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Abstract: Currently, many problems such as variable signal resources, complex execution environ-
ments, and low efficiency of scheduling algorithms are faced by heterogeneous signal processing
platforms. The task scheduling algorithm is one of the key factors that directly affect the performance of
the processing platform. In order to solve the problems of low efficiency of task scheduling algorithms
and high computational cost of processors, a heterogeneous platform scheduling algorithm based on
the quantum genetic algorithm is proposed in this paper. The algorithm constructs a task scheduling
model by using a directed acyclic graph. This paper quantifies the mapping relationship between
the quantum genetic algorithm and task scheduling. It corresponds qubits to binary, chromosomes
to processor numbers, and individuals to processor scheduling strategies. In this paper, a new way
of coding chromosomes using quantum coherence properties is designed to reduce the population
size and increase population diversity. Crossover operations are performed on all individuals using
full-interference crossover to avoid the results falling into local optimal solutions. The population of
slow convergence is solved by implementing mutation operations on populations through quantum
rotation gates. In addition, a task pre-ordering stage is designed based on the table scheduling algo-
rithm. The task scheduling priority developed at this stage is used as the reference value for the initial
encoding of the population, so that the search space for solutions is reduced. Finally, experiments are
conducted using randomly generated task graphs. The algorithm is compared with improved genetic
algorithms and existing intelligent scheduling algorithms. The results show that the algorithm can still
obtain better results when the number of populations and iterations is small. It is more appropriate for
heterogeneous platforms and computation-intensive tasks.

Keywords: heterogeneous platform; qubit; full-interference crossover; quantum rotation gate;
quantum genetic algorithm; computation-intensive

1. Introduction

The heterogeneous signal processing platform is a comprehensive processing platform
that integrates processing units from a variety of different architectures. Due to its rich
hardware and software resources, high degree of heterogeneity, parallelism, and efficiency,
it is widely used in signal processing. How to rationally allocate tasks to processing units
with different computational power to achieve the shortest schedule length is one of the
key issues affecting the performance of heterogeneous systems. This problem has been
proven to be NP-hard [1]. Currently, task scheduling techniques are mainly modeled by
the directed acyclic graph (DAG), which simulates tasks with different communication
dependencies and different computational requirements. However, with the rapid devel-
opment of wireless communications and the Internet, the size of the signal continues to
grow. As a result, the number and complexity of tasks after DAG abstraction is increasing.
Therefore, designing a reasonable and effective scheduling algorithm will greatly improve
the computational performance of the heterogeneous platform.
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1.1. Research Status

According to literature studies, scheduling algorithms are mainly proposed based
on heterogeneous computing systems. It has received widespread attention from the
academic community for its ability to perform large-scale scientific computing, information
processing, and data services at low cost and high efficiency. Scheduling algorithms
can be categorized in a variety of ways, such as task scheduling procedures, types of
goals, or mathematical models and research methodologies. Examples include random
and non-random scheduling, static and dynamic scheduling, and scheduling with no
deadline constraints and with deadline constraints [2]. Traditional scheduling algorithms
are mainly list-based scheduling algorithms, clustering-based scheduling algorithms, and
task replication-based scheduling algorithms. Heterogeneous earliest finish time (HEFT) [3]
and dynamic level scheduling (DLS) [4,5] are the most representative. While traditional
scheduling works well for smaller tasks and data handling, the rapid development of 5G
and artificial intelligence makes traditional scheduling no longer applicable. Scheduling
algorithms based on artificial intelligence are constantly being proposed. For example,
to generate a predictive scheduling scheme for the early detection of faulty machines,
Paprocka et al. [6] proposed an algorithm based on ant colony optimization. To improve
task allocation schemes, Sanabria et al. [7] used deep reinforcement learning. Gao [8]
introduced machine learning to heterogeneous computing systems, aiming to accelerate
platform execution through neural networks and multilayer perceptron. Although AI-
based scheduling algorithms have been extensively researched and applied in various
scenarios, their drawbacks include not accurately reflecting the internal connections in the
task graph and longer model training time. Due to the limitations of traditional scheduling
algorithms and AI-based scheduling algorithms, combinatorial optimization algorithms
have gained a lot of attention. This is because the strengths of several algorithms are used to
complement one another. Among them, due to genetic algorithms’ mature technology and
ease of operation, they are widely used in multi-objective optimization, detection accuracy
improvement, job shop scheduling, and cloud computing task scheduling [9–12].

