implemented using MATLAB, a mathematically convenient but not necessarily
a time efficient language for this type of problem. In an effort to improve the speed of
execution, the algorithm was implemented using Portable Operating Interface (POSIX)
threads, commonly called pthreads which are executed in parallel. Idealistically, if there
are enough processors, each particle dynamic computation can be programmed into one
pthread which runs on one processor. A variety of test runs were performed using a
laptop computer with 21 processors to evaluate the speed of convergence as shown in
Tables 3 and 4. The parallel processing flowchart is shown in Figure 8. A brief description
of the POSIX threads pseudo code is given below.

Table 3. One particle per thread.

Target 1 Target 2 Target 3

Number of particles 20 20 20

Threads 20 20 20

Convergence time (s) 0.028 0.033 0.028

Cost (meter) 6.73 × 10−5 8.94 × 10−5 8.26 × 10−5

Table 4. Three particles per thread.

Target 1 Target 2 Target 3

Number of particles 60 60 60

Threads 20 20 20

Convergence time (s) 0.039 0.034 0.046

Cost (meter) 8.42 × 10−5 8.27 × 10−5 7.33 × 10−5

Posix Threads
A thread API based on standards for C/C++ is provided by the POSIX thread libraries.

A new concurrent process flow may be spawned using it. It works best with systems
that have several processors or cores, since the process flow can be scheduled to run on a
different processor, allowing for parallel or distributed processing to speed up the system.

Each thread has a unique:

• Thread ID
• Set of Registers, Stack Pointer
• Stack for local variables, return addresses
• Signal mask
• Priority
• Return value

Note: Pthread functions return “0” if OK.

x = Set number of threads
p = Set number of Particles
function PSO_calculation(*thread_id):

instantiate tid as a long
tid = cast thread_id to long

while GlobalBestCost > 0.00009 do
PSO iteration

endwhile
exit thread with NULL

endfunction



Appl. Sci. 2023, 13, 4515 11 of 17Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 
Figure 8. PSO implementation in threads. Figure 8. PSO implementation in threads.

function create_threads ():
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instantiate threads as array of NUM_THREADS pthread_t objects
instantiate attributes object pthread_attr
set stat to null pointer.
initialize thread attributes object attr.
set detach state of attr to joinable.

for i from 0 to NUM_THREADS do
create a worker thread with pthread_create, using thread[i] as thread ID, attr as thread

attributes, PSO_function() as start routine, passing thread ID data argument as needed.
if the pthread_create() function returns an error code:

Print output “Failed to create worker thread.”
exit program.

endif
endfor

endfunction

Threads were created according to the population of our swarm. In this research,
all 20 cores of an I9 processor were used to create an array of 20 threads with different
particle numbers as 20, 60 and 100. The following parameters in the function were used to
generate threads:

&Threads[i]: pointer to an unsigned integer value that returns the thread id of the
thread created.

&attr: You can specify behavior that differs from the default by using attributes. An
attribute object may be specified during thread creation with a pointer to a structure that is
used to define thread attributes such detached state, scheduling policy, and stack address.
If attributes are set to NULL, threads use the default settings, which are generally adequate.

PSO calculation: the pointer to the function to be threaded in our case is PSO_calculation.
void *i: pointer to void that contains the arguments to the function defined in the

earlier argument.

function destroy_threads ():
Destroy the thread attributes object created earlier in the program.
for i from 0 to NUM_THREADS do

Wait for the worker thread to complete before continuing execution.
if pthread_join returns error:

Print output (“error message)
exit (−1)

else:
Print output “that all worker threads have completed before the program exits.”
Print output “Ending Status of Thread.”

endif
endfor
endfunction

The computational process waits for each thread to finish its current task. When all
threads have finished their work, i.e., have obtained a satisfying error value, the software
terminates all the threads and goes back to the main function.

It must also be emphasized that in taking advantage of the parallel processing imple-
mentation, it was found that instead of waiting for the completion of all particle dynamics
computations at the end of each iteration before determining the global best fitness value
Gbest, the PSO algorithm converges significantly faster (more than an order of magnitude)
by letting each particle update the Gbest as it finishes its computations. Figures 9 and 10
reflect the contribution and motion of the particle computation threads, respectively. In
Figure 9, the color circles represent the Gbest value of the particles while in Figure 10, they
represent the end-effector pose of the particles during the solution process. Figure 11 shows
a close−up view of the particles arriving at the target solution.
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7. Results and Future Work

Table 5 shows the comparison in particle swarm size, number of iterations, conver-
gence time, end effector space degrees of freedom, joint space degrees of freedom and
accuracy between our PSO algorithm and those of references [3,12].

Table 5. Comparison of our algorithm with other swarm intelligence methods.

