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Abstract: Robotic pick-and-place represents a nascent but swiftly evolving field in automation
research. Most existing research relies on three-dimensional (3D) observations obtained directly
from the 3D sensor or recovered by the two-dimensional (2D) camera from multiple perspectives.
In this paper, we introduce an end-to-end pick-and-place neural network that solely leverages
simple yet readily accessible data, namely, monocular camera and forward kinematics, for fusion
applications. Additionally, our approach relies on the deep reinforcement learning (DRL) algorithm
to facilitate robots in comprehending and completing tasks. The entire process is data-driven, devoid
of any artificially designed task sessions, which imbues our approach with enhanced flexibility and
versatility. The proposed method exhibits excellent performance in our experiment.

Keywords: robotic pick-and-place; monocular camera; neural network; reinforcement learning;
fusion applications

1. Introduction

In addressing the energy crisis, fusion energy is deemed a dependable and secure
source for the future. The majority of fusion energy experimental devices worldwide
depend on plasma-facing components (PFCs) to enable the device to operate under extreme
conditions. These PFCs are subjected to hyper heat, pressure, and magnetic flux directly.
As such, the periodic maintenance and replacement of these components are required.
Currently, these maintenance tasks primarily depend on remote handling systems (RHSs)
that require high expertise and are time-consuming. Thus, intelligent technology-based
automated maintenance systems are crucially required for the subsequent generation of
fusion reactors.

Of all the maintenance tasks, the robotic pick-and-place issues account for a consider-
able proportion. Despite extensive research on robotic pick-and-place over the past decade,
this problem has not been entirely resolved. More complex tasks and environments are
emerging, while the performance demands for robotic pick-and-place are escalating, as ex-
emplified by the robotic pick-and-place operation in a fusion reactor that faces challenging
environments and stringent requirements.

In the realm of robotic pick-and-place, most algorithms with advanced performance
rely on 3D spatial data from depth cameras or multi-view camera systems. However, inside
the fusion reactor, both the PFCs and other components are made of metal with smooth
surfaces. Active depth cameras, e.g., time-of-flight (TOF) cameras, utilize a technique that
involves measuring the distance from the camera to the target through the computation
of the time difference between when light leaves and returns. This technology works
optimally on surfaces that are diffuse and possess rough, non-glossy properties. However,
if the surface is excessively smooth and reflects light specularly, then light incident on the
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surface at a certain angle will be deflected in another direction and will not return to the
sensor. As a result, the sensor will not be able to accurately calculate the distance to the
object, as the return signal cannot be received. This error is a systematic error and cannot
be eliminated through statistical methods. Passive depth cameras or multi-view camera
systems, e.g., stereo cameras, rely on feature point extraction methods to create correlations
between images acquired by different cameras to derive depth information for each pixel.
Then, as mentioned above, the metal material inside the fusion reactor is highly uniform in
color and texture, making it difficult to extract and correlate feature points in the images.

As a solution, we propose an end-to-end pick-and-place network that solely relies on
monocular RGB images and the 3D position data of the end-effector that are both available
and reliable in the fusion reactor environment. There are quite number of different methods
to achieve monocular camera-based robotic pick-and-place. The most common method for
pose estimation is to use the convolutional neural network (CNN) to extract 2D keypoints
from the image, and then solve the perspective-n-point (pnp) [1] problem based on some
other parameters, e.g., camera internal. This type of method requires training data for
different tasks and objectives and relies on manually designing during the task planning
process, which lacks generalizability and feasibility in the fusion reactor environment.

DRL-based algorithms are an intelligent choice for creating end-to-end solutions.
However, due to the specificity of reinforcement learning (RL), it can be dangerous and
inefficient to deploy it directly in a realistic environment. Therefore, the most common
approach is to train the model in a simulation environment and then verify it in the
real world.

In this paper, we implement the distributed proximal policy optimization (DPPO) [2]
algorithm using the Isaac Gym simulation engine [3] to generate a simulation environment
with multiple parallel sub-environments. Moreover, all the sub-environments’ training
processes are rendered in real time to help us monitor the model’s performance, and all
these processes are accelerated by the GPU.

