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Abstract: This paper presents an innovative prefetching algorithm for a hybrid main memory struc-
ture, which consists of DRAM and phase-change memory. To enhance the efficiency of hybrid memory
hardware in serving big data technologies, the proposed design employs an application-adaptive
algorithm based on big data execution characteristics. Specifically optimized for graph-processing
applications, which exhibit complex and irregular memory access patterns, a dual prefetching scheme
is proposed. This scheme comprises a fast-response model with low-cost algorithms for regular
memory access patterns and an intelligent model based on an adaptive Gaussian-kernel-based
machine-learning prefetch engine. The intelligent model can acquire knowledge from real-time
data samples, capturing distinct memory access patterns via an adaptive Gaussian-kernel-based
regression algorithm. These methods allow the model to self-adjust its hyperparameters at runtime,
facilitating the implementation of locally weighted regression (LWR) for the Gaussian process of
irregular access patterns. In addition, we introduced an efficient hybrid main memory architecture
that integrates two different kinds of memory technologies, including DRAM and PCM, providing
cost and energy efficiency over a DRAM-only memory structure. Based on the simulation-based
experimental results, our proposed model achieved performance enhancement of 57% compared to
the conventional DRAM model and of approximately 12% compared to existing prefetcher-based
models.

Keywords: graph processing; regression algorithm; data prefetching; hybrid main memory;
memory management

1. Introduction

The utilization of big data processing has become a popular trend in recent years [1,2].
As big data applications continue to advance and become more intricate, the interest in big
data has grown and resulted in increasingly complex graph structures. This complexity has
caused irregular and complicated memory access patterns in graph processing, creating
a significant bottleneck [3]. To overcome this, prefetchers are employed to predict when
to fetch any particular type of data into the cache memory to reduce memory access
latency. Such prefetchers have demonstrated substantial improvement in mitigating the
miss penalty for conventional memory access patterns, e.g., with stream prefetchers [4],
stride prefetchers [5], and a global history buffer (GHB) [6]. However, conventional pattern-
recognition-based prefetching approaches are inappropriate to identify mixed and irregular
memory access streams such as in-direct memory access and pointer-chasing memory
accesses. Therefore, the key to achieving accurate and effective prefetching is to exclude
inapplicable memory access patterns based on lightweight and learning-based prefetching
mechanisms. By analyzing the graph data structure and access patterns, this paper proposes
a deformed regression prefetching scheme that uses an invalid address index to effectively
hide the cache invalidation delay and improve the overall performance.
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Many studies have been carried out on new hybrid memory technologies for non-
volatile memory (NVM). PCM has the advantages of low power consumption, high density,
low latency, and byte-addressability. However, it has disadvantages of its own: writing
power consumption is higher than for reading, write latency is higher than reading, and
write counts of PCM are limited [7]. The asymmetry problem regarding read and write
in PCM should receive more attention when using hybrid PCM and DRAM memory [8].
This work proposes a new type of efficient memory page management mechanism called
the hybrid main memory management unit (HMMMU) based on DRAM-PCM hybrid
memory architecture. The main idea of this mechanism is to allocate the data pages into
the appropriate memory space. For example, this mechanism can put data with a high
access potential into the high-performance zone in the main memory to reduce migration
operations and then improve the system performance.

Therefore, the core problem is how to distinguish memory access patterns and place
the most frequent data on DRAM. In response to this problem, a prefetch table is designed
that can monitor memory requests and analyze access patterns in real time and, based on
the time and space limitations of the memory access sequence, an arbitrator is designed to
manage three different types of prefetch engines. In particular, for irregular memory access
patterns, the optimized linear regression algorithm is used, and partial lines are added to
increase the weight, thereby improving the prefetch efficiency.

To quantitatively evaluate the proposed DRAM-PCM hybrid main memory system,
memory requests from applications will be logged in trace files by using Pin Tool, ver-
sion 3.0 [9]. The simulator can access multiple trace files and perform multiple fetches
simultaneously. A detailed description of the workload is given in Section 4. The work-
load is executed on the dataset generated by the data generator called LDBC [10]. Our
simulation-based evaluation shows that our proposed model, DRAM-PCM hybrid memory
architecture with an optimized regression prefetching method, demonstrated a significant
improvement in execution time and energy consumption. Specifically, our proposed model
achieved significant improvement over the conventional DRAM-only main memory ar-
chitecture model, with a 56% reduction in execution time and a 57% decrease in energy
consumption. Our proposed model achieved a reduction in total execution time by 8%
and power consumption by 13% when compared to existing models such as GHB, access
map pattern matching (AMPM), spatial storage stream (SMS), best-offset, and DynamicR.
Furthermore, it also improved the total hit rate by 2% on average.