In recent years, the problem that genetic algorithms tend to stick to locally optimal
solutions and converge slowly has been investigated using quantum computing. Quantum
genetic algorithm (QGA) is an improvement of traditional genetic algorithms that uses
qubits, quantum coherence, quantum rotation gate, and more. For example, Chen et al. [13]
used chaotic sequences to update the quantum rotation gate. Gandhi et al. [14] improved
genetic algorithms based on revolving door refinement to improve scheduling efficiency in
distributed systems. Alam et al. [15] improved the efficiency of bi-objective load balancing
scheduling based on the quantum genetic algorithm. Konar et al. [16] improved quantum
genetic algorithms using random key distribution to improve scheduling efficiency in a
multi-processor environment. To speed up the convergence of the algorithm, Guo et al. [17]
improved the population structure of the QGA based on small-world theory to improve
the algorithm’s performance. Teng et al. [18] improved the QGA by using mutative scale
chaos optimization, which accelerated the algorithm’s convergence speed and improved
solution accuracy. Chang et al. [19] used cellular automaton to update the population
in the quantum genetic algorithm. This improved the convergence and accuracy of the
algorithm for multi-objective functions. Zhu et al. [20] introduced multi-subpopulations
to improve the encoding stage of the QGA, which improved the algorithm’s performance
in optimizing benchmark functions. Ni et al. [21] improved the coding stage of the QGA
by using the phases in the niche technique, which improved the algorithm’s ability to
optimize multi-peak functions. Zhao et al. [22] used QGA to optimize the radio parameters,
obtaining a better solution early in evolution and reducing execution time. Pitchai et al. [23]
used a discrete quantum walk to replace the cross-mutation process in the quantum genetic
algorithm, improving the algorithm’s ability to solve the 0-1 quadratic knapsack problem.
The QGA is found to have higher performance and faster convergence through research.
However, much of the research has only improved the QGA itself, or applied it to solving
function optimization or knapsack problems. There has been very little application of the
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algorithm to engineering practice. Based on this research, the paper applies the QGA to task
scheduling of heterogeneous systems and proposes a scheduling method for heterogeneous
signal processing platforms based on the quantum genetic algorithm (HPS-QGA).

1.2. Main Work and Contribution

We first modeled the task scheduling in heterogeneous signal processing platforms.
Then the mapping relationship between the quantum genetic algorithm and scheduling
strategies in the heterogeneous platform were established. Finally, the algorithm was tested
in multiple groups using randomly generated task graphs to confirm the efficiency and
applicability of the algorithm.

The main contributions of this paper are as follows:

1. Quantum bits are mapped to the “0” and “1” codes in the binary. We transform
the task scheduling problem in the macro to the optimization problem in the micro.
The chromosome encoded by quantum bits is mapped to the serial number of the
processor, and each individual represents a processor scheduling strategy.

2. According to the quantum coherence, a new type of crossover is introduced—the
“full- interference crossover”. It achieves crossover operations for all individuals in
the population and solves the problem of getting stuck in a local optimum solution.

3. Based on the data flow of the components in the task scheduling model, we have
designed a task pre-sorting stage. The initial chromosome is encoded in conjunction
with the task scheduling strategy in task preordering. It reduces the search space of
the solution and improves performance.

1.3. Paper Organization

The rest of this article is organized as follows: Section 2 presents heterogeneous
platform scheduling models. Section 3 details the methods for establishing the mapping
relationship between quantum genetics and task scheduling, including operations such as
encoding and decoding, cross mutation, etc. Section 4 presents the results of the comparison
experiments using the HSP-QGA algorithm. Section 5 presents the conclusions, which
include the limitations of the study and further work.