Compared to other monocular camera-based methods, our approach differs in
several ways:

1. Unlike other monocular camera-based methods that can only place the target at a
fixed location after random object picking, our method allows for completely random
object picking and placement.

2. Our method does not rely on any a priori information or auxiliary methods, such as
visual markers, to aid in target recognition.

3. Our approach does not divide the pick-and-place task into multiple phases, such as
target recognition and task planning, and does not require an artificially designed
task planning module. Rather, it is an end-to-end solution that is data driven.

Thus, the main innovations and contributions of this paper are as follows:

1. We propose a lightweight end-to-end method for handling the pick-and-place task,
where all the sessions, from environmental perception to task understanding, are con-
ducted by deep reinforcement learning without any artificially designed components.
The proposed method’s training can be executed on a consumer-level GPU.

2. The proposed method solely relies on RGB data from an eye-in-hand camera and the end-
effector’s center position, both of which are reliable and available for fusion applications.

3. We developed multiple sub-environments in the simulation environment for parallel
training and rendered each sub-environment’s current state in real time to facilitate
adjusting hyper-parameters and accelerating the training speed.

2. Related Work

Robotic pick-and-place is a subfield of robotic manipulation research, which requires
robots to not only recognize basic scenes but also have a high-level understanding of tasks.
In recent years, with the rapid development of artificial intelligence, significant progress
has been made in robotic manipulation research, with various technical approaches being
developed. In this review, we will expand beyond robotic pick-and-place and also include
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relevant research on robotic manipulation. Specifically, we will briefly review research on
target recognition and task planning.

2.1. Deep Learning-Based Methods

With the remarkable achievements that deep learning (DL) and neural networks (NNs)
have made in the field of target recognition, using NN-based methods is the most popular
approach in robotic pick-and-place and manipulation research. These NN-based methods
can be further subdivided depending on the input and output data.

2.1.1. 2D Image Input with Traditional Computer Vision Algorithms

Due to the availability of dense 3D data, depth cameras have become the first choice
for most robotic manipulation research. Nevertheless, in certain exceptional scenarios, such
as reflective surfaces with specular reflections and transparent objects, depth cameras fail to
provide trustworthy observation data, as previously noted. Consequently, the monocular
camera-based approach continues to occupy a significant position.

Directly acquiring 3D information for robotic manipulation tasks through monocular
camera images is not possible. The key challenge in such studies lies in relying on 2D
information for estimating three-dimensional pose. A common approach to tackle this
challenge is to leverage deep neural networks (DNNs) to extract 2D keypoints from the
image. Through calibration, camera intrinsics and joint configuration can be obtained, then
the perspective-n-point (PnP) algorithm is used to recover 3D information. Building on this
approach, Lee et al. [4] proposed a method to estimate robot pose using an eye-to-hand
camera. This method computes camera extrinsics from a single image frame, thereby
enabling online robot pose estimation. Byambaa et al. [5] proposed a similar approach to
address the challenge of the robotic manipulation of transparent glass objects.

Horng et al. [6] employed fast region with CNN to recognize the object and sub-
sequently estimate depth by leveraging the camera’s field of view (FOV), as well as the
k-nearest neighbors (kNN) and fuzzy inference system (FIS) algorithms.

Unlike all the above methods, Nguyen et al. [7] extracted deep features from the
input video frames with a deep CNN and then introduced the time sequence information
by adding recurrent neural network (RNN) structures into the network so that the 3D
knowledge could be learned.

2.1.2. 3D input Data with CNN

The methods that employ 3D input data share the common approach of feeding
observations from the 3D camera into a CNN, but the network outputs differ. In the
method proposed by Zeng et al. [8], which is based on fully convolutional networks
(FCNs), the NN outputs a pixel-wise grasping quality heat map for the input images. The
key feature of this work is that the algorithm can select the appropriate end-effector for
different types of identified objects and place it in the corresponding position.

Schwarz et al. [9] proposed a method that combines the outputs of an object classifi-
cation NN and an object segmentation NN to manipulate objects in the cluster. While the
method yields good results, modern techniques could potentially replace the two networks
presented in the paper with an instance segmentation network. Zeng et al. put forward
transporter networks [10] that utilize RGB-D information to facilitate diverse automated
operations for robotic arms via learning from demonstration (LFD). This approach avoids
any objectivity assumptions and displayed exceptional performance on several benchmarks
in both simulation and real-world experiments.