The prefetch technology is essentially a memory access sequence-prediction tech-
nology, and the prefetch strategy should consider the memory access behavior of the
application [11]. This section will analyze and summarize the patterns of the address
sequence when the cache is missed, analyze the miss ratio in the cache, and design the
prefetch strategy based on the analysis results. Figure 1 shows a comparison of the miss
rates of various access patterns in the test program. As shown in Figure 1, the miss rate of
irregular accesses is much larger than that of the regular access patterns. At the same time,
the delay in accessing external memory caused by the misses of irregular access patterns is
one of the main bottlenecks restricting the improvement of overall performance.

Therefore, improving the performance of irregular prefetch patterns has a greater effect
on improving the performance. To prevent performance degradation by irregular memory
access streams from graph-processing workloads [12], we propose a DRAM buffer-based
hybrid main memory architecture with a prefetching method based on an optimized locally
weighted regression (LWR) algorithm. To address the challenges of traditional DRAM-
based main memory limitation, increasing energy consumption, and the high-cost issue,
our proposed solution introduces the DRAM-PCM-based hybrid main memory architecture
based on our novel data management method. The design in this paper is a universal
solution for all DRAM-based main memory architectures. Because the proposed model has
the advantage of aggregating hot data, it can well serve the hybrid memory system that
consists of non-volatile memory (NVM) with a relatively limited read-and-write lifetime. It
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can significantly increase the lifetime of non-volatile memory while reducing the memory
miss rate.
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This paper makes the following contributions:

1. We conducted an analysis of complicated and indirect memory access patterns from
graph workloads to design a data prefetch algorithm by determining dynamic memory
access patterns as a design application method utilizing big-data execution character-
istics.

2. We designed an adaptive optimized regression prefetch scheme that can select from a
dynamic set of prefetch engines by using a machine-learning approach.

3. We proposed a novel page-management mechanism that leverages the cost-effectiveness
of PCM’s characteristics by efficiently utilizing both DRAM and PCM.

The subsequent sections of this paper are structured as follows: Section 2 provides
an overview of the related research on prefetching methods and hybrid main memory
architectures, while Section 3 presents our proposed DRAM-PCM hybrid memory model
with the optimized linear regression algorithm. Section 4 conducts a comparative analysis
of the proposed system with existing models. In Section 5, we present the experimental
results obtained from our in-house simulation environments with various hybrid memory
models.

2. Related Work
2.1. Prefetching Scheme

Hardware prefetching utilizes hardware dynamics to analyze the execution process
of the program and prefetches according to the memory access history. Although the
complexity of hardware design has increased, the efficiency is higher.

Norman P. Jouppi et al. [4] introduced stream buffer prefetching technology, prefetch-
ing the subsequent addresses of the cache invalidation address at the memory access
invalidation module level and putting the prefetched data into the storage unit of the FIFO
structure, that is, the stream buffer.

Fu et al. [5] proposed a stride prediction-based prefetching mechanism to enhance the
performance for matrix-based calculations. It was implemented using a stride prediction
table (SPT) to calculate the stride distances. The stride prefetcher obtains the difference
between the address currently accessed by the processor and the previously generated
address value and stride, and then adds the difference to the accessing address to perform
the next prefetch.

Nesbit et al. [7] proposed a prefetching mechanism that employs an index table in
conjunction with a global history buffer (GHB), and the delta correlation prefetching scheme
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that tracks cache events and memory requests information to find appropriate address
deltas for generating the next prefetching candidates.

Somogyi et al. [11] proposed an SMS prefetcher for spatial relations, which uses context
data (PC and region offset) to identify spatial patterns that are not necessarily continuous.
SMS focuses on finding spatial patterns using two tables, the accumulation table and the
filter table. SMS trains spatial patterns by tracking demand requests across a spatial region
as page granularity. SMS records detailed information of demand requests, including
values of the program counter (PC) and spatial bit-patterns, and tries to predict spatial
patterns with this history to generate the next prefetching candidates.

Ishii et al. [13] proposed a model that manages a memory access map to store the
layout of spatial memory accessing records called the AMPM prefetcher. By analyzing
more than two strides of the request access pattern, the prefetcher can predict the closest
block for the next request.

Michaud et al. [14] designed a best-offset prefetcher that builds upon the sandbox
prefetcher and attempts to enhance its timeliness. The best-offset prefetcher depends on
the sandbox prefetcher that chooses the best single offset to fit current memory access
streams. It evaluates various offsets to predict the offsets that are expected to produce
timely prefetches.

To consider prefetch timeliness, Yun et al. [15] introduced a simple linear regression
preprocessing technique. This involves first finding frequently used hot data, and then,
second, using simple linear regression to obtain the next data that need to be prefetched
and stored in the buffer.

