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Abstract: This work is a bibliographic review. The search for the necessary information was carried
out in the months of November 2022 and January 2023. The databases used were as follows: Pubmed,
Academic Google, Scielo, Scopus, and Cochrane library. Results: In total, 101 articles were selected
after a review of 486 articles from databases and after applying the inclusion and exclusion criteria.
The update on the molecular mechanism of human coronavirus (HCoV) infection was reviewed,
describing possible therapeutic targets in the viral response phase. There are different strategies to
prevent or hinder the introduction of the viral particle, as well as the replicative mechanism ((pro-
tease inhibitors and RNA-dependent RNA polymerase (RdRp)). The second phase of severe acute
respiratory syndrome coronavirus type 2 (SARS-CoV-2) involves the activation of hyperinflammatory
cascades of the host’s immune system. It is concluded that there are potential therapeutic targets
and drugs under study in different proinflammatory pathways such as hydroxychloroquine, JAK
inhibitors, interleukin 1 and 6 inhibitors, and interferons.

Keywords: SARS-CoV-2; COVID-19; ACE2; protease inhibitors; RdRp inhibitors; JAK inhibitors;
interleukin 1 inhibitors; interleukin 6 inhibitors; interferon

1. Introduction

The human coronavirus (HCoV) family can cause infections in humans, being a
zoonotic disease, as it is transmitted from animals (birds and mammals) to humans [1].
The symptoms shown by patients affected by HCoV vary between processes that resemble
the common cold to severe conditions such as those described with severe acute respira-
tory syndrome coronavirus 1 [2] (SARS-CoV-1) and Middle East respiratory syndrome
coronavirus virus (MERS-CoV) [3].

There are drugs with indications in other pathologies that are being tested in severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; of particular interest
are those that have been shown to be effective in other coronaviruses such as SARS-CoV-
1 and MERS-CoV. Two main phases have been differentiated: a viral response and a
hyperinflammatory response. This article reviews different strategies to prevent or hinder
the introduction of the viral particle, as well as the replicative mechanism ((protease
inhibitors (PI), inhibitors of RNA-dependent RNA polymerase (RdRp) (RNA-dependent
RNA polymerase), and inhibitors of intracellular transport of viral structures) [1–3].

2. Materials and Methods

The preparation of this work was carried out through a systematic bibliographic
review of the articles found by searching the following databases: Medline/Pubmed, WOS,
Scielo, Scopus, and Google Scholar. To find the best possible scientific evidence, a series of
inclusion and exclusion criteria were applied.
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The keywords for this review are as follows: SARS-CoV-2, COVID-19, ACE2, protease
inhibitors, RdRp inhibitors, JAK inhibitors, interleukin 1 inhibitors, interleukin 6 inhibitors,
and interferon. To carry out the bibliographic search, different keywords in English were
used: “SARS-CoV-2”, “COVID-19”, “ACE2”, “protease inhibitors”, “RdRp inhibitors”,
“JAK inhibitors”, “interleukin 1 inhibitors”, “interleukin 6 inhibitors”, and “interferon”.
These have been validated by the DeCS and MeSH. Once selected, the corresponding
Boolean operators, AND/OR, were used, as well as the necessary parentheses and quotation
marks. The final search string is as follows: (SARS-CoV-2) OR (COVID-19) AND (ACE2)
AND (protease inhibitors) AND (RdRp inhibitors) AND (JAK inhibitors) AND (interleukin
1 inhibitors) OR (interleukin 6 inhibitors) AND (interferon). The criteria that were taken
into account for the selection of the relevant studies were the following. Inclusion criteria:
the period between 2010 and 2023; article type: article review and article research; field:
medicine; English language; sample in adult population; and studies that provide scientific
evidence justified by the level of indexing of articles in journals according to the latest
certainties. Exclusion criteria: articles prior to 2010; language: not English; studies in which
the population was minors; and studies that do not provide scientific evidence justified by
the level of indexing of articles in journals according to the latest certainties.