Regardless of whether the methods use 2D image input or 3D input, the task planning
parts rely on either artificial design or LFD, which can greatly impact the generalizability
of the algorithm. However, this issue was addressed through the emergence and rapid
development of reinforcement learning (RL) techniques.
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2.2. Deep Reinforcement Learning-Based Methods

Unlike DL-based approaches, DRL-based methods do not involve the division of
problems into sub-tasks, such as target identification or task planning. Instead, they offer
an end-to-end solution by integrating RL algorithms with DNNs. This enables the entire
algorithm to be driven by data, which in turn results in improved generalizability and
robustness of the algorithm.

The crux of RL lies in enabling the agent/robot to explore the task space independently,
rewarding it for different states and actions based on predefined guidelines, and updating
the agent’s behavioral strategy with the aim of maximizing rewards. However, this process
is often fraught with potential dangers and can be time consuming. Therefore, it is common
practice to construct a virtual environment and train the agent within it.

Quillen et al. [11] proposed a benchmark for comparing the performance of different
policy-based and value-based RL algorithms for robotic grasping tasks. James et al. [12]
introduced the attention-driven robotic manipulation (ARM) algorithm, which first trains
a Q-attention network to extract the area of interest (AOI) from input RGB and point
cloud data. The AOI data are then used to generate control commands by a next-best pose
estimate network. Mohammed et al. [13] proposed an object pick-and-place algorithm for
cluttered scenes, based on the Q-learning algorithm [14]. In their approach, RGB and 3D
point cloud data are passed through a dense network (DenseNet) to generate pixel-wise Q-
value predictions, and placing action is executed based on artificially designed behavioral
logic. Taking a similar approach, Gualtieri et al. [15] employed RGB-D information and a
priori knowledge regarding the target object category to train a robotic arm using DQN.
This allowed the arm to carry out pick-and-place operations for bottles and water glasses
within a realistic environment.

Gu et al. [16] proposed an asynchronous NAF method, based on the normalized
advantage function (NAF) algorithm [17]. This method can collect observations, actions,
and rewards for each time step on different agents and asynchronously update the parame-
ters of the deep neural network Q-function approximator. In simulation experiments, the
target position is fed as an observation into the neural network, which significantly reduces
the task’s difficulty but is challenging to achieve in reality. Lee et al. [18] presented an
intriguing work that involves leveraging a multi-view vision system to train a robotic arm
to solve the challenge of stacking objects of diverse shapes via reinforcement learning.

3. Proposed Method

Based on the above brief review, current pick-and-place algorithms for robotics pri-
marily rely on either RGB image input data with traditional algorithms or a combination of
3D input data and DRL-based methods. The former requires a human-designed mission
planning phase and lacks generalizability, while the latter is an end-to-end approach but
has input data requirements that cannot be met in fusion applications.

Therefore, this paper proposes an end-to-end method that only requires an RGB image
and the center position of the end-effector (CPE), both of which are available and reliable
in a fusion application environment. The proposed method is described in detail below.

3.1. Simulation Environment Establishment and Problem Statement

In this work, we selected Isaac Gym as our simulation environment. Isaac Gym offers
the capability to create an unlimited number of independently operating sub-environments
and acquire the agent’s observations, actions, and rewards from each sub-environment,
storing the results in PyTorch [19] GPU tensors. The state of each agent is rendered in real
time, and all physics simulation processes in Isaac Gym run on the GPU.

Within our simulation environment, one of the sub-environments is depicted in Figure 1.
As the figure illustrates, each sub-environment comprises a six-degree-of-freedom (DOF)
UR-10 robot end-mounted with an FE gripper, and two cubes that are randomly placed on a
table. The task’s objective is to pick up the white cube and place it onto the purple one. The
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blue cube in the figure represents the eye-in-hand camera, which is attached to the robot’s last
wrist link.

Figure 1. A sub-environment in our Isaac Gym simulation environment.