Based on the design of Yun et al. [15], Kim et al. [16] devised a multi-algorithm compos-
ite prefetching method that employs history tables-based approaches, by comprehensively
analyzing complicated memory request patterns. The method includes an efficient next-line
prefetch engine and a linear regression engine.

Building upon the excellent work of Yun and Kim et al., we published a more advanced
dynamic recognition prefetch scheme in our previous research [17]. The algorithm can
automatically switch the required prefetch algorithm according to the memory access
patterns. Then it performs a low-cost polynomial fitting through pre-training, which makes
up for the limitation of the linear regression algorithm. Finally, according to the discrete
characteristics of the data, the algorithm can dynamically adjust the number of prefetch
pages to ensure the accuracy and efficiency of the prefetch engine.

With the development of memory management unit (MMU) technology and the need
to further reduce the memory miss rate, prefetching is becoming more advanced and
complex. Although conventional linear prediction has a good performance in the graph
processing system, there are still many memory accesses that do not conform to the linear
characteristics. Covering those accesses requires advances in the efficiency of prefetching.
However, with the increasing complexity, the requirements for hardware devices gradually
increase, e.g., with the polynomial fitting engine in [17]. Even if simplified algorithms are
used with the objective of reducing complexity, there will still be over-fitting phenomena in
the experiment. To enhance the robustness and reduce the system burden while ensuring
prefetching efficiency, we propose a new type of efficient memory management mechanism
and a more efficient prefetching algorithm in this paper.

2.2. Hybrid Memory

Recently, many studies have been carried out on hybrid main memory combined with
conventional DRAM, which utilizes the advantages of NVM.

Choi et al. [18] proposed a method using an NVM-capacity management policy for
a hybrid memory system to minimize the number of write operations and guarantee the
lifetime of NVM cells and memory system performance with the dynamic way-selection
algorithm. In addition, a method to disable NVM was mentioned in this work to prevent
fetching new blocks into inactivated NVM devices.
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Ramos et al. [19] proposed a multi-queue-based page placement method that operates
page migration between DRAM and PCM devices for the page-granularity-based hybrid
main memory system. In addition, the memory controller features a ranking-based page
placement scheme that efficiently prioritizes pages based on their popularity and write
intensity. This approach employs the page migration of top-ranked pages to DRAM.

3. Main Architecture
3.1. Overall Architecture

The proposed model, as shown in Figure 2, is comprised of the following six modules:
namely, DRAM buffers that store prefetch addresses, arbitrators responsible for managing
the prefetch engine, and prefetch tables that record recently accessed addresses from
the main memory and the DRAM-PCM hybrid main memory. Additionally, the model
incorporates different prefetch mechanisms for various memory access patterns.
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3.1.1. DRAM Buffer

As shown in Figure 2, the DRAM buffer provides a buffer region for storing the
addresses generated by the prefetch engines. When an LLC miss occurs and there are no
addresses in the DRAM buffer, the hybrid main memory system is accessed.

3.1.2. Hybrid Main Memory Management Unit

We designed a DRAM prefetch buffer that is placed between the last-level cache
(LLC) and the main memory layer, which serves to store prefetched data. In addition,
our proposed model incorporates a hybrid main memory system that includes a limited
amount of DRAM device and a larger background memory area composed of PCM device.
Moreover, our model incorporates a hybrid main memory management unit that efficiently
manages these distinct types of memories. Specifically, the hybrid main memory, which
includes the prefetching buffers, operates using a flat physical memory address scheme
with an LRU-based page replacement policy.

3.1.3. Arbitrator

The operation flow of the arbitrator is demonstrated in Figure 3. As shown in the
figure, the arbiter is capable of determining whether or not to update the prefetch table,
but also of acting on the prefetch engine to intelligently identify the memory-access mode,
and then select the most suitable prefetch engine to perform prefetching.
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3.2. Cache Miss Analysis

Through the analysis of the program access mode, the access mode from the perspec-
tive of cache can be summarized into three patterns: a stable stride memory access pattern,
a linear transformation stride pattern, and an irregular memory access pattern, as shown in
Table 1.

Table 1. Cache Miss Address Patterns.

Address Sequence Pattern Address Sequence Instance

Stabile stride memory access pattern 0x80000080, 0x80000080, 0x80000100, 0x80000180

Linear transformation stride pattern 0x80000000, 0x80000080, 0x80000180, 0x80000300

Irregular memory access pattern Other
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3.3. Regression Analysis

Linear regression is a machine-learning method that models the tendency between a
scalar response and multiple explanatory variables [20]. The following equation shows the
formula for the regression hypothesis.

y = θ0 + θ1x1 + θ2x2 + . . . + θnxn (1)

As illustrated in Equation (1), this technique is used to solve a model by minimizing
the mean square error, commonly referred to as the least square method, which finds the
best-fitted line that minimizes the sum of all distances from each sample.

