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Abstract: Inverse kinematics is a fundamental problem in manipulator robotics: a set of joint angles 
must be calculated so that the robot arm can be manipulated to the corresponding desired end ef-
fector position and orientation (also known as “pose”). Traditional solution techniques include an-
alytical kinematics solvers, which provide the closed-form expressions for the joint positions as 
functions of the end-effector pose. When analytical inverse kinematics solvers are not possible due 
to the manipulator structure, numerical methods such as Newton–Raphson or Jacobian inverse can 
be used to achieve the task, but at a much slower speed due, to the iterative nature of the computa-
tion. Recent swarm intelligence technology has also contributed to manipulator inverse kinematics 
solutions. In this paper, the use of the Particle Swarm Optimization (PSO) approach in solving the 
inverse kinematics problem is investigated for the general serial robotic manipulators. Many of the 
reviewed robotic manipulator inverse kinematics solvers using swarm intelligence only deal with 
end effector position and not its orientation. Our PSO approach provides the convergence of a com-
plete end-effector pose and will be demonstrated using the Baxter Research Robot, which has two 
seven-joint arms, although the method is applicable to any general serial robotic manipulator. For 
computational efficiency, the inverse kinematic calculations were implemented in parallel using 
Portable Operating Interface (POSIX) threads to take advantage of the independent swarm particle 
dynamics. 

Keywords: inverse kinematics; Baxter Research Robot; particle swarm optimization;  
Newton–Raphson; Jacobian inverse; swarm intelligence 
 

1. Introduction 
The Particle Swarm Optimization (PSO) approach, proposed by Kennedy and Eber-

hart [1], is a metaheuristic algorithm based on the concept of swarm intelligence [2], which 
is a powerful technique for solving complex mathematical engineering problems. The 
PSO solves problems by having multiple agents—called particles—investigate and com-
pare the quality of a population of candidate solutions. A particle iteratively moves from 
one candidate solution to another based on a mathematical formula involving the parti-
cle’s current state, its own local best state (lbest) as well as the influence from the particle 
with the best solution (gbest) in the search space. This mathematical formula is given by 
the following two equations: 
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푣 = 푤 푣 + 푐 푟 (푝 − 푥 ) + 푐 푟 푝 − 푥   (1)

푥 = 푥 + 푣   (2)

where 
푥  = State of the particle at iteration i 
푣  = Velocity of the particle at iteration i 
푤 = Inertia weight 
푐  = Cognitive parameter 
푐  = Social parameter 
푟 , 푟  = Random parameters 
푝  = Best local position 
푝  = Best global position 
In Equation (1), 푤 푣  is the inertia term which makes the particle move in the same 

direction and with the same velocity; 푐 푟 (푝 − 푥 )  is the personal influence term 
which improves the individual by making the particle return to a previous position, be er 
than the current; and 푐 푟 푝 − 푥  is the social influence term which makes the parti-
cle follow the best neighbors direction. This means that in the process of determining its 
movement towards a promising global optimum, each particle modifies its position ac-
cording to its current position and velocity and the distance between its current position 
and pbest and gbest, respectively. In applying the PSO algorithm to solve the inverse kine-
matics for a serial robotic manipulator, the desired end-effector pose is set to be the target 
position 푋  , and a fitness function 푓  is defined to evaluate the local and global best po-
sitions among the particles in the swarm: 

푓 = ‖푋 − 푋 ‖  (3)

where 푋  is the manipulator end-effector pose associated with the particle state 푥  at it-
eration 푖. A complete table of definitions of all symbols is available in the Abbreviations 
at the end of this manuscript and before the References section. 

In this paper, an algorithm is developed to solve the inverse kinematics of a general 
serial robotic manipulator using PSO and demonstrate its effectiveness on the manipula-
tors of the Baxter Research Robot. 

2. Related Work 
The PSO algorithm is a practical, fast and reliable optimization technique for complex 

and challenging optimization problems. Thus, despite being relatively new algorithms, 
PSO and other metaheuristics techniques have a racted the interest of several academics 
for their ability to tackle a wide range of challenging issues in numerous domains. Due to 
inverse kinematics (IK) being one of the most problematic concerns in robotics, many pa-
pers have been published and have demonstrated how to optimize precise IK solutions as 
quickly as possible. 