3.2. Distributed Proximal Policy Optimization Algorithms

RL is a Markov decision process (MDP), which could be represented by (S,A,P ,R, γ).
Here, S represents the state space,A denotes the action space, P refers to the state transition
possibility, R stands for the reward space, and γ represents the discount factor. The
objective of all RL algorithms is to maximize the cumulative rewards, formulated as
max ∑T

t=1 γtrt, where the t is the time step and rt ∈ R is the reward at step t.
Although the goals are the same, the accumulated rewards have different equivalent

forms in different algorithms. One of the two basic forms is the state value function V(s),
which is defined in Formula (1):

V(s) = E

[
∞

∑
k=0

γtrt+k+1|St = s

]
= E

[
rt+1 + γrt+2 + γ2rt+3 + . . . |St = s

]
= E[rt+1 + γV(St+1)|St = s]

(1)

where St ∈ S is the state in time step t, r ∈ R is the reward, and all subscripts indicate the
time step.

Another one is the state–action value function Q(s, a), as shown in Formula (2):

Qπ(s, a) = Eπ

[
∞

∑
k=0

γtrt+k+1|St = s, At = a

]
= Eπ

[
rt+1 + γrt+2 + γ2rt+3 + . . . |St = s, At = a

]
= Eπ [rt+1 + γQπ(St+1, At+1)|St = s, At = a]

(2)

In comparison to Formula (1), Formula (2) incorporates an additional variable π ∈ P ,
which represents the policy. The simplest policy is to employ the greedy algorithm, which
sets π(s) = arg maxa Q(s, a). However, to strike a balance between exploration and ex-
ploitation, a more intricate policy must be utilized. Furthermore, the following equations
demonstrate the relationship between Q(s, a) and V(s):

V(s) = ∑
a∈A

π(a|s)Qπ(s, a)

Qπ(s, a) = ra
s + γ ∑

s′∈S
P a

ss′V(s′)
(3)
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where the s′ is the new state, π(a|s) is the policy and P a
ss′ is the probability that the agent

takes action a in the current state s and moves to the new state s′.
Thus, RL algorithms can be divided into value-based and policy-based groups. The

value-based algorithms focus on Q(s, a) and guide the agent to the final goal by updating
the Q(s, a) value with a fixed policy, such as the previously mentioned greedy strategies.
The policy-based algorithms modify the actions’ probability, e.g., P a

ss′ in Formula (3) by
parameterizing and updating the policy function π(a|s) to ensure that the agent obtains
the maximum accumulated rewards.

The two aforementioned methodologies possess their respective merits and demerits.
Generally speaking, value-based algorithms tend to converge at a slower rate, but they have
the ability to reach the global optimal solution. Additionally, they tend to exhibit subpar
performance when dealing with continuous space problems. Conversely, policy-based
algorithms tend to converge at a faster rate; however, during later stages, these algorithms
tend to oscillate around the optimal value function with minimal fluctuations and are
unable to attain the optimal value result.

Therefore, an important DRL algorithm called advantage actor–critic (A2C) [20] which
depends on the actor–critic [21] is presented. A2C combines the value function and policy
together, the actor decides which action to take, and the critic tells the actor how good its
action was and how it should adjust. The brief process is shown in Algorithm 1.

Algorithm 1 A2C.

1: Take action a ∼ πθ(a|s), get {s, a, r, s′}
2: Update v̂π

φ (s) using target r + γv̂π(s′) {The function approximation idea is used here,
v̂π

φ (s) is the approximation of v̂π(s)}
3: Evaluate Âπ(si, ai) = r(si, ai) + γv̂π

φ (s
′)− v̂π

φ (s)
4: ∇J(θ) = ∇θ log πθ(ai|si)Âπ(si, ai)
5: θ ← θ + a∇θ J(θ)

The A2C algorithm excels at managing continuous control problems. However, it
inherits the drawback of policy-based algorithms, which makes it challenging to converge
to the global optimal solution. The primary reason for this challenge is the difficulty in
determining the appropriate step size/learning rate during the policy gradient. To address
this issue, the proximal policy optimization (PPO) [22] algorithm is introduced based on the
idea of trust region policy optimization (TRPO). The objective of TRPO is illustrated below:

MaximizeθEs

[
πθ(a|s)

πθold(a|s) Â
]

(4)

To limit the difference between the new policy and the old one, TRPO introduces the
Kullback–Leibler (KL) divergence constraint:

Et[KL(πθold(·|s), πθ(·|s))] ≤ δ (5)

where δ is the size of the constraint region, then the final target function of the actor
turns into

MaximizeθEs

[
πθ(a|s)

πθold(a|s) Â− βKL[πθold(·|s), πθ(·|s)]
]

(6)

where the β is the fixed penalty coefficient. However, research revealed that the KL
penalty update performs less effectively in reality compared to the clipping option, as
illustrated below:

LCLIP(θ) = Et
[
min(rt(θ)Â, clip(rt(θ), 1− ε, 1 + ε)Â)

]
(7)
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To summarize, the PPO algorithm can be presented as Algorithm 2. On the other hand,
the distributed proximal policy optimization (DPPO) algorithms employ multiple threads
based on PPO to gather state, action, reward, and other data from numerous agents trained
in a distributed manner. These data are then utilized to update parameters synchronously.
While the theoretical model is consistent with PPO, the challenge lies primarily in the
engineering implementation.

Algorithm 2 Proximal policy optimization (PPO).

1: Run policy πθ for T timesteps, collecting {st, at, rt}
2: Estimate advantages Ât = ∑t′>t γt′−trt′ −Vφ(st)
3: Update the policy by PPO-Clip objective:

θk+1 = arg maxθ ∑T
t=0 min(Rt(θ)Ât, clip(Rt(θ), 1 − ε, 1 + ε)Ât), where Rt(θ) =

πθ(at |st)
πold(at |st)

4: Updating the value function:
φk+1 = arg min ∑T

t=0(∑
T
t′=t γt′−trt′ −Vφ(st))2

3.3. Network Architecture

In our work, we combine the RGB image with the 3D position of the CPE; thus, the
network should have two input branches. The architecture of the network is as shown in
Figure 2.

Figure 2. The architecture of the network. In the figure, FC indicates fully connected layer, and NoA
indicates number of actions.

It is noteworthy that the network exclusively features one output. The rationale
behind displaying actor output and critic output in the figure pertains to the existence of
an actor network and a critic network, respectively. Both networks possess an identical
structure but differ in terms of their parameters. Critic output is representative of the
value, while actor output pertains to the policy, specifically the KL divergence of the policy.
With the exception of the last layer, all fully connected layers in the network leverage
the Elu activation function [23]. Furthermore, the Adam optimizer [24] was chosen for
this network.
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3.4. Reward Setting

In a RL method, the reward need to be carefully designed. An appropriate reward
design can keep the agent’s ‘curiosity’ and guide it to the final goal. In our work, we design
a variety of rewards according to the task process, as shown in Algorithm 3.

Algorithm 3 Reward setting.

1: Getting points Pa, Pb, . . . , Pe from Figure 3, Pk(xk, yk, zk) is the 3D coordinates of point

k ∈ {a, b, c, d, e}, Dab =
√
(xa − xb)

2 + (ya − yb)
2 + (za − zb)

2 , Xab = xa − xb, and so
on for Yab and Zab, tanh(x) = (ex − e−x)/(ex + e−x), Sa and Sb are the side length of
white cube and purple cube.

2: At the grasping stage:
rdis = 1− tanh(α(Dac + Dad + 3Dae)), α is the weight.

3: li f ted = clip(((Za − Zt − Sa
2 )/Sb), 0, 1), where Zt is the height of the table, rli f = li f ted.

4: Aliab =

√
(xa − xb)

2 + (ya − yb)
2 + (za − zb +

Sa+Sb
2 )

2

5: if li f ted > 0.5 then
6: rali = 1− tanh(γAliab), γ is the weight;
7: else
8: rali = 0
9: end if

10: rdis = max(rdis, rali)

11: if
√

X2
ab + Y2

ab < 0.02 and |za − Sb − Sa/2| < 0.01 then
12: rsta = clip(Dae, 0, 1)
13: else
14: rsta = 0
15: end if
16: rdis = max(rdis, rsta)
17: The final reward R = w1rdis + w2rli f + w3rali + w4rsta, w1, . . . , w4 are the weights.

Figure 3. Some important positions in our task, in this picture, Pa and Pb are the center points of the
two cubes, Pc and Pd are the tips of two fingers and Pe is the CPE.