2. Platform Scheduling Model

The heterogeneous signal processing platform scheduling is greatly affected by the
correlation between components, and the communication between heterogeneous proces-
sors, so its model mainly includes the task model and the target platform hardware model.
A reasonable and effective scheduling model can greatly improve the performance of the
target platform [24].

2.1. Heterogeneous Signal Processing Platform

The heterogeneous signal processing platform is a common platform consisting of
modular, standardized, and universal hardware units connected by bus or switch. Various
signal processing functions are implemented by loading reusable, portable, scalable, and
easily upgradable standardized software modules on the platform. Heterogeneous signal
processing platforms adopt common high-performance hardware platforms in hardware
architecture, such as ATCA, CPCI, VPX, etc. A large number of different types of processors
in the platform, including FPGA, DSP, GPU, GPP, etc. In the software architecture, we build
a standardized and regulated hierarchical new software architecture. The difficulty of the
cross-platform operation and portability of components in heterogeneous platforms is solved
by shielding the differences between the underlying layers through system abstraction.

The software architecture of a heterogeneous signal processing platform is mainly
divided into a hardware platform layer, an operating system layer, a driver abstraction
layer, a core framework layer, a management service layer, and an application layer. The
operating system layer and the driver abstraction layer belong to the operation support
service layer, which can shield the underlying processing unit from hardware differences
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in the operating system, communication, memory, and file operation, and provide a uni-
fied and standardized interface for the upper layer. The core framework layer is based
on the container technology (including FPGA container, process container, thread con-
tainer, etc.) to shield differences in processor task scheduling and implement application
component-based scheduling services. The management service layer includes system
operation management environment and visual development management to improve
the visibility and portability of application development. The application layer includes
the component library and the application console, which are responsible for completing
the signal processing function. The software architecture of the heterogeneous signal
processing platform is shown in Figure 1.
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2.2. Platform Task Model

DAG is usually used to describe the task scheduling model in heterogeneous plat-
forms, where each node represents a task component and each directed edge represents
a communication link between components. The platform task scheduling model is con-
structed as G = {V , E, W , C}, where V = {v1, v2, v3, · · · , vn} is the set of all tasks in the
scheduling processing system; E =

{
e12, e23, · · · , eij

}
represents the set of communication

links between associated tasks, eij = (vi, vj) represents the communication edge between
tasks vi and vj, and vi is the parent task of vj; W = {w1, w2, · · · , wn} represents the set
of computing costs for any executed task; C

(
vi, vj

)
represents the communication cost of

data transmission between tasks. If any two tasks (vi and vj) are assigned to the same node
(on the same processor), the communication cost Cij is 0. Figure 2a shows a DAG with
10 components. Numbers in nodes represent tasks’ serial numbers, orange numbers next to
nodes represent tasks’ computing overheads, and blue numbers on communication edges
represent tasks’ inter-task communication overheads.
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The hardware resource architecture is abstracted as N = {P, H, R, T} by an undi-
rected graph, where P = {p1, p2, · · · , pk} is the set of processors; H is the feature of
the processor, including the main frequency, cache, communication bandwidth of the
processor; R =

{
r1, r2, · · · , rg

}
is the processing ability of processors; T is the com-

munication bandwidth between processors. This paper simplifies the communication
bandwidth between processors to be 1. Figure 2b shows a processing system model with
four heterogeneous processors.