For the methodological evaluation of the individual studies and the detection of
possible biases, the evaluation was carried out using the PEDro Evaluation Scale. This scale
consists of 11 items, providing one point for each element that is fulfilled. The articles that
obtained a score of 9–10 points have an excellent quality, those between 6 and 8 points have
a good quality, those that obtained 4–5 points have an intermediate quality, and finally
those articles that obtained less than 4 points have a poor methodological quality.

The Scottish Intercollegiate Guidelines Network classification was used in the data
analysis and assessment of the levels of evidence, which focused on the quantitative
analysis of systematic reviews and the reduction in systematic error. Although it took into
account the quality of the methodology, it did not assess the scientific or technological
reality of the recommendations.

3. Fundamental Structural Proteins

The HCoV genome encodes four fundamental structural proteins [4], which are neces-
sary to form the viral particle:

The spike (S): responsible for the union of HCoV with host cell receptors, facilitating
viral entry [5–7]. The union of the virus with angiotensin converting enzyme type II (ACE2)
constitutes the point of entry to infect human cells, with this union being primed by the
transmembrane protease, serine 2 (TMPRSS2) [8,9].

The nucleocapsid (N): binds to the ribonucleic acid (RNA) genome of HCoV, forming
the nucleocapsid [10].

Membrane protein (M): the most abundant structural protein that interacts with other
structural proteins for the assembly of the viral envelope [11].

The envelope (E): during replication, it is abundantly expressed in the endoplasmic reticu-
lum, Golgi apparatus, and the endoplasmic reticulum–Golgi intermediate compartment (ERGI),
although it is only expressed in small amounts in the envelope of the virion [12,13]. In the
absence of protein E, reduced titers of viral particles are observed and viral maturation is pre-
vented with incompetence for propagation. This has been observed in vitro with recombinant
HCoVs lacking protein S [14–18].

Any of these proteins can be the basis of future vaccines against SARS-CoV-2. In the
race to manufacture the anti-SARS-CoV-2 vaccine [19], there are more than 125 anti-SARS-
CoV-2 vaccine candidates [20].

4. Envelope Protein

The envelope protein E is a short transmembrane protein of 76–109 amino acids
(8.4–12 kDa) [21–23], consisting of a short amino-terminal (7–12 aa) hydrophilic end; followed by
a transmembrane domain (25 aa) hydrophobic, where there is an amphipathicα-helix with prop-
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erties of forming an ion conducting pore [24–26]; and a long carboxy-terminal end [27–30]. It can
establish homotypic interactions, forming transmembrane-domain-dependent homo-oligomeric
multimers [31] and generating a known ion channel protein known as viroporin [32,33].

Although many HCoVs encode two proteins that, when homooligomerized, can form
viroporins, SARS-CoV1 encodes three proteins: 3a, E, and 8a. Proteins 3a and E contain a PDZ-
binding motif (PBM), which can bind to more than 400 cellular proteins that contain a PDZ
domain [34,35].

5. Biochemical–Molecular Mechanism of HCoV Infection

Analogous to what was known about the virology of SARS-CoV-1 and MERS, the
proposed mechanism is defined [36,37] (Figure 1):

1. Binding of the spike protein (S) virus of SARS-CoV-2 with the angiotensin converting
enzyme type II (ACE2), constituting the point of entry to infect human cells, with the
said union being primed by the transmembrane protease, serine 2 (TMPRSS2) [8,9].

2. Endocytosis of viral particles.
3. Early translation of the positive ribonucleic acid (RNA) of SARS-CoV-2 as if it were

host cell mRNA with the synthesis of early (regulatory) proteins, including polypro-
teins and essential viral proteases.

4. Proteolysis through a protease. The polyproteins (pp1a and pp1ab) are cleaved into
16 nonstructural effector proteins by 3CLpro and PLpro.

5. Formation of the replication complex together with the RNA-dependent RNA poly-
merase (RdRp).

6. Synthesis of negative single-stranded RNA from the positive single-stranded RNA
template by RNA polymerase, with formation of the replicative complex. The negative
single-stranded RNA is not released, remaining associated with the replicative complex.

7. The replicative complex produces synthesis of positive single-stranded RNA, mRNA,
and negative single-stranded RNA.

8. Late translation of positive single-stranded RNA and mRNA, with late (structural)
protein synthesis on the ribosomes of the rough endoplasmic reticulum.