3.4. Prefetch Table

The traditional prefetch mechanism mostly uses the memory access instruction address
as the index of the query prefetch table. To avoid increases in the complexity of the hardware
design caused by the increase in the data path, it also makes the logic design more direct.
This study uses the memory access address as the query prefetch table and obtains the index
of the table entry. The key to prefetching technology lies in the prediction of memory access
addresses. Therefore, prefetching technology is another application of value prediction
technology. In the prefetch mechanism introduced in this study, the concept of offset is
introduced to increase the efficiency of cache prefetching.

Similarly, the entry table and offset table are both used in the prefetch mechanism of
the new prefetch table. The entry address in the entry table represents the physical address
of the entry bit (46 bits). In all 64 bits, the prefetch number represents the prefetch times of
each entry, and the hit represents the prefetch success. The offset table includes 256 offsets
with 64 entries. The structure of the prefetch table is shown in Figure 4.
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3.4.1. Entry Table

The update of the entry is controlled by the arbitrator and this table is updated using
the prefetch controller, as shown in Figure 5. When the LLC requests data to be transferred
to the main memory and a miss occurs, the arbitrator updates the entry table as follows: If
the missing data is the same as in the entry table, only the offset table needs to be updated;
however, if it is different, a new entry needs to be inserted, and the offset is updated
accordingly. In addition, if the entry table misses and is empty, it will be executed according
to the least recently used (LRU) strategy.
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3.4.2. Offset Table

Unlike the selective update of the entry table, the offset table updates every request
from the LLC, and the offset table can be attached only to the entry table; that is, it cannot
exist alone. In addition, the replacement strategy for the offset table is first in and first out
(FIFO). Given that the prefetch table can record the requested data from the LLC miss, the
prefetch table can record the memory access model to predict the next prefetch data. This
mechanism also greatly improves performance.

3.5. Prefetch Engine

Based on the complexity of the memory access patterns, this study proposes three
prefetch models for different usage scenarios. The fast-response model consists of two
prefetch engines: the next-lined prefetch engine and the regular-stride prefetch engine. The
intelligent mode is an adaptive Gaussian-kernel-based optimized LWR prefetch engine.

3.5.1. Next Lined Prefetch Engine

The next-lined prefetch engine was designed based on a prefetch table. When there
are fewer than three offset entries, it is not possible to determine the regular access mode.
When the offset is greater than three, using the next lined prefetch reduces the prefetch
rate of the regular pattern. Therefore, three was chosen as the critical point to determine
whether the prefetch engine was used or not. The prefetch operation method is shown
in Algorithm 1. When the offset number of the last entry requested is fewer than three,
according to the principle of time and space limitations, the prefetch table does not perform
pattern recognition. Instead, the next page is directly prefetched.

Algorithm 1: Next Lined Prefetching Algorithm.

//Step 1:
for offset in Entry table

find offset size

//Step 2:
if offsetSize < 3

Offset x← Last offset x
PrefetchAdd← 0

else
PrefetchAdd← Nextline Prefetch(reqAdd)

return PrefetchAdd
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3.5.2. Regular Stride Prefetch Engine

The regular stride prefetch engine also performs pattern recognition based on the
prefetch table. The prefetch operation method is shown in Algorithm 2.

When the offset number of the last entry requested is equal to three, the delta is
obtained. When the last two consecutive deltas are equal, the prefetch engine will perform
the next prefetch according to the increase in the delta.

Once the most recent memory request offset surpasses three offsets within the entry,
the recognition phase for the memory access pattern is triggered, and it utilizes the last four
accessed offsets in the entry of the memory address that caused the phase. If the three deltas
in the last four consecutive memory accesses are identical, the previous prefetch strategy is
used to generate a prefetching candidate. Otherwise, the interval will be obtained; if two
of the three deltas are the same within the interval, the prefetching interval will be increased.

Algorithm 2: Regular stride prefetch engine.

//Step 1:
for offset in Offset table

find last offset size

//Step 2:
if offsetSize == 3

Delta[i] = offset[x-i] − offset[x-i-1]
if Delta [0] = Delta [1]

PrefetchAdd← reqAdd + Delta [0]

//Step 3:
else

DeltaInter[i-1] = Delta[i] − Delta[i-1]
if Delta [0] == Delta [1] && Delta [1] = Delta [2]

PrefetchAdd← reqAdd + Delta [0]
else if DeltaInter [0] == DeltaInter [1]

PrefetchAdd← reqAdd + Delta [0] + DeltaInter [0]
return PrefetchAdd

3.5.3. Optimized LWR Prefetch Engine

When the prefetch table cannot be used for regular pattern recognition, the arbiter
uses an irregular prefetch engine for prefetching. The irregular prefetch engine searches
for frequently accessed data in the prefetch table, specifically targeting the entry with the
highest number of offsets to retrieve the most commonly used data. Using linear regression
to obtain an optimal regression coefficient vector w enables the prediction of the value of y
through the corresponding expression as follows:

y = ax (2)