3. HSP-QGA Algorithm Design
3.1. Algorithm Analysis

The traditional genetic algorithm is based on Darwin’s theory of biological evolution.
It is a mathematical optimization technology based on a biological model that enables the
evolution of populations through reproduction, variation, competition, and selection. The
operation flow is shown in Figure 3.
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In order to improve the efficiency of heterogeneous platforms, this paper designs the
HSP-QGA with improvements to the genetic algorithm using qubits and quantum rotation
gates, and scenario adaptation. The core framework consists mainly of two parts: the task
preordering phase and the quantum genetic optimization stage, shown in Figure 4.
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In the task pre-ranking stage, the rank of tasks in the table scheduling algorithm is
used to recursively calculate the priority value of each task in the heterogeneous system,
shown in Formula (1). Then all tasks are sorted in descending order according to the rank
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value, and the scheduling strategy of the processor in the system is obtained by the table
scheduling algorithm.

rank(vi) = wi + max
vj∈succ(vi)

(ci,j + rank(vj)) (1)

where wi represents the average computational cost of task vi, succ(vi) represents the set of
successor nodes (tasks) of vi, cij represents the average communication cost between task vi
and vj. The calculation method is as follows (2).

cij = (
n−1

∑
m = 1

n

∑
s = m+1

ci,j/qk, f )/(p× (p− 1)/2) (2)

where qk, f represents the number of communication paths between processors k and f, and
p represents the number of processors.

For example, we can sort the tasks shown in Figure 2a to obtain the scheduling list
shown in Table 1.

Table 1. Task scheduling priority sample table.

Task v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
Rank 94 64 45 67 70 65 46 35 42 15
Order 1 5 7 3 2 4 6 9 8 10

In the quantum genetic optimization stage, based on the initial scheduling policy
of the processor obtained in the task pre-ordering phase, the initial scheduling policy is
encoded by using qubits to obtain the initial individuals and population. This avoids
the unpredictability of randomly generated initial populations and reduces the search
space for understanding. The results are kept from falling into a local optimum by a full-
interference crossover. The quantum rotation gate is used to make the population evolve in
the direction of greater fitness, while accelerating the convergence of the solution. Finally,
an approximate optimal solution is obtained with the objective of minimizing the earliest
completion time in the solution space provided by this algorithm.

3.2. Algorithm Design
3.2.1. Chromosome Coding

In the HSP-QGA, the chromosomes of individuals are encoded by qubit. Unlike the
binary, gray, and real number methods used in the traditional GA, the qubit is a two-state
quantum system. It can be formed using a standard orthogonal basis {|0〉 , |1〉} [25] in
addition to residing in the superposition state, thus increasing the amount of information
carried by the chromosome, shown in Formula (3). In addition, “0” represents the spin-
down state, “1” represents the spin-up state, “|〉” represents a quantum state, α, β represents
probability amplitude pair, which exists in the plural, and

∣∣α∣∣2+∣∣β∣∣2 = 1 . |α|2 and |β|2
represent the probabilities of “0” and “1” states, respectively.

|ϕ〉 = α|0〉+β|1〉 (3)

In this paper, the existing large and complex quantum coding approach is mapped in
a reasonably simplified way [26]. Denote each chromosome as a processor serial number
and each individual as a processor scheduling strategy. Each individual is composed of n
chromosomes, and the number of chromosomes equals the total number n of tasks in the
heterogeneous system. Each chromosome can be represented by m quantum genes, and

each quantum gene is represented by
(

α
β

)
where m =

⌈
logp

2

⌉
, “p” means the number

of processors in the system, and “d e” means rounding up. As shown in (4), S represents
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a chromosome code consisting of m quantum genes. As shown in (5), I is described as a
quantum-coded individual in which each chromosome is represented, as shown in (4).

S =

(
α11 α12 · · · α1m
β11 β12 · · · β1m

)
(4)

I = (S1 S2 S3 · · · · · · Sn) (5)

3.2.2. Chromosome Decoding

As |α|2 and |β|2 tend to 0 or 1, each quantum gene bit will converge to a single state.
Thus each quantum gene can eventually tensor to 0 or 1, which can be abstracted into
the “0” and “1” codes of the binary string in the mathematical model. In the decoding
process, using this mapping relationship, each quantum gene is decoded as 0 or 1, and each
chromosome is decoded into a binary string of length m. By converting the binary string to
a real number so that each chromosome represents a real number, i.e., a processor serial
number. Finally, a processor scheduling strategy of n length is obtained by fully decoding
quantum individuals. According to this decoding method, all individuals in the population
are decoded.