9. Formation of viral particles with assembly in the ERGI intermediate compartment
(endoplasmic reticulum–Golgi apparatus).

10. Release of viral particles by exocytosis.
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6. Etiopathogenic Phases of COVID-19

According to epidemiological data from the World Health Organization, the first
variants of SARS-CoV-2 are as follows: Alpha (B.1.1.7) (United Kingdom, 12/2020), Beta
(B.1.351) (South Africa 12/2020), Gamma (P.1) (Brazil, 01/2021), Delta (B.1.617.2) (12/2020),
and Ómicron (B.1.1.529) (South Africa, 11/2021) [38].

In COVID-19, an etiopathogenic model has been proposed that divides it into a
response phase against SARS-CoV-2 and a host inflammatory response phase where an
inflammatory cascade occurs [39]. Figure 2 shows the three stages: (I) early infection (which
corresponds to the viral response phase), (II) or pulmonary phase (where the two response
phases overlap), and (III) or hyperinflammatory phase. Depending on the phase in which
the patient is, he will have a different therapeutic approach.
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Figure 2. Differentiated phases of viral and proinflammatory response (interleukin 1: IL 1; interleukin
6: IL-6; Janus kinase: JAK).

In a didactic way, in the viral response phase, a subdivision could be made into the
following: (a) entry of the viral particle, (b) proteolysis, (c) SARS-CoV-2 RNA replication by RNA-
dependent RNA polymerase, and (d) intracellular transport of viral structures (Figure 2) [38,39].

7. Physiopathology of Edema in Pulmonary Alveoli and Possible Therapeutic Targets

Under physiological conditions, edema in the pulmonary alveoli is resolved by the
action of three proteins (Figure 3) [40]:

• The Na+/K+ ATP-ase pump, which allows two K+ ions to enter intracellularly and
three Na+ ions to exit the cell by active transport.

• The epithelial channel of Na+ ions sensitive to amiloride (ENaC) (amiloride-sensitive
sodium channel), which allows the transport of Na+ by facilitated diffusion. They are
distributed in organs such as the lung, large intestine, kidney, vascular endothelium,
and placenta.

• Cystic fibrosis transmembrane conductance regulator (CFTR), which belongs to the
ABC transporters and exerts its function through primary active transport.

Given the current SARS-CoV-2 epidemic, a possible therapeutic target for the pathol-
ogy caused by HCoV could be the identification of drugs that interrupt the PBM–PDZ
junctions, as these pathways would be involved in the pathophysiology of the infection.
Protein E may be the origin of the future vaccine. Viroporins are viral proteins with ion
channel activity that play important roles in various processes, including virus replication
and pathogenesis.
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8. Therapy in the Viral Response Phase
8.1. Inhibitors of Viral Particle Entry
8.1.1. TMPRSS2 Inhibitors

The SARS-CoV-2 spike (S) protein binds to ACE2, which is the entry point for infecting
human cells, requiring TMPRSS2 [8,9]. The entry of SARS-CoV-2 into the cell could be
blocked by both protein S neutralizing antibodies and TMPRSS2 inhibitors. Among the
latter are camostat mesylate [41] (used as a treatment for chronic pancreatitis [42]) and
nafamostat [43].

8.1.2. Arbidol

Umifenovir (Arbidol®) binds to the hemagglutinin of the influenza virus [44] and
its inhibitory power has been demonstrated in the Zika Virus [45]. Three-dimensional
analysis of molecular structure using HADDOCK2.2 (https://haddock.science.uu.nl/
(accessed on 26 March 2023)) and SwissDock (http://swissdock.ch/docking (accessed
on 26 March 2023)) servers shows binding of arbidol to trimers of the glycoprotein S of
SARS-CoV-2 [46]. The usefulness of this drug has been proven as it interferes with and
inhibits membrane fusion with the viral envelope [47].

8.1.3. Antimalarials

In addition to the immunomodulatory effect of the inflammatory cascade that we will see
later, antimalarials (hydroxychloroquine (HCQ) and chloroquine (CQ)) have a direct antiviral
effect by interfering with the binding of the viral particle to ACE2 (altering the glycosylation of
the receptor) [48] or with endocytosis (by increasing the pH of these organelles) [49].