The inverse kinematics solution for 7-DOF serial robotic manipulators utilizing quan-
tum-behaved particle swarm optimization (QPSO) was the focus of Dereli & Köker’s [3] 
research in 2019. They also compared other swarm optimization techniques, including 
Particle Swarm Optimization (PSO), the Firefly algorithm (FA) and the Artificial Bee Col-
ony (ABC). As a result, they proved that QPSO was more efficient than the other two tech-
niques for solving inverse kinematics. In their algorithm, they derive transformation ma-
trixes using Denavit–Hartenberg (DH) [4,5] parameters of the 7-DOF robot and obtain the 
position values in execution time varying between 231 and 920 milliseconds. Although the 
goal of the inverse kinematic solution is to move the end effector into the desired pose, 
which consists of orientation and position, Dereli and Köker only obtained position values 
using forward kinematics. Both position and orientation must match for the end effector 
to be moved to a point in cartesian space as accurately as possible. Huang [6] a empted 
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very similar research in 2012. Only the PSO algorithm was employed to solve the inverse 
kinematics of the 7-DOF kinematically redundant robot. The research, however, solely 
focuses on the position values and not the orientation; execution time was not included in 
the analysis. In 2011, Durmus et al. [7] proposed a particle swarm optimization (PSO) to 
obtain an inverse kinematics solution for a six-jointed robot manipulator. Results are com-
pared for the same problem using the Harmony Search Algorithm (HSA) and show that 
PSO is faster than HSA in solving IK problems. Unlike the other two studies above, he 
tested the algorithm on a 6-DOF robot, and the execution time averaged around 36 milli-
seconds. However, the resulting comparison would be meaningless, since other research-
ers used 7-DOF manipulators. Mustafa Ayyildiz et al. [8] solved the inverse kinematic of 
a real 4-DOF serial robot manipulator, which was designed and built for pick-and-place 
operations of a flexible manufacturing system. They compared four different optimization 
algorithms, including the genetic algorithm (GA), the particle swarm optimization (PSO), 
the quantum particle swarm optimization (QPSO) and the gravitational search algorithm 
(GSA), according to the execution time, and the end-effector position error. Their result 
also reveals that QPSO is more efficient than other methods. Sancaktar et al. [9], in 2018, 
adopted the PSO algorithm for the inverse kinematic solution of the 6-DOF robot built for 
fracture therapy with an external fixator. Unlike the original PSO algorithm, they relocate 
all the particles at the global best as the beginning position after the predetermined itera-
tion number is executed. According to their outcome, be er results were obtained in com-
parison with the classical PSO algorithm. In 2012, Rokbani [10] used PSO to solve the in-
verse kinematics of a 3-DOF biped robot during locomotion. PSO inverse kinematics, ac-
cording to Rokbani, provides an inverse kinematics solution that corresponds to the ro-
bot’s center of mass while respecting joint constraints. According to Rokbani [11], inverse 
kinematics ensures the solution of joint motions required to a ain a unique reference 
frame position. Inverse kinematics correlates to a geometry problem that can be se led 
using trigonometry and geometry paradigms. 

Starke et al. [12] implemented an efficient hybridization of the Genetic Algorithm 
(GA) and the Particle Swarm Optimization (PSO) to determine and solve the problem re-
garding inverse kinematics on arbitrary joint chains. The approach was applicable, since 
it ensures high accuracy and success rates of real-time full-pose objective solutions. Starke 
et al. created a multi-objective fitness function—Hybrid Genetic Swarm Algorithm 
(HGSA)—based on natural evolution across diverse and constantly changing environ-
ments. Moreover, they used simultaneous local extrema exploitation to obtain more pre-
cise solutions because dead ends could be solved using simple heuristics. Starke et al. 
demonstrated that their solution is comparable to the Orocos KDL and TRAC-IK methods 
in terms of success rate and computation time. Among all the methods above, the solution 
of Starke et al. is the most powerful and efficient. Unfortunately, many of the reviewed 
swarm intelligence robotic manipulator inverse kinematics solutions only deal with end 
effector position rather than orientation. In 2022, L.A. Nguyen, H. Danaci and T.L. Har-
man [13] demonstrated the convergence of a complete end-effector pose using PSO. The 
algorithm’s precision is demonstrated using the Baxter Research Robot, which has two 
seven-joint arms, but the method can be applied to any general serial robotic manipulator. 
However, Nguyen et al. only concentrated on ge ing a complete solution of IK and bench-
marked execution time, which is critical in real-time applications. Particle swarm optimi-
zation applies to solving many other problems in robotics. For instance, based on the ac-
tuator power consumption, Kucuk [14] proposes an optimization problem for the 3-de-
grees-of-freedom RRR fully planar parallel manipulator (3-RRR). The optimization seeks 
to determine the optimal link and platform masses in order to reduce the electrical energy 
consumed by the actuators while adhering to kinematic, geometric and dynamic con-
straints by using PSO. 