Paper Particle/Iteration Time (ms) Algorithm Dimension Accuracy (mm|RD)

Dereli [3] 300/500 449.8 PSO [Position] 67.1 × 10−3

Dereli [3] 100/500 444.1 ABC [Position] 54.7 × 10−4

Dereli [3] 50/500 920.4 Firefly [Position] 65.0 × 10−5

Dereli [3] 150/500 231.9 QPSO [Position] 27.7 × 10−17

Starke [12] NA 22 HGSA [Position, Orientation] 1.00

Starke [12] NA 30–600 PSO [Position] 1.00

Starke [12] NA 50–500 GA [Position] 1.00

Our Algorithm 20/NA 18–40 PSO [Position, Orientation] <0.09

Several algorithms have been created for the issue of inverse kinematics, and each
one has been fine for its particular need. As a result, it is challenging to undertake a
qualitative comparison that considers all performance factors. In addition, few cited studies
specify the execution time. Table 5 contrasts our technique with other strategies used by
researchers to solve inverse kinematics among those who had included execution time.
Dereli [3] solely concentrates on converging position values, as shown in Table 5, and finds
that after 500 iterations with 0.1 mm accuracy, the average execution time varies between
230 and 930 milliseconds depending on the optimization technique. Dereli [3] claims that
PSO is the second-worst optimization in terms of time for tackling only 3-dimensional
objectives (Px, Py, Pz). On the other hand, our method using the POSIX thread with full
(Position, Orientation) convergence only requires 18–40 milliseconds with a precision of
less than 0.1 mm. The number of iterations is irrelevant because our approach is based on
independent particles.
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Nonetheless, it may be possible to calculate the average number of updates made
by each particle. Hence, even in the search for 7-dimensional space [Px, Py, Pz, q0, q1,
q2, q3], Table 4 and the comparison Table 5 demonstrate that the performance of our
algorithm is faster and could establish more calculations in a shorter amount of time.
Starke [12] suggests that a heuristic hybridization of GA and PSO can achieve much more
efficiency than the individual methods and still be a general and all-encompassing strategy
for resolving the inverse kinematics problem. Starke [11] believes his method is practical
for various real-time applications. Our POSIX threads implementation demonstrated
faster computation times with more accuracy using one technique. The originality of our
algorithm, which is moving the particles independently without waiting for the previous
particle, increased the algorithm’s performance and decreased the computation time.

Nevertheless, combining Starke’s [11] approach and our method may improve effi-
ciency, robustness and reliability. Since the I9 processor only has 20 cores, testing could
only be done with 20 threads. Since our approach applies to a limitless number of threads,
theoretically, the speed of convergence for our approach is only limited by the number of
available computer processors that can run in parallel. Our future work will be to continue
testing our algorithm with better computing equipment that is accessible to us.

8. Conclusions

Many robotic manipulator inverse kinematics solvers use swarm intelligence to find
the set of joint angles that will achieve the predetermined end-effector’s position or orien-
tation. However, one of the challenges remaining is that they are not capable of finding
the position and orientation simultaneously. In addition, there is room for improvement
in terms of speed and efficiency, as many of these methods can be slow to find the cor-
rect sets of intersegmental angles that will place the end effector in the given position
and orientation. Therefore, to solve the inverse kinematics for serial robotic manipula-
tors, a Particle-Swarm-Optimization-based technique is applied in conjunction with the
Portable Operating Interface (POSIX) threads to take advantage of the independent swarm
particle dynamics.

The novelty of our approach is that it offers a comprehensive solution for both the position
and orientation of the robot end effector. The calculation of the Baxter robot manipulator
inverse kinematics in C++ code could be parallelized using the POSIX threads library. It was
also demonstrated that it is possible to obtain fast converge, with results in < 50 msec for the
Baxter robot’s 7-joint manipulator arm when particle swarm optimization is programmed
using POSIX threads. By only using the global and local best known, each particle (thread)
performs as decentralized in the search area without waiting for others. Our study shows that
the PSO method converges efficiently in < 50 msec by allowing each particle to update the
global best as it completes its computations. The convergence time results (Tables 3 and 4)
were obtained with our limited computing power equipment: a laptop computer with an
Intel Core i9-12900H 2.50 GHz Processor (14-Cores, 20-Threads). In future applications
with more powerful computing equipment, better convergence timing is expected with our
parallel processing algorithm of the PSO.
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Abbreviations

Symbols Description
xi State of the particle at iteration i
vi Velocity of the particle at iteration i
w Inertia weight
c1 Cognitive parameter
c2 Social parameter
r1, r2 Random parameters
plbest Best local position
pgbest Best global position
θi Manipulator joint angle i
ai−1 Manipulator link i’s twist angle
ai−1 Length of manipulator link i
di Manipulator link i’s offset
i−1
i T Homogeneous transformation matrix from frame {i} to frame {i− 1}
cθi cos(θi)
sθi sin(θi)
0
7R Rotation matrix from frame {7} to frame {0}
0
→
P EE Position vector of the end effector in frame {0}

Xi End effector’s pose
Vi End effector’s velocity
0→ω EE Angular velocity of the end effector relative to frame {0}
J Jacobian matrix of the manipulator arm
fi Particle i’s fitness function
Li Length of robot manipulator link i
Xi Generalized end-effector pose of particle i
XT Targeted generalized end-effector pose
Vi Generalized end effector velocity of particle
[q0 q1 q2 q3] End effector quaternion with respect to frame {0}[ .
q0

.
q1

.
q2

.
q3
]

Time rate of change of [q0 q1 q2 q3]
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