Consequently, we obtain value a through the least square method and Gaussian
erasure, followed by the prediction of the next value y. First, we look for the one with the
most offsets in the entry table, and then arrange them in order, where x is the sequential
address, and the y-axis is the offset value; thus, the sequences of x and y can be trained
as a set (x, y); then, the regression algorithm is used to obtain the regression coefficient F,
and the next step is to prefetch the next F(n + 1). The above is a simple linear regression
algorithm, but in fact, most data may not be described by a linear model, and it is possible
that not only can they not fit all data points well, but that the error is also very large. To
solve the problem of a non-linear model building a linear model, when the value of a point
is predicted, the point close to this point was chosen instead of all points. Based on this
idea, a locally weighted regression algorithm was developed, where the closer the others
are to a point, the greater the weight, and the greater the contribution to the regression
coefficient.
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For the above algorithm, optimization operations were performed for special scenarios.
When the predicted value of a certain y is obtained, the regression coefficient w is needed,
but for the data in the sample, the closer the distance x is, the larger the value is. If the
distance is farther, it gives a small weight, which makes the predicted value y’ for x more
suitable for the sample data.

To choose the right weight, a higher weight of the sample point from a given x is
needed. LWR uses the kernel to give higher weight to the nearby points, with the most
commonly used method being the Gaussian kernel function, which corresponds to the
following expression:

ω(x, i) = e−
(x−xi)

2

2k2 (3)

It can be seen from the formula that if the distance between x and xi is smaller, ω
will be larger. However, because the x-axis is arranged in the order of visits, it has no
reference value; therefore, for application, x is changed to y; that is, the new expression is
the deformed Gaussian kernel function that can be expressed as:

ω(y, i) = e−
(y−yi)

2

2k2 (4)

After weighting each point, the regression algorithm is executed to obtain F(n), and
F(n + 1) is then prefetched. The prefetch operation method is described in Algorithm 3.

Algorithm 3: Optimized Linear Regression Engine.

//Step 1:
for address in Entry table

if offsetTable[i].dataSize > offsetSize
offsetEntries← offsetTable[i]

//Step 2:
x← i+1
y← offset[i]Value
cc← calCC(offsetEntries)
∆offset = offsetTable.max - offsetTable.min
k← calK(cc, ∆offset, pageSize) //function 5
weight[i]← calWeight(y[i], y[maxNum], k) //function 4

//Step 3:
//find regression coefficient
sortAscendingOrder(sortArray, offsetTable[i])
y[i]← weight[i] * y[i]
coefficient← calRegressionCoefficient(sortArray)

//predict offset
predictOffsetValue(coefficient, offsetSize + 1)
PrefetchAdd← entryTable[i] + predictedoffset

return PrefetchAdd

3.5.4. Adaptive Hyperparameter Setting for Gaussian Kernel

In weight function (4) in Algorithm 3, yi is the center of the kernel function. As a
hyperparameter, k controls the radial range of the radial basis function, that is, the data
width. However, due to the different amounts of data in each entry, the value of k may
cause side effects. If the data width is too large, the drop gradient of weights will disappear
in the entry with smaller offset differences. Meanwhile, if the data width is insufficient,
the group with larger offset differences and more samples will have a high percentage of
weights close to 0. Therefore, a fixed k value cannot be applied well to all entries. It is
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necessary to design an adaptive dynamic k-value algorithm to match all entries in different
situations.

We described the design and functionality of the history table in Section 3.4. As shown
in Figure 4, each entry can cover a memory address space of 218. To determine the data
width of the Gaussian kernel, we first calculate the difference between the highest offset
and the lowest in the entry. Then we take the page size set by the system as the step
size to calculate the preliminary data width. The amount of the address space covered
by the sample is not the only factor that needs to be considered. The degree of linear
correlation between the data is also a decisive factor affecting the weight distribution. The
more obvious the linear features, the higher the confidence in the data acquisition weights.
Therefore, we introduce the linear correlation coefficient (cc) as an activation function to
dynamically adjust the weight assignment more finely. The detailed function is as follows:

k = cc
(ymax − ymin)

2pageSize
(5)

4. Evaluations

This section presents the workload characteristics and simulation configurations.

4.1. Workload Characteristics

In this section, we conduct the performance evaluation with the GraphBig benchmark
suite and five selected representative graph processing kernels (workloads) including
breadth-first search (BFS), connected component (CCOMP), degree centrality (DCentr),
triangle count (TC), and PageRank (Prank). The BFS algorithm is widely used to traverse a
graph’s vertices for various purposes in graph-based computing, whilst the CCOMP is also
implemented based on the BFS traversal operation. DCentr is a graph centrality algorithm
which is used to analyze social network graphs. Furthermore, the PageRank algorithm
is used to enhance the accuracy of the web search engine by Google Search to rank the
priority and importance of web pages.