Among the traditional solution techniques for robot manipulator inverse kinematics, 
the Inverse Kinematics (IK) algorithms in the open-source Orocos Kinematics and Dy-
namics Library (KDL) are considered the most popular generic IK solvers worldwide. 
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In an effort to find a be er IK solver for generic manipulator chains, Patrick Beeson 
and Barre  Ames [15] performed quantitative comparisons, using several different hu-
manoid robots, between an improved implementation of the KDL inverse Jacobian algo-
rithm and various sequential quadratic programming IK algorithms. Another powerful 
inverse kinematics solver, IKFast, is also available within Rosen Diankov’s Open Robotics 
Automation Virtual Environment (OpenRAVE) motion planning software [16]. 

3. Baxter Robot 
The University of Houston Clear Lake Control & Robotics Laboratory has a Baxter 

Research Robot (Figure 1), manufactured by Rethink Robotics, Inc., Boston, Massachu-
se s, USA [17]. Baxter is a humanoid, anthropomorphic robot sporting two seven-degree-
of-freedom arms and state-of-the-art sensing technologies, including force, position, and 
torque sensing and control at every joint, cameras in support of computer vision applica-
tions and integrated user input and output elements such as a head-mounted display, 
bu ons, knobs and more. The Baxter Research Robot joint control architecture includes 
joint position, joint velocity and joint torque control modes, and also supports gravity 
compensation and zero-G mode. 

 
Figure 1. Baxter Robot. 

4. Baxter Manipulator Kinematics 
The Baxter Research Robot has two identical seven-joint manipulator arms. The co-

ordinate frames and Denavit–Hartenberg [4] standard parameters convention used in [18] 
for manipulator kinematics computation were adopted in this paper. The resulting De-
navit–Hartenberg parameters are shown in Table 1. 

Table 1. Denavit–Hartenberg parameters. 

i 휶풊 ퟏ 풂풊 ퟏ 풅풊 휽풊 
1 0 0 퐿  휃  
2 −90° 퐿  0 휃  + 90° 

3 90° 0 퐿  휃  
4 −90° 퐿  0 휃  
5 90° 0 퐿  휃  
6 −90° 퐿  0 휃  
7 90° 0 퐿  휃  

EE  90° 0 퐿  + 퐿  휃7 
where 

퐿   = 281.35 mm  퐿  = 374.29 mm 
퐿  = 125 mm  퐿  = 10 mm 
퐿  = 364.35 mm  퐿  = 229.525 mm 
퐿  = 69 mm   퐿  = 100 mm 
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The homogeneous transformation matrix from frame {i} to frame {i − 1} is given as 
follows: 

푇 =

푐휃 −푠휃 0 푎
푠휃 푐훼 푐휃 푐훼 −푠훼 −푠훼 푑
푠휃 푠훼 푐휃 푠훼 푐훼 푐훼 푑

0 0 0 1

  (4)

where 
푐휃 =  cos(휃 )  푠휃 = sin(휃 ) 
푐훼 =  cos(훼 )  푠훼 = sin(훼 ) 
The end effector frame {7} to the base frame {0} homogeneous transformation matrix 

can be computed by: 

푇 = 푇 푇 푇 푇 푇  푇 푇  (5)

The matrix 푇 is a function of the joint angles 휃 , 휃 , ⋯ , 휃  and has the form [18]: 

푇 = 푅 푃⃗ 
0 1  (6)

where 푅 is the rotation matrix from frame {7} to frame {0}, and 푃⃗  is the position vec-
tor of the end effector in frame {0}. 