8.1.4. Janus-Associated Kinase (JAK) Inhibitors

Baricitinib (Olumiant®) is a JAK inhibitor used in rheumatoid arthritis [50], which
could inhibit endocytosis using a three-dimensional virtual model [51]. In addition, it
participates in the immunomodulation of the inflammatory cascade [52,53].

8.1.5. Oseltamivir

Oseltamivir (Tamiflu®) binds to the neuraminidase of the influenza virus [54], which
could be useful in patients with SARS-CoV-2 co-infection, although this virus does not
require neuraminidase for cell entry.

https://haddock.science.uu.nl/
http://swissdock.ch/docking
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8.1.6. Monoclonal Antibodies (MAbs) Directed against a Viral Coat Protein

Similarly to palivizumab against respiratory syncytial virus (RSV), the design of a
monoclonal antibody (AbMo) directed against SARS-CoV-2 [55,56] could be a therapeutic
option in the future.

8.1.7. ACE2 Soluble Receptor

It is based on the design of a recombinant protein similar to ACE2 that contains only
the sequence of amino acids to which SARS-CoV-2 binds [57]. The virus would compete
for binding to this protein and to ACE.

A scheme of the possible pharmacological mechanisms of action in the interference of
SARS-CoV-2 entry is presented in Figure 4.
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8.2. RdRp Inhibitors [58]

Its mechanism of action is by inhibition of RdRp, with some drugs being represented
in Figure 4.

Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide, Avigan®) is a purine
nucleotide prodrug (favipiravir ribofuranosyl-5-triphosphate) that inhibits the RdRp of
influenza viruses [59,60], Ebola virus, hemorrhagic fever [61], and HCoV. Remdesivir (RDV)
is a prodrug of a nucleotide analog (adenosine C nucleoside) developed as a treatment for
Ebola virus infection [62] that showed inhibitory power against SARS-CoV and MERS-CoV
in vitro [63]. It has been studied in monotherapy [64] and associated with chloroquine [65]
in COVID-19. Ribavirin is a guanosine analog used for hepatitis C virus (HCV), which
has been used in combination with lopinavir/ritonavir or interferon (IFN) in SARS-CoV1
and MERS [66]. Sofosbuvir is a pharmacologically active uridine nucleotide triphosphate
prodrug (GS-461203) that acts as a pan-genotypic inhibitor of HCV RdRp NS5B, indicated
for chronic hepatitis in adults. Ledipasvir targets the nonstructural HCV phosphoprotein
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NS5A, essential for RNA replication and virion assembly. The combination of sofosbuvir
with ledipasvir (Harvoni®) or velpatasvir can inhibit both RdRp and PI [67] of SARS-CoV-2.
Galidesivir and tenofovir have been shown in molecular studies to inhibit RdRp [68].

8.3. Protease Inhibitors (PIs)

Its mechanism of action is by inhibition of the proteases represented by some drugs in
Figure 1.

Velpatasvir is a pan-genotypic inhibitor of the HCV NS3/4A protease described
in the previous section [67], while lopinavir is an inhibitor of the protein, similar to
3-chymotrypsin as the protease of the human immunodeficiency virus (HIV), reducing
the maturation of viral particles. It is marketed together with ritonavir (Kaletra®), which
inhibits the metabolism of lopinavir [69]. It has been used in COVID-19 [70]. Darunavir
also acts in a similar way to lopinavir [69,70].

8.4. Inhibitors of Intracellular Transport of Viral Structures

The importin protein is formed by a heterodimer of two subunits (alpha and beta-1)
(IMPα/β1) [71] participating in the nuclear transport models of SARS-CoV-2. Studies on
its efficacy and safety in COVID-19 are needed. Ivermectin demonstrated inhibition of
nuclear transport; either from the non-structural protein 3 (NS3) of flavivirus [72], NS5 of
the dengue virus [73], or of the MxA factor of the influenza A virus [74]. In vitro inhibition
of SARS-CoV-2 replication has been demonstrated [75].