Table 2 presents the basic usage of the graph processing workloads and the structure
with memory access patterns. As shown in Table 2, irregular memory access patterns are
prevalent in graph processing applications.

Table 2. Workloads of Graph Processing.

Workload Computation Type, Feature, Use Case

BFS
Graph traversing algorithm, indirect memory access

patterns (e.g., irregular, read-intensive memory requests),
similarity search and finding maximum flow

Connected component (CCOMP) Connectivity computation for graphs, irregular memory
access with read-intensiveness, social graph analysis

Degree centrality (Dcentr) Connectivity computation for graphs, indirect and
irregular memory accesses, social graph analysis

Shortest (SPath)
Finding global optima algorithm for graph structure,

indirect memory accesses with read-intensive
characteristics, street navigation

Page Rank (Prank)
Iterative computations for graph analysis,

Compute-intensive with indirect memory requests,
prioritizing web pages

To gain a better understanding of memory localities, we graphically analyzed the
memory access patterns of each graph processing workload based on our memory access
traces. Figure 6 illustrates the graph processing based on 1 million cache misses from
the last-level cache (LLC) to the main memory system. The visualization on the x-axis,
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representing the data accessing sequence over time, and the y-axis, representing the memory
address, shows that the access patterns of graph processing are heavily irregular, covering
a wide range of memory space.
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In addition, the program for generating benchmarks is LDBC [4], which was used to
generate the graph structure data including nodes, edges, and connection information, and
the vertex and edge sizes were 1 and 28.82 MB each for generating data.

4.2. Simulation Configurations

The proposed model was evaluated by our in-house trace-driven memory system
simulator, which needed memory traces. Hence, we employed Pin-3.0 [8] to gather memory
traces by running ×86 applications directly upon our host environment. Moreover, the
generated trace is also suitable for measuring multicore-based environments. Table 3
presents the configuration details of our proposed model. The simulator used in our
experiments was equipped with four cores, each running at a frequency clock of 4.0 GHz.
The private L1 instruction and data caches had a capacity of 32 KB per core, and were
organized as an 8-way set associativity structure with a 64-byte cache-line size. The private
L2 unified caches had a capacity of 256 KB per core, and were organized as a 4-way set
associativity with a 64-byte block size. Finally, the shared L3 unified caches had a capacity
of 8MB per core, and were organized in a 16-way set associativity with a 64-byte block size.

Our proposed hybrid main memory model is comprised of a small DRAM module
(128 MB) and a larger PCM module (2 GB), both based on fully associative organization
with a 4 KB page granularity. Both memories adopt an LRU page replacement policy to
swap pages between DRAM and PCM devices. A prefetch buffer is present for prefetching
data from the hybrid main memory to the last-level cache layer, with the DRAM buffer
having a capacity of 16 MB to store prefetching addresses generated by prefetch engines.
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Table 3. Graph Processing Workloads.

Processor Quad-Cores, 4 GHz

L1 Instruction Cache (per core, private) 32 KB, 8-way set associativity, 64-byte cache line size,
LRU replacement

L1 Data Cache (per core, private) 32 KB, 8-way set associativity, 64-byte cache line size,
LRU replacement

L2 Unified Cache (per core, private) 256 KB, 4-way set associativity, 64-byte cache line
size, LRU replacement

L3 Cache (LLC) (per processor, shared) 8 MB, 16-way set associativity, 64-byte cache line
size, LRU replacement

DRAM Buffer 16 MB, fully associative, 4 KB page size (managed as
page-granularity), LRU replacement

DRAM 128 MB, fully associative, 4 KB page size (managed
as pagegranularity), LRU replacement

PCM 2 GB, fully associative, 4 KB page size (managed as
page-granularity), LRU replacement

The prefetch table consists of an entry table and an offset table, with 64 entries in the
former, each containing an entry memory address, a prefetch address value, and a prefetch
hit count. The entry table has a capacity of 6.4 KB, with each entry having a capacity of
100 bits (46 bits + 32 bits + 32 bits). The offset table comprises 256 entries, each with an
18-bit offset bit, and has a capacity of approximately 4.6 KB, resulting in a total prefetch
table size of around 11 KB. The entry table uses the LRU replacement policy, while the
FIFO replacement policy is employed for the offset table. Table 4 outlines the simulation
parameters employed to assess the efficacy of our prefetcher-based model compared to
other prefetcher-based hybrid main memory architectures [21,22].

Table 4. Simulation Parameters.