The end-effector pose 푋  of the particle 푖 can be constructed from the components 
of 푇: 

푋 = 푃⃑  [푞  푞  푞  푞 ]  (7)

where [푞  푞  푞  푞 ]  is the quaternion equivalence of 푅. 
The time rate of change of 푋  is then: 

푉 =  푃̇⃗ 
   [푞̇  푞̇  푞̇  푞̇ ] =  푉⃗  

   [푞̇  푞̇  푞̇  푞̇ ]  (8)

which can be converted to joint rates of particle 푖  using the following relationships 
[18,19,20,21]: 

휔⃗  
 = 2

−푞 푞 −푞 푞
−푞 푞 푞 −푞
−푞 −푞 푞 푞

푞 ̇
푞 ̇
푞 ̇
푞 ̇

 (9)

휽̇풊 = 휃̇   휃̇   휃̇   휃̇   휃̇  휃̇  휃̇ = 푱 (푱푱푻) 푉⃗  
 
휔⃗  

 
 (10)

where 휔⃗ 
  is the angular velocity of the end effector relative to frame {0} and 푱 is the 

Jacobian matrix of the manipulator [18–21]. 

5. Baxter Inverse Kinematics 
The PSO algorithm (shown in Figure 2) to solve the inverse kinematics of the Baxter 

manipulator arm was implemented in MATLAB and is described below. 
The solution to the inverse kinematics problem is the set of joint angles of the particle 

with the final global best fitness function. 
Experiment: Target Pose is Baxter’s left arm end effector pose when the arm is at the 

default untuck configuration. Three runs were performed with 60 particles, which yielded 
three different sets of solution joint angles corresponding to this Target Pose. This result 
was expected, since Baxter’s arm has seven joints (kinematically redundant); thus, the 
number of possible solutions is infinite. The Baxter robot (shown in Figure 1 was used to 
test all obtained results via our algorithm at the University of Houston Clear Lake Robot-
ics and Control Laboratory. The Baxter robot arms have a default joint configuration called 
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“untuck” where the arms are deployed and ready to run applications. After adjusting the 
untuck joint angle values using our results, a python program was run to move the robot’s 
left arm into the untucked position. All communications between the robot and the python 
code are established using Linux Ubuntu 16.04 and the Robot Operating System software 
framework. More details can be found in Fairchild and Harman [22]. 

 
Figure 2. Flowchart of the PSO implementation. 
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Table 2 documents the solution joint angles and corresponding final end-effector pose 
for the three runs. Figures 3 and 4 illustrate how quickly the inverse kinematics solution 
converges for run 1, after roughly 100 iterations. Although not shown here due to space 
limitation, runs 2 and 3 have similar speeds of convergence. Figure 5 shows the global best 
fitness function for run 1, and Figure 6 shows the three Baxter left-arm configurations cor-
responding to the three different sets of solution joint angles from the three runs. 

Table 2. Results of three runs with Target Pose at Baxter’s Untuck Configuration. 

 Run 1 Solution Run 2 Solution Run 3 Solution  

Joint angles (degrees) 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ǂ1 
ǂ2
ǂ3
ǂ4 
ǂ5
ǂ6
ǂ7 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−68.401 
−77.656
25.576

120.917 
173.673
−44.975

−157.931⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−101.024  
 −21.994
90.5023
110.675 
108.897 
 −80.278 
−110.091 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−5.6836 
17.4950

−116.247
113.035 
101.1241
120.000
−49.540 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Default Untuck Joint 
angles 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−4.5837
−57.2958
−68.182
111.153
38.388
59.014

−28.647 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Final pose 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 푝 

푝 
푝 
ǂ0 
ǂ1
ǂ2
ǂ3 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.5758 
0.1770
0.2605
0.0255
0.1408
0.9896
0.0116 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.5758 
0.1770
0.2605
0.0255
0.1408
0.9896
0.0116 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.5758 
0.1770
0.2605
0.0255
0.1408
0.9896
0.0116 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Target Pose 푋  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.5758 
0.1770
0.2605
0.0255
0.1408
0.9896
0.0116 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
Figure 3. Plot of run 1 EE position. 
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Figure 4. Plots of run 1 EE orientation. 

 
Figure 5. Best cost (fitness function) for run 1. 

From Figure 6, it is clear that the Baxter left−arm end−effector pose is the same even 
though the three different sets of joint angles are completely different. This is due to the 
inherent kinematic redundancy of the seven-joint Baxter arm and the randomness of the 
initial configuration of the swarm joint angles. The next paragraph will address how a 
more customized solution can be obtained for Baxter and other kinematically redundant 
manipulator arms. 