To better describe the problem of chromosome coding and scheduling strategies, we
have mapped quantum genetic algorithms and task scheduling, as shown in Table 2. Let
us assume that there are 4 processors, numbered from 0 to 3. The number of tasks is five,
and the number of chromosomes is also five according to the chromosome coding process.

The number of quantum genes per chromosome is m =
⌈

log4
2

⌉
= 2.

(
α11 α21
β11 β21

)
denotes

a chromosome encoded by 1 quantum bit. Based on the criterion of
∣∣α∣∣2+∣∣β∣∣2 = 1 , the

initial value of (αi, βi)
T can be set to

(
1√
2
, 1√

2

)T
. The bit coding is converted to binary

coding according to some rules (e.g., generate a random number in the interval [0, 1] and
assign α to 1 if the number is greater than α2). In a binary string, every two neighboring
numbers are converted into real numbers. In the end, two processor scheduling policies
can be generated. For example, scheduling policy 1 is to assign tasks 1–5 to processors with
serial numbers of 1, 3, 1, 0, 2, respectively. With quantum bit coding, we can also see that
two scheduling strategies are generated. Compared to traditional genetic algorithms, this
approach increases the diversity of the population.

Table 2. Mapping table between Quantum codec and task scheduling.

Method of Operation Method of Encoding

Qubit encoding
(

α11 α12 α21 α22 α31 α32 α41 α42 α51 α52
β11 β12 β21 β22 β31 β32 β41 β42 β51 β52

)
Binary encoding

(
0 1 1 1 0 1 0 0 1 0
1 0 0 0 1 0 1 1 0 1

)
Real to binary conversion

(
1 3 1 0 2
2 0 2 3 1

)
Scheduling strategy 1 1 3 1 0 2

Scheduling strategy 2 2 0 2 3 1

3.2.3. Full-Interference Crossover

The crossover operator in the traditional genetic algorithm is limited to two indi-
viduals. When two individuals are the same, the crossover operation no longer works,
and the population diversity decreases. In this paper, a new method: full-interference
crossover is designed using quantum coherence. By crossover of each chromosome (pro-
cessor serial number) in the population, chromosome variation is increased, and results
are prevented from falling into the local optimum. A simplified example is as follows:



Appl. Sci. 2023, 13, 4428 8 of 18

There is a population of five individuals, each with five chromosomes, where I (1)~I (5)
represents the first individual (a processor scheduling strategy), I (1) represents the first
chromosome (processor serial number) in the individual, and other individual manifes-
tations are sub-analogous. The full-interference crossover operation of the population is
shown in Table 3. The first chromosome of each individual remains unchanged. Starting
from the second chromosome, the corresponding chromosomes of all individuals turn
downwards to achieve full-interference crossover operation.

Table 3. Example of full-interference crossover operation.

Example Individual
Chromosome

First Second Third Fourth Fifth

Before full
interference

crossover

1 I (1) I (2) I (3) I (4) I (5)
2 II (1) II (2) II (3) II (4) II (5)
3 III (1) III (2) III (3) III (4) III (5)
4 IV (1) III (2) IV (3) IV (4) IV (5)
5 V (1) V (2) V (3) V (4) V (5)

Afore full
interference

crossover

1 I (1) V (2) IV (3) III (4) II (5)
2 II (1) I (2) V (3) IV (4) III (5)
3 III (1) II (2) I (3) V (4) IV (5)
4 IV (1) III (2) II (3) I (4) V (5)
5 V (1) IV (2) III (3) II (4) I (5)

To illustrate and compare the role of the full interference crossover operation in the
overall algorithm, we visualize the output of the scheduling length for each step in the
algorithm. A scatter plot of the solutions after the full-interference crossover operation in
each generation is shown in Figure 5. The full-interference crossover operation increases the
diversity of the population and provides a sufficiently large solution space at the beginning
of the iteration. A scatter plot of the nodes of the full flow of the algorithm is shown in
Figure 6. Based on the solution space provided by the full- interference crossover operation,
the algorithm accelerates the mutation (evolution) of the population toward the optimal
solution using a quantum rotation gate. The algorithm converges after the 25th iteration.
The full-interference crossover and variance converge to stable values and no longer play a
role in the algorithm.
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3.2.4. Variation Operations