9. The Hyperinflammatory Response in Severe Acute Respiratory Syndrome
Coronavirus Type 2 (SARS-CoV-2) Infection

There is no time for the development of specific drugs for the treatment of coronavirus
disease 2019 (COVID-19) (coronavirus disease-2019) [1]. There are drugs with indications
in other pathologies that are being tested in severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) infection; of particular interest are those that have been shown to be effec-
tive in other coronaviruses such as severe acute respiratory syndrome coronavirus 1 [2]
(SARS-CoV-1) and Middle East respiratory syndrome coronavirus [3,4] (MERS-CoV) (Mid-
dle East respiratory syndrome coronavirus). Two main phases of the patient’s response to
infection have been differentiated: a viral response and a hyperinflammatory response. This
article reviews different strategies to prevent or hinder the hyperinflammatory response of
the eukaryotic host cell.

10. Therapy in the Hyperinflammatory Response Phase with Immunomodulators of
the Immune Inflammatory Cascade
10.1. Glucocorticosteroids

Glucocorticosteroids (GCs) regulate the expression of anti-inflammatory proteins
in the nucleus (transactivation) and repress the expression of proinflammatory proteins
(tranrepression), exerting a potent anti-inflammatory effect [76,77].

10.2. Antimalarials

Antimalarials (hydroxychloroquine (HCQ) and chloroquine (CQ)) have an immunomod-
ulatory effect by increasing the lysosomal pH in antigen-presenting cells (APCs) and by
interfering with Toll-like receptor (TLR) signaling (Toll-like receptors) at the level of the
innate immune response. They also decrease the production of proinflammatory cytokines
(interleukin 1 (IL-1—interleukin-1), interleukin 6 (IL-6—interleukin 6), tumor necrosis
factor alpha (TNFα), and interferon-gamma (IFNγ)) [78] of the COVID-19 storm. Its ef-
ficacy has been described in COVID-19 either in monotherapy [79] or associated with
azithromycin [80,81]. Attention should be paid to cardiovascular effects [82].
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10.3. Janus Kinase Inhibitor (JAK 1 and 2)

The anti-inflammatory effect of baricitinib (Olumiant®) is due to the reversible inhibi-
tion of JAK 1 and 2 through a signal transduction pathway involving STAT proteins [83],
which modulates the expression of genes associated with inflammation in immune cells and
inhibits IFN production. In addition, it may have a possible antiviral effect by inhibiting
AP2-associated protein kinase 1 (AP2-associated protein kinase 1) [84], interrupting the
passage of SARS-CoV-2 within the cell and even the intracellular assembly of the viral
particles (Figure 5).
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Baricitinib is approved in more than 65 countries for the treatment of moderate–severe
rheumatoid arthritis (RA). It is useful in reducing mortality in COVID-19 by associat-
ing it with different antivirals [85]. RECOVERY included 8156 patients with COVID-19
treated with baricitinib versus usual care between 2 February 2021 and 29 December 2021.
Baricitinib significantly reduced the risk of death in hospitalized patients by 20% [86].

Erlotinib, another JAK inhibitor, has shown pharmacokinetic efficacy in combination
with ritonavir [87].

10.4. Blockers of the IL-1-Mediated Inflammatory Response

10.4.1. Anakinra (Kineret®)

Monoclonal antibody (mAb) is antagonistic to the human IL-1 receptor (r-metHuIL-
1ra), produced in Escherichia coli cells by recombinant DNA technology. It is indicated in
rheumatoid arthritis, cryopyrin-associated periodic syndrome (CAPS) (including Muckle-
Wells syndrome (MWS), neonatal multisystem inflammatory disease (NOMID) (neonatal-
onset multisystem inflammatory disease), chronic infantile neurological cutaneous and
articular syndrome (CINCA), and severe manifestations of familial cold autoinflammatory
syndrome (FCAS) and familial cold urticaria (FCU) (familial cold autoinflammatory)), and
Still’s syndrome. Its usefulness has been described in critical clinical cases where there is a
cytokine storm such as macrophage activation syndrome (MAS) and secondary lymphohis-
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tiocytic hemophagocytosis (SHLH) (secondary hemophagocytic lymphohistiocytosis). Its
use in COVID-19 has been associated with increased survival [88].