It must be emphasized that our approach to solving the inverse kinematics for serial 
robotic manipulators can be applied to manipulators with any number of joints and not 
restricted to just seven. In the case of manipulators with kinematic redundancy (seven or 
more joints in six-dimensional space), the algorithm can easily be manipulated to obtain 
certain desirable solutions by simple modifications such as adding the joint angle error 
from its desired value for any number of joints to the calculation of particle i’s fitness 
function 푓 , i.e., 

푓 = 푋 − 푋 + (휃 − 휃 )

 

 (11)
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where 휃  is the desirable value of joint angle k in the solution of the inverse kinematics 
problem. As an example, another run was made se ing the desired value of the 6th joint 
to 휃 = 59.014 deg, which corresponds to that of the default untuck configuration. For 
this run, the final joint configuration is that of the default untuck configuration as shown 
below, although the speed of convergence is slower than when the 6th joint is not con-
strained to a desired value. 

Target joint angles in degrees: 

[−4.584  −57.296  −68.182  111.154   38.388   59.014  −28.6479] 

Final joint angles in degrees (Figure 7): 

[−4.5837  −57.2958  −68.1820  111.1538   38.3882   59.0147  −28.6479] 

 
Figure 6. Baxter’s left-arm in joint configurations of runs 1, 2 and 3 (in left to right order). 

 
Figure 7. Baxter’s left−arm joint angles in the default untuck joint configuration obtained by se ing 
휃   = 59.014°. 

6. Parallel Processing of the PSO Algorithm 
The results described in the previous section were obtained with the inverse kine-

matics algorithm implemented using MATLAB, a mathematically convenient but not nec-
essarily a time efficient language for this type of problem. In an effort to improve the speed 
of execution, the algorithm was implemented using Portable Operating Interface (POSIX) 
threads, commonly called pthreads which are executed in parallel. Idealistically, if there 
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are enough processors, each particle dynamic computation can be programmed into one 
pthread which runs on one processor. A variety of test runs were performed using a lap-
top computer with 21 processors to evaluate the speed of convergence as shown in Tables 
3 and 4. The parallel processing flowchart is shown in Figure 8. A brief description of the 
POSIX threads pseudo code is given below. 

Posix Threads 
A thread API based on standards for C/C++ is provided by the POSIX thread libraries. 

A new concurrent process flow may be spawned using it. It works best with systems that 
have several processors or cores, since the process flow can be scheduled to run on a dif-
ferent processor, allowing for parallel or distributed processing to speed up the system. 

Each thread has a unique: 
 Thread ID 
 Set of Registers, Stack Pointer 
 Stack for local variables, return addresses 
 Signal mask 
 Priority 
 Return value 

Note: Pthread functions return “0” if OK. 
x = Set number of threads 
p = Set number of Particles 
function PSO_calculation(*thread_id): 
     instantiate tid as a long 
     tid = cast thread_id to long 
while GlobalBestCost > 0.00009 do  
     PSO iteration 
endwhile 
    exit thread with NULL 
endfunction 

Table 3. One particle per thread. 

 Target 1 Target 2 Target 3 
Number of particles 20 20 20 

Threads 20 20 20 
Convergence time (s) 0.028 0.033 0.028 

Cost (meter) 6.73 × 10−5 8.94 × 10−5 8.26 × 10−5 

Table 4. Three particles per thread. 

 Target 1 Target 2 Target 3 
Number of particles 60 60 60 

Threads 20 20 20 
Convergence time (s) 0.039 0.034 0.046 

Cost (meter) 8.42 × 10−5 8.27 × 10−5 7.33 × 10−5 

function create_threads (): 
instantiate threads as array of NUM_THREADS pthread_t objects 
instantiate a ributes object pthread_a r 
set stat to null pointer. 
initialize thread a ributes object a r. 
set detach state of a r to joinable. 
  for i from 0 to NUM_THREADS do 
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create a worker thread with pthread_create, using thread[i] as thread ID, a r as 
thread a ributes, PSO_function() as start routine, passing thread ID data argument 
as needed. 

        if the pthread_create() function returns an error code: 
            Print output “Failed to create worker thread.” 
            exit program. 
        endif 
  endfor 
endfunction 

Threads were created according to the population of our swarm. In this research, all 
20 cores of an I9 processor were used to create an array of 20 threads with different particle 
numbers as 20, 60 and 100. The following parameters in the function were used to generate 
threads: 

&Threads[i]: pointer to an unsigned integer value that returns the thread id of the 
thread created. 