The coding and decoding process shows that each chromosome after decoding (pro-
cessor serial number) corresponds to each chromosome before decoding (qubit matrix). A
mutation operation on the decoded chromosome is equivalent to a mutation operation on
the qubit matrix before decoding. Because of this correspondence, the quantum rotation
gate [27] is introduced to mutate the gene bits (qubits) of the chromosome before decoding.
In contrast to the randomness generated by the variation operation of the traditional genetic
algorithm, the main function of the quantum rotation gate is to make the population mutate
to the current optimal individual obtained. In this way, the optimal solution can be obtained
and the speed of convergence increased. The rotation direction is shown in Figure 7.
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where ∆θ represents the directional rotation angle, α and β represent the direction of 0
and 1 states in the qubit, corresponding to 0 and 1 in the binary string, respectively. The
calculation formula of the quantum rotation gate U(θi) is shown in (6). Where θi represents
the vector rotating to α or β, and the calculation method is shown in (7). The updated

formula of the qubit
(

αi
βi

)
is shown in (8).

U(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
(6)

θi = s(αi, βi)× ∆θi (7)



Appl. Sci. 2023, 13, 4428 10 of 18

[
α
′
i

β
′
i

]
= U(θi)

[
αi
βi

]
=

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

][
αi
βi

]
(8)

In Formula (7), where s(αi, βi) is the direction of rotation and ∆θi is the angle of
rotation, their values are determined according to the calculation rules in Table 4 [28].

Table 4. Calculation rule table of rotation gate.

x(s,i) xbest(s,i) f(x) > f(xbest) ∆θi
s(αi,βi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 NO 0 0 0 0 0
0 0 YES 0 0 0 0 0
0 1 NO 0.04π +1 −1 0 ±1
0 1 YES 0.04π −1 +1 ±1 0
1 0 NO 0.04π −1 +1 ±1 0
1 0 YES 0.04π +1 −1 0 ±1
1 1 NO 0 0 0 0 0
1 1 YES 0 0 0 0 0

In Table 4, x(s,i) is the i-th bit of the binary string encoded by the s-th chromosome
(qubit-coded) of the current individual, xbest(s,i) is the i-th bit of the binary string corre-
sponding to the s-th chromosome of the best individual. f (x) is the fitness function that
represents the reciprocal of the system scheduling length corresponding to the processor
scheduling strategy, as shown in (9).

f (x) = 1/EFT(vexit, pk) (9)

where the independent variable x is the matrix of dimension t× u, t represents the number
of chromosomes, u represents the coding length of each chromosome; vexit is the last task in
the scheduling system; pk is the processor assigned by vexit, k is the real number converted
from binary to decimal in decoding, representing the processor number, as shown in (10).

k =
m−1

∑
i = 0

bi × 2i (10)

Table 4 shows that the fitness value f (x) of the current individual is compared with
the fitness value f (xbest) of the best individual in the population, if f (x) > f (xbest), then
(αi, βi) evolves in a direction that favors the appearance of x(s,i); on the contrary, (αi, βi)
evolves in the direction that favors the appearance of xbest(s,i).

3.3. HSP-QGA Algorithm

The flow chart of the heterogeneous signal processing platform task scheduling algo-
rithm based on the quantum genetic algorithm is shown in Figure 8.
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The main operation flow of the HSP-QGA (Algorithm 1).

Algorithm 1: Main operation process of the HSP-QGA.