10.4.2. Canakinumab (Illaris®)

Recombinant human IgG1κ anti-IL-1 beta mAb [89], listed in CAPS [90] (MWS, NO-
MID, CINCA, FCAS, and FCU), as well as tumor-necrosis-factor-receptor-associated peri-
odic syndrome (TRAPS) (tumor-necrosis-factor-receptor-associated periodic syndrome),
hyperimmunoglobulin D syndrome (HIDS), mevalonate kinase deficiency (MKD), familial
Mediterranean fever (FMF), familial Mediterranean fever Still, and arthritic gout.

10.4.3. Rilonacept (Arcalyst®)

Dimeric fusion protein with ligand-binding domains of the extracellular portions of
the human interleukin 1 receptor type I (IL-1RI) receptor and of the IL-1 receptor accessory
protein (IL-1) (1RAcP) (interleukin-1 receptor accessory protein) bound in line to the Fc
portion of human IgG1 [89]. By binding to the proinflammatory cytokines IL-1α and IL-1β
and antagonizing the endogenous IL-1 receptor (IL-1ra), it blocks the inflammatory cascade
(Figure 6).
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10.5. Blockers of the Inflammatory Response Mediated by IL-6

10.5.1. Tocilizumab (Actemra®/RoActemra®)

Recombinant human IgG1 mAb against interleukin 6 receptor (IL-6R) that binds sol-
uble and membrane-bound receptors. It is indicated in combination with methotrexate
(MTX) in adults with severe, active, and progressive rheumatoid arthritis (RA) not previ-
ously treated with MTX, or in moderate to severe active RA with inadequate response or
intolerance to prior treatment with one or more disease-modifying antirheumatic drugs
(DMARDs) or tumor necrosis factor (TNF) antagonists; that is, systemic juvenile idiopathic
arthritis (sJIA) and polyarticular (pJIA) and giant cell arteritis (GCA) [91].

10.5.2. Sarilumab (Kevzara®)

Recombinant human IgG1 anti-IL 6R mAb binds both soluble and membrane-bound
receptors, inhibiting IL-6 cell signaling transmission measured as STAT-3 inhibition. It
is indicated in moderate to severe active rheumatoid arthritis (RA) in adults who are
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inadequate responders to, or intolerant to, one or more disease-modifying antirheumatic
drugs (DMARDs) [92].

10.5.3. Siltuximab (Sylvant®)

Chimeric human-murine IgG1κ anti-IL-6 mAb forms stable, high-affinity complexes
with soluble forms of IL-6. It is indicated for the treatment of multicentric Castleman’s
disease (MCD) in adults negative for human immunodeficiency virus (HIV) [93] and human
herpesvirus-8 (HVH8) (Figure 7).
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10.6. Colchicine

The most studied pharmacological mechanism is the binding to tubulin, blocking
the polymerization of microtubules, achieving an antimitotic effect [94,95]. It inhibits
chemotaxis in phagocytosis in urate crystals in gouty arthritis [96]. The COLCORONA
(Colchicine Coronavirus SARS-CoV-2) clinical trial (NCT04322682) studies the effect of
colchicine on the inhibition of IL-1 production in COVID-19 [97].

10.7. Interferons

IFNs are divided into the following: type I (IFNα, IFNβ, IFN-ε, IFN-κ, and IFN-ω) [98],
type II (IFNγ), and type III (λ). These have an antiviral effect, although types I and II induce
the production of proinflammatory cytokines [99]. IFNα and IFNβ could be useful in early
stages but would worsen survival in advanced stages.

Emapalumab (Gamifan®) is an anti-IFNγ mAb indicated for hyperinflammation in
primary hemophagocytic lymphohistiocytosis (pHLH) [100] that has been tested in critically
ill patients with COVID-19, as IFNγ levels are elevated in patients with COVID-19.

IFNλ has a powerful antiviral effect without a proinflammatory effect, so it could be
a therapeutic option [101]. The antiviral role of pegylated IFNλ against HCV has been
studied. Azithromycin inefficiently stimulates IFNλ production, which could explain its
effect on COVID-19.