&a r: You can specify behavior that differs from the default by using a ributes. An 
a ribute object may be specified during thread creation with a pointer to a structure that 
is used to define thread a ributes such detached state, scheduling policy, and stack ad-
dress. If a ributes are set to NULL, threads use the default se ings, which are generally 
adequate. 

PSO calculation: the pointer to the function to be threaded in our case is PSO_calcu-
lation. 

void *i: pointer to void that contains the arguments to the function defined in the 
earlier argument. 
function destroy_threads (): 
Destroy the thread a ributes object created earlier in the program. 
for i from 0 to NUM_THREADS do 
           Wait for the worker thread to complete before continuing execution. 
           if pthread_join returns error: 
Print output (“error message) 
exit (−1) 
     else: 
           Print output “that all worker threads have completed before the program ex-
its.” 
           Print output “Ending Status of Thread.” 
     endif 
endfor 
endfunction 

The computational process waits for each thread to finish its current task. When all 
threads have finished their work, i.e., have obtained a satisfying error value, the software 
terminates all the threads and goes back to the main function. 
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Figure 8. PSO implementation in threads. 

It must also be emphasized that in taking advantage of the parallel processing imple-
mentation, it was found that instead of waiting for the completion of all particle dynamics 
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computations at the end of each iteration before determining the global best fitness value 
Gbest, the PSO algorithm converges significantly faster (more than an order of magnitude) 
by le ing each particle update the Gbest as it finishes its computations. Figures 9 and 10 
reflect the contribution and motion of the particle computation threads, respectively. In 
Figure 9, the color circles represent the Gbest value of the particles while in Figure 10, they 
represent the end-effector pose of the particles during the solution process. Figure 11 
shows a close−up view of the particles arriving at the target solution. 

 
Figure 9. Threads contribution to GBest determination. 

 
Figure 10. Motion of the particle swarm. 
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Figure 11. Particles arriving at solution (close−up). 

7. Results and Future Work 
Table 5 shows the comparison in particle swarm size, number of iterations, conver-

gence time, end effector space degrees of freedom, joint space degrees of freedom and 
accuracy between our PSO algorithm and those of references [3,12]. 

Table 5. Comparison of our algorithm with other swarm intelligence methods. 

Paper 
Particle/Iter-

ation 
Time 
(ms) 

Algorithm Dimension 
Accuracy 
(mm|RD) 

Dereli [3] 300/500 449.8 PSO [Position] 67.1 × 10−3 
Dereli [3] 100/500 444.1 ABC [Position] 54.7 × 10−4 
Dereli [3] 50/500 920.4 Firefly [Position] 65.0 × 10−5 
Dereli [3] 150/500 231.9 QPSO [Position] 27.7 × 10−17 

Starke [12] NA 22 HGSA 
[Position, Ori-

entation] 
1.00 

Starke [12] NA 30–600 PSO [Position] 1.00 
Starke [12] NA 50–500 GA [Position] 1.00 

Our  
Algorithm 

20/NA 18–40 PSO 
[Position, Ori-

entation] 
<0.09 

Several algorithms have been created for the issue of inverse kinematics, and each 
one has been fine for its particular need. As a result, it is challenging to undertake a qual-
itative comparison that considers all performance factors. In addition, few cited studies 
specify the execution time. Table 5 contrasts our technique with other strategies used by 
researchers to solve inverse kinematics among those who had included execution time. 
Dereli [3] solely concentrates on converging position values, as shown in Table 5, and finds 
that after 500 iterations with 0.1 mm accuracy, the average execution time varies between 
230 and 930 milliseconds depending on the optimization technique. Dereli [3] claims that 
PSO is the second-worst optimization in terms of time for tackling only 3-dimensional 
objectives (Px, Py, Pz). On the other hand, our method using the POSIX thread with full 
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(Position, Orientation) convergence only requires 18–40 milliseconds with a precision of 
less than 0.1 mm. The number of iterations is irrelevant because our approach is based on 
independent particles. 