Input: DAG graph, population size, iteration times, and binary length
Output: Makespan, speedup, efficiency, and scheduling policy
1: Calculate the rank of each task
2: Generate processor scheduling strategy
3: Population initialization
4: While i < Iteration times:
5: decoding the chromosomes of each individual in the population
6: decode qubits into binary strings according to the scheduling strategy
7: calculate the corresponding real number according to the binary string
8: form a decoded population
9: calculate the fitness of each individual
10: if fitness(current individual) > fitness(best):
11: fitness(best) = fitness(current individual)
12: full-interference crossover operation
13: quantum rotation gate operation
14: i ± 1
15: Record the best fitness in each cycle
16: end.

4. Simulation Experiment and Results Analysis
4.1. Experimental Parameter Setting

The DAG is randomly generated by setting parameters such as task number, com-
munication calculation ratio (CCR) [3], parallel factor, and heterogeneous factor, which
are used for experimentation. The HSP-QGA algorithm is both an improved genetic al-
gorithm and a heuristic algorithm. Since ant colony algorithms are more often used in
heuristic algorithms, we chose the genetic algorithm PA-CGA [29], the ant colony algorithm
ACO [30], and the improved ant colony algorithm ACOQ [31] for comparison experiments
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with the HSP-QGA. To limit the dimension of a task graph in randomly generated DAGs,
set the specific parameters as follows: the parallel factor α = {2, 4, 6, 7}, representing the
number of tasks in each layer of DAG; the heterogeneous factor β = {0.1, 0.35, 0.65, 0.8, 1},
representing the difference in the ability of heterogeneous processors to handle tasks. As
the various DAGs were generated randomly and independently, and the meta-heuristic
algorithm is stochastic in nature, the method of averaging among 100 Monte Carlo runs is
used in this paper. The primary parameter settings of each algorithm are shown in Table 5.

Table 5. Basic parameter setting table of each algorithm.

Algorithm Parameter Numerical Value

HSP-QGA
population size 40

iterations 500

PA-CGA

population size 40
iterations 500

crossover probability 0.35
mutation probability 0.1

ACO

population size 40
iterations 500

α 0.1
β 1
ρ 0.3
Q 1

Q-learning
learning rate α 0.1

discount factor γ 0.8
exploration factor ε 0.05

4.2. Performance Evaluation Indicators

According to the actual working environment and task execution, the task scheduling
needs to meet the following conditions:

1. A task is assigned to work on one processor;
2. The execution cost of all tasks on each processor cannot be greater than the maximum

processing capacity of the processor itself;
3. Tasks on the processor are not allowed to terminate until execution is complete.

We use scheduling length (makespan), speedup, and efficiency as evaluation indicators
to measure the quality of task scheduling in heterogeneous signal processing platforms.

The scheduling length (makespan) reflects the completion time of all tasks on the
platform. The smaller the scheduling length, the shorter the scheduling time for the system
to complete all tasks, as shown in Formula (11).

makespan = EFT(vexit) (11)

where vexit represents the exit node, EFT represents the completion time of the task on the
target processor, and it is the sum of the EST and execution time of task vi, as shown in
Formula (12).

EFT(vi, pk) = EST(vi, pk) + w(vi)/r(pk) (12)

where w(vi) represents the computational cost of the task, r(pk) represents the processing
power of the processor pk, w(vi)/r(pk) represents the execution time of task vi on the
processor pk, and EST represents the earliest start time of the task on the target processor,
as shown in Formula (13).

EST(vi, pk) = max{Available(vi, pk), max
vj∈pred(vi)

(EFT(vj, p f ) + cj,i)} (13)
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where Available(vi, pk) represents the earliest time block that the processor allows task vi
to execute, pred(vi) represents the set of all the predecessor tasks of vi, and cj,i represents
the communication time from task vj (scheduled on the processor p f ) to task vi (scheduled
on the processor pk).