10.8. Passive Immunity
10.8.1. Sera from Patients Recovered from COVID-19

It was previously used in epidemics of the H1N1 influenza virus [102–104], SARS-
CoV-1, and MERS-CoV [105,106]. The appearance of new mutant variants of SARS-CoV-2,
such as Delta or Ómicron, which are increasingly contagious and escaped the neutralizing
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antibodies of previous variants and vaccination (active immunization), has produced
successive waves of epidemics [106].

10.8.2. Combined Immunoglobulin Preparations

In the future, and similarly to human anticytomegalovirus immunoglobulin (CMVIG,
Megalotect®) (cytomegalovirus immune globulin), commercial preparation of immunoglob-
ulins from different donors would be a therapeutic option, providing a higher concentration
than plasma from recovered subjects.

10.8.3. mAbs Directed against Any SARS-CoV-2 Protein

Analogous to palivizumab against respiratory syncytial virus (RSV) [107], the design
of an mAb directed against SARS-CoV-2 could be a therapeutic option applied to any
infection. Bebtelovimab (LY-CoV1404, 1404) [108] is a neutralizing mAb directed against
the S protein of SARS-CoV-2, including Ómicron. Tixagevimab and Cilgavimab (AZD7442)
are mAbs isolated from B lymphocytes from patients infected with SARS-CoV-2 that
neutralize protein S [109].

10.9. Active Immunity

In the race to manufacture the anti-SARS-CoV-2 vaccine [19], there are more than
125 anti-SARS-CoV-2 vaccine candidates [20]. They are divided into six large groups:
(a) live attenuated viruses, inactivated viruses, nucleic acids, replicating viral vectors,
non-replicating viral vectors, and recombinant protein subunits. There are studies on the
immunomodulation achieved with the bacillus Calmette–Guérin (BCG) vaccine [110].

Some of the vaccines based on RNA technology that express part of the SARS-
CoV-2 S protein in host cells are as follows: BNT162b2 (Comirnaty®, Pfizer-BioNTech,
Mainz, Germany) [111] and mRNA-1273 (Moderna, Cambridge, MA, USA) [112]. As
RNA is more easily degraded than DNA, DNA-based vaccines have also been marketed:
ChAdOx1/AZD1222 (Oxford University/Astra Zeneca, Cambridge, UK), which uses
a similar mechanism but is based on a chimpanzee adenovirus viral vector, as well as
Ad26.COV2.S [113] (Janssen, Beerse, Belgium), carrying a non-replicating adenovirus
serotype 26 viral vector with SARS-CoV-2 protein S genes.

11. Conclusions

Although efficacy and safety studies in humans are needed, the possible therapeutic
targets in the viral response phase and in the hyperinflammatory response phase of COVID-
19 have been reviewed. There is no current evidence to recommend any specific treatment.
The use of investigational drugs must be carried out under controlled, randomized, and
ethically controlled trials. Passive immunity studies have been carried out through the
transfusion of plasma from recovered subjects; even so, there is a race to develop a vaccine
that generates active immunity.
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mAb monoclonal antibody
RNA ribonucleic acid
COVID-19 coronavirus disease 2019 (coronavirus disease-2019)
CQ chloroquine
ACE2 angiotensin-converting enzyme type II
ERGI intermediate compartment endoplasmic reticulum–Golgi apparatus
HCoV human coronavirus
HCQ hydroxychloroquine
IFN interferon
IL-1 interleukin 1 (interleukin 1)
IL-6 interleukin 6 (interleukin 6)
IMPα/β1 importin alpha and beta-1
PI protease inhibitor
JAK Janus kinase (Janus kinase)
MERS-CoV virus causing Middle East respiratory syndrome (Middle East respiratory

syndrome coronavirus)
NS3 nonstructural protein 3
RdRp RNA-polymerase-RNA-dependent
RDV remdesivir
SARS-CoV-1 severe acute respiratory syndrome coronavirus 1 (severe acute respiratory

syndrome coronavirus 1)
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 (severe acute respiratory

syndrome coronavirus 2)
TMPRSS2 transmembrane protease, serine 2
HCV hepatitis C virus
HIV human immunodeficiency virus
RSV respiratory syncytial virus
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