Nonetheless, it may be possible to calculate the average number of updates made by 
each particle. Hence, even in the search for 7-dimensional space [Px, Py, Pz, q0, q1, q2, q3], 
Table 4 and the comparison Table 5 demonstrate that the performance of our algorithm is 
faster and could establish more calculations in a shorter amount of time. Starke [12] sug-
gests that a heuristic hybridization of GA and PSO can achieve much more efficiency than 
the individual methods and still be a general and all-encompassing strategy for resolving 
the inverse kinematics problem. Starke [11] believes his method is practical for various 
real-time applications. Our POSIX threads implementation demonstrated faster computa-
tion times with more accuracy using one technique. The originality of our algorithm, 
which is moving the particles independently without waiting for the previous particle, 
increased the algorithm’s performance and decreased the computation time. 

Nevertheless, combining Starke’s [11] approach and our method may improve effi-
ciency, robustness and reliability. Since the I9 processor only has 20 cores, testing could 
only be done with 20 threads. Since our approach applies to a limitless number of threads, 
theoretically, the speed of convergence for our approach is only limited by the number of 
available computer processors that can run in parallel. Our future work will be to continue 
testing our algorithm with be er computing equipment that is accessible to us. 

8. Conclusions 
Many robotic manipulator inverse kinematics solvers use swarm intelligence to find 

the set of joint angles that will achieve the predetermined end-effector’s position or orien-
tation. However, one of the challenges remaining is that they are not capable of finding 
the position and orientation simultaneously. In addition, there is room for improvement 
in terms of speed and efficiency, as many of these methods can be slow to find the correct 
sets of intersegmental angles that will place the end effector in the given position and 
orientation. Therefore, to solve the inverse kinematics for serial robotic manipulators, a 
Particle-Swarm-Optimization-based technique is applied in conjunction with the Portable 
Operating Interface (POSIX) threads to take advantage of the independent swarm particle 
dynamics. 

The novelty of our approach is that it offers a comprehensive solution for both the 
position and orientation of the robot end effector. The calculation of the Baxter robot ma-
nipulator inverse kinematics in C++ code could be parallelized using the POSIX threads 
library. It was also demonstrated that it is possible to obtain fast converge, with results in 
< 50 msec for the Baxter robot’s 7-joint manipulator arm when particle swarm optimiza-
tion is programmed using POSIX threads. By only using the global and local best known, 
each particle (thread) performs as decentralized in the search area without waiting for 
others. Our study shows that the PSO method converges efficiently in < 50 msec by allow-
ing each particle to update the global best as it completes its computations. The conver-
gence time results (Tables 3 and 4) were obtained with our limited computing power 
equipment: a laptop computer with an Intel Core i9-12900H 2.50 GHz Processor (14-Cores, 
20-Threads). In future applications with more powerful computing equipment, be er con-
vergence timing is expected with our parallel processing algorithm of the PSO. 
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Abbreviations 
Symbols Description 
푥  State of the particle at iteration i 
푣  Velocity of the particle at iteration i 
푤 Inertia weight 
푐  Cognitive parameter 
푐  Social parameter 
푟 , 푟  Random parameters 
푝  Best local position 
푝  Best global position 
휃  Manipulator joint angle i 
훼  Manipulator link i’s twist angle 
푎  Length of manipulator link i 
푑  Manipulator link i’s offset 

푇 Homogeneous transformation matrix from frame {푖} to frame {푖 − 1} 
푐휃  cos(휃 ) 
푠휃  sin(휃 ) 

푅 Rotation matrix from frame {7} to frame {0} 
푃⃗  Position vector of the end effector in frame {0} 

푋  End effector’s pose 
푉  End effector’s velocity 

휔⃗  
  Angular velocity of the end effector relative to frame {0} 

푱 Jacobian matrix of the manipulator arm 
푓  Particle i’s fitness function 
퐿  Length of robot manipulator link i 
푋  Generalized end-effector pose of particle i 
푋  Targeted generalized end-effector pose 
푉  Generalized end effector velocity of particle 
[푞  푞  푞  푞 ] End effector quaternion with respect to frame {0} 
[푞̇  푞̇  푞̇  푞̇ ] Time rate of change of [푞  푞  푞  푞 ] 
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