Parameter DRAM PCM HDD

Write latency 20–50 ns 1 ns 5 ms

Read latency 20–50 ns 50 ns 5 ms

Write energy 1.2 J/GB 6 J/GB 65 J/GB

Read energy 0.8 J/GB 1 J/GB 65 J/GB

Idle power 100 mW/GB 1 mW/GB 10 W/TB

Density 1× 4× N/A

Cost 4× 1× N/A

4.3. Performance Evaluation

To measure the performance of the proposed model, some analyses on the impact
of the offset sizes, the hybrid main memory size, the DRAM buffer size, and the types of
regression prefetch engine, access latency, total hit rate, and energy consumption were
carried out.

4.3.1. Optimal Size of Hybrid Main Memory

This section provides a comprehensive analysis and comparison of the performance of
our proposed prefetching model with traditional model and other state-of-the-art prefetch-
ing models in the context of hybrid main memory. The main objective is to assess and
evaluate the effectiveness and efficiency of our proposed prefetching methods and to
demonstrate their superiority over existing models.
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To obtain the optimal size of the mixed main memory, a scalability evaluation was
performed. Four different sizes of DRAM (64, 128, 256, and 512 MB) and four different
sizes of PCM (1, 2, 3, and 4 GB) were mixed and evaluated, but the size of the prefetch
buffer was fixed as 15 MB.

Figure 7 displays the results of our evaluation regarding the execution times for
different configurations of DRAM and PCM sizes. As the size of the PCM and ratio to
DRAM buffer increases, the execution time decreases. Nonetheless, when the capacity of
the PCM was changed from 1 to 2 GB, it showed the largest reduction in execution time
compared to other hybrid main memory configurations. When holding the PCM capacity
constant, the execution time exhibited a decrease with increasing DRAM size. However,
as the capacity increases, the execution time reduction rate of the DRAM is significantly
lower than that of the PCM. Therefore, according to the change in the PCM capacity, the
execution time showed the greatest reduction rate.
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The 2 GB PCM capacity of the recommended model with the largest reduction in
execution time rate was selected. In the above experiment, considering the cost of DRAM
(4×) compared with PCM and the ratio of DRAM size to PCM size, the 128 MB DRAM
capacity of the recommended model was selected. Therefore, the capacity of the 128 MB
DRAM and 2 GB PCM was finally selected as the optimal mixed main memory size for the
performance evaluation of the proposed model.

4.3.2. Optimal Size of Dram Buffer

In this experimental study, our objective was to optimize the DRAM buffer size
through an analysis of the changes in execution time and energy consumption for a range
of DRAM buffer sizes. We configured buffer sizes of 2, 4, 8, 16, and 32 MB and plotted
the overall execution time for the hybrid main memory system with different buffer sizes,
as shown in Figure 8. We observed a steady decrease in execution time as the buffer size
increased, on the average.

Based on our evaluations, we determined that a buffer size of 16 MB offers the ideal
trade-off between system performance and cost efficiency for our proposed model with
hybrid memory configurations. This was determined by analyzing the execution time for
buffer sizes ranging from 2 to 32 MB, where the execution time steadily decreased as the
buffer size increased, as shown in Figure 8.
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4.3.3. Optimal Size of Offset

To determine the optimal size for offset, we conducted an evaluation with various
configurations to select the optimized capacity of DRAM buffer by measuring the enhance-
ment in the execution time based on the varying offset sizes. As the memory mode can
only be recognized when the offset is greater than three, the minimum representative of
the offset chosen was five, with the offset sizes tested being for 5, 10, 15, 20, and 25.

Figure 9 presents the execution times for different offset sizes. As the size of the offset
increases, the execution time decreases; however, when the offset size was 15, it exhibited
the greatest reduction in execution time compared with other offset sizes, indicating that it
was optimal.
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4.3.4. Optimal Size of DRAM Buffer

This section presents a scalability evaluation that is conducted to obtain the optimal
DRAM buffer size for the regression prefetcher of the hybrid main memory system. Three
different regression preferences were evaluated. We conducted a comparative evaluation of
various representative regression algorithms on traditional DRAM models to assess their
performance. Specifically, we configured the proposed models in DRAM-based models,
considering the cost and density aspects, as shown in Table 4.

As illustrated in Figure 10, we evaluated the total execution times of our benchmark
applications using various regression prefetchers. The conventional (CONVEN) was tested
without any prefetchers as the control group. It can be seen from the figure that, to a certain
extent, neither the conventional LWR nor polynomial regression (Polyn.) can match the
performance with the optimized adaptive algorithm we proposed. The test results show
that our model has approximately 2–3% performance improvement compared with only
other regression prefetching. Hence, by conducting an in-depth analysis of the execution
time with respect to various regression algorithms, we were able to determine the optimized
regression prefetcher with the optimal capacity.
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4.4. Overall Performance Analysis

To validate our proposed model, we conducted a comparison between various prefetch
methods, such as GHB, SMS, AMPM, Best-Offset, which are recognized as one of the state-
of-the-art prefetchers, and Dynamic Recognition (DynamicR) [7,13,17]. In addition, we
employed the LRU policy as the common cache replacement policy for all the models.