4. Experiment

We carried out our experiment on a computer with a Nvidia RTX 2080Ti GPU
(12 Gigabyte Memory), Intel i7-10700k CPU, and 64GB of RAM. We created 30 sub-
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environments in the simulation, as shown in Figure 4. Our code is available at here
(https://github.com/rolandying/Monocular-based-pick-and-place, accessed on 29 March
2023). The implementation of some algorithms depends on the RL_games [25] package.

Figure 4. The simulation environment, the number of the sub-environment is depend on the size of
GPU Memory.

Figure 5 illustrates the reward values during the training process. Following an
initial bottleneck phase, the reward value experiences a remarkable surge at approximately
4000 epochs and continues to increase thereafter. This corresponds to the experimental
findings that the robot is able to proficiently grasp a target placed randomly on the table
following the first 4000 epochs of training. Subsequently, the alignment and stacking
processes commence, which take longer, primarily because an eye-in-hand camera is
utilized. When the robot arm grasps the white cube, the camera’s limited field of view
prevents direct observation of the purple cube. Consequently, the robot must rely on
historical observation data to ascertain the subsequent destination, resulting in a lengthier
learning process.

Figure 5. The reward during the training.

The losses incurred during training are depicted in Figure 6. Analysis of the figure
indicates that the value of actor losses (AL) consistently oscillates within a confined range,

https://github.com/rolandying/Monocular-based-pick-and-place
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signifying a stable policy change ratio. This underscores the efficacy of the clipping
operation. The value of critic losses (CL) exhibits a continuous decline and ultimately
stabilizes, except for a single abrupt change in the middle. At roughly 4 million steps,
both AL and CL values experience a peak. This aligns precisely with the moment in
Figure 5 when the robot makes a significant breakthrough and adeptly grasps the target
around the 4000th epoch. At this point in time, both the value and policy undergo a rapid
transformation.

Figure 6. Actor losses and critic losses during the training.

We conducted a comparative analysis between our monocular method and the multi-
layer perception machine (MLP) based method. In the latter, the 3D coordinates of the
centers of the two cubes are employed as input data, rendering it immensely advantageous,
albeit impractical to implement in reality. The outcomes are documented in Table 1. Our
method demonstrated that the agent encountered a total of three failures during the testing
phase, with one of them occurring during the grasping phase and the remaining during
the stacking phase. The failure during the grasping phase can be attributed to the cubes
being too close to each other, thereby rendering it arduous for the robot to identify an
optimal grasping pose. On the other hand, during the stacking phase, the agent primarily
failed due to the target cube rolling off the destination cube, owing to poor posing when
the gripper was released. For the MLP method, the agent failed once in the alignment
phase and once in the stacking phase. The reason for the failure during the stacking phase
remained consistent with our method, whereas the failure during the alignment phase was
due to the agent unintentionally pushing the purple cube off the table. The comparison
indicates that the performance of our method is marginally inferior to the MLP-based
method. However, it is still remarkable, particularly considering that our method relies
solely on a monocular camera. Owing to the strong advantage of the MLP method in target
localization, the number of steps required is significantly lower than that of our method
and the reward is slightly higher than that of our method. The entire training process took
roughly 70 h.

Table 1. Comparison between our method and the MLP-based method.

Success No./Experiment No. Steps Reward

Grasp Lift & Align Stack NA NA

Ours 149/150 149/150 147/150 125.7 541.8

MLP 150/150 149/150 148/150 51.3 577.5
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5. Conclusions

During this study, we presented a novel approach for solving the robotic pick-and-
place task based on deep reinforcement learning (DRL). Our approach relies solely on
a monocular camera and CPE, and it optimizes the time difference (TD) using the DRL
algorithm to recover 3D information, allowing our method to meet the stringent require-
ments of fusion applications. The proposed method achieved outstanding performance
in a simulation environment. Although we did not validate our method in a real-world
scenario, we believe that the accessibility of the input data and the efficient distributed
training of multiple sub-environments will facilitate its transfer to a realistic environment.
Therefore, migrating the algorithm to a realistic environment and verifying its effectiveness
is our next step. The key contribution of this study is showcasing the potential of using
DRL algorithms with monocular cameras to recover 3D spatial information and handle
related tasks with outstanding performance.
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