As shown in Figure 11, our proposed model outperformed all other compared models
in execution times for all workloads that we have evaluated. Specifically, for the conven-
tional DRAM model, our proposed model demonstrated a significant improvement of 56%
in the execution time.
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Our proposed model outperformed the conventional prefetching models, achieving a
16% and 15% improvement in execution time over GHB and SMS, respectively. In addition,
compared to AMPM and Best-Offset, the proposed model exhibited a 5% and 6% improve-
ment in execution time, respectively. Notably, the proposed model demonstrated superior
performance in execution time for both the degree-centrality (DC) and triangle-count
(TC) workloads, which involve complex memory streams and intensive memory requests.
Even with the advanced DynamicR prefetch engine, the performance improvement was
about 3%.

Figure 12 presents a detailed comparison of energy consumption for various prefetcher-
based hybrid main memory models, including our proposed one with various traditional
prefetcher-based models. The experimental results indicate that our proposed model sur-
passes other comparable models through all workloads. The proposed model shows a
57% improvement in energy consumption compared to the conventional DRAM model.
In comparison to existing prefetching models, the proposed model significantly surpasses
their energy consumption performance, exhibiting a 16% and 15% better performance
than GHB and SMS-based models, respectively. Furthermore, the proposed model out-
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performs AMPM and Best-Offset prefetcher-based hybrid memory models, with 5% and
5.5% lower energy consumption, respectively. Moreover, the proposed model demonstrates
superior energy efficiency compared to hybrid memory system models based on previous
prefetchers, such as the AMPM and Best-Offset prefetchers, with a reduction in energy
consumption of 5% and 5.5%, respectively. Overall, the proposed model showcases the best
energy consumption performance among the evaluated models for the TC workload. Even
when compared to the most advanced DynamicR prefetch engine, the proposed model
demonstrates a 2% improvement in energy consumption, emphasizing its efficiency in
terms of power consumption.
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Figure 13 compares the total hit rates of various prefetching methods, including our
proposed model. The results show that our model outperformed conventional hybrid
memory models based on various prefetchers, achieving an approximate 5% improvement
compared to the conventional DRAM model. Our proposed model also achieved, on aver-
age, 2% improvement compared to other advanced models in terms of hit ratios. Notably,
even the most advanced DynamicR prefetch engine only exhibited an improvement of
approximately 0.3%, highlighting the significant effectiveness of our proposed model in
improving hit rates.
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The advanced point of our prefetch model had three primary reasons:

1. From a global perspective, pattern recognition was performed for different patterns,
and three different prefetch engines were designed.

2. Local linear regression was optimized and improved, and an intelligent regression
algorithm for memory prefetching in irregular patterns was proposed.
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3. Several experiments were performed to choose the most suitable parameter configu-
ration.

In conclusion, the proposed model demonstrated superior performance compared to
previous models due to its intelligent linear regression prefetching schemes.

5. Conclusions

Our research introduces an optimized regression algorithm-based approach to enhance
the hybrid main memory architecture, based on DRAM and PCM technologies specifically
designed to accelerate graph-processing applications. By implementing a prefetching mech-
anism to hybrid memory systems, our proposed model efficiently places the required data
into the DRAM buffer, resulting in improved average memory access latency for irregular
memory requests from indirect and linked-list-based graph data structures. Conventional
prefetching methods often struggle to generate appropriate prefetching candidates for
the irregular memory access streams from graph processing workloads by detecting their
patterns. To solve the irregularity of memory access patterns, next-lined, regular stride, and
optimized linear regression prefetch engines were used to prefetch and switch appropriate
prefetch engines. Based on our simulation-based evaluations, the proposed model utilizes
the DRAM buffer-based DRAM-PCM hybrid main memory architecture and its optimized
prefetching engine outperforms both conventional and other hybrid main memory models
that are based on existing conventional prefetchers in terms of improved performance and
energy efficiency.

The proposed scheme demonstrated a 56% and 57% better execution time and energy
consumption, respectively, than the conventional DRAM model. Our proposed model
surpasses other advanced models with a 12% improvement in execution time and a 9%
improvement in energy consumption. Furthermore, it outperforms DynamicR by 3% in
execution time and 2% in energy consumption. Moreover, it was also able to improve
the hit rate by 2% on average. Thus, the proposed regression algorithm can improve
the execution performance for graph-processing algorithms, incorporating key big-data
processing characteristics.
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