The speedup represents the ratio of the earliest completion time and the scheduling
length of the task execution on a single processor, which can well reflect the algorithm
performance. When the speedup is greater than 1, heterogeneous computing is better than
homogeneous computing, and the larger the speedup, the better. As shown in Formula
(14), where wi represents the computation cost of the i-th task.

speedup =
∑vi∈v wi

makespan
(14)

The scheduling efficiency is the ratio of speedup to the total number of processors,
representing the performance and fitness of the processing platform, as shown in Formula
(15), where p represents the total number of processors in the processing platform.

efficiency =
speedup

p
(15)

4.3. Experimental Analysis and Summary
4.3.1. Comparison Experiment of Algorithm Convergence Speed and Scheduling Length
under the Same Number of Tasks

The experiment is carried out under the same number of tasks, the number of tasks is
20, other relevant parameters are uniformly set to the CCR of 0.5, the number of processors
is 4, and the number of DAGs is 1. As shown in Figure 9, by comparing the four algorithms,
the HSP-QGA algorithm begins to converge at the 27th iteration, and the convergence
speed is the fastest; the scheduling length is 76 when convergence and the scheduling
length is the smallest. Compared to the PA-CGA algorithm, HSP-QGA encodes the initial
chromosome according to the task order, which reduces the search range of initial solution
space. At the same time, it uses full-interference crossover to jump out of the local optimum
quickly and uses the quantum rotation gate to accelerate the overall convergence speed of
the algorithm. Experimental results show that HSP-QGA has the best results in terms of
both scheduling length and convergence speed for the same number of tasks.
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4.3.2. Comparison Experiment of Scheduling Length of Algorithms under Different
Task Numbers

The experiment mainly verifies whether the scheduling result of HSP-QGA is still the
optimal value under different task numbers (number of tasks: 20, 40, 60, and 80). In order
to eliminate the influence of CCR values on the experimental results, smaller and larger
CCR values were set up to carry out the experiments. Other parameters are uniformly set:
the number of DAGs is 1, and the number of processors is 4.

Figure 10a shows the scheduling length of each algorithm when CCR = 0.1 and the
number of tasks is 20, 40, 60, and 80, respectively. The results showed that the HSP-
QGA reduced scheduling length by an average of 12.38% (standard deviation reduced
by 10.6%) compared to the PA-CGA algorithm, 14.86% (standard deviation reduced by
18.9%) compared to the ACOQ algorithm and 20.69% (standard deviation reduced by
23.1%) compared the ACO algorithm. Figure 10b shows the scheduling length of each
algorithm under different task numbers when CCR = 4. The HSP-QGA reduced scheduling
length by an average of 20.47% (standard deviation reduced by 14.7%) compared to the
PA-CGA algorithm, 17.61% (standard deviation reduced by 16.7%) compared to the ACOQ
algorithm, and 24.80% (standard deviation reduced by 14.2%) compared to the ACO
algorithm. The experimental results show that the HSP-QGA has a smaller scheduling
length, whether in the case of CCR less than 1 or CCR greater than 1.
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Figure 10. Comparison of scheduling lengths for different numbers of tasks: (a) CCR = 0.1; (b) CCR = 4.

4.3.3. Experiment on the Effect of Different Tasks on Speedup

The analysis of experiment (2) shows that the scheduling length increases as the num-
ber of tasks increases. It is known that this phenomenon is related to the task scheduling
attribute. But it is unknown whether it is associated with the decrease in algorithm per-
formance caused by the increasing number of tasks. In order to observe the effect of task
number changes on the algorithm performance, this experiment compares and analyzes
the speedup of the algorithm by setting different task numbers (number of tasks: 20, 40,
60, 80). Other parameters are uniformly set: the number of DAGs is 1, and the number of
processors is 4.

The experimental results are shown in Figure 11. When CCR is small (CCR = 0.1)
or large (CCR = 4), the speedup of each algorithm does not decrease with the number of
tasks, indicating that the increase in the number of tasks does not lead to the decrease in
the algorithm performance and that the increase in scheduling length with the number
of tasks in the experiment (2) is caused by the task scheduling attribute. In addition, the
speedup tends to increase as the number of tasks increases. This proves the suitability of the
HSP-QGA algorithm for computation-intensive tasks and its ability to search the solution
space compared to other algorithms. It is observed that the speedup fluctuation of the same
algorithm is slight for different numbers of tasks, and the trend of the line graph is similar
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across the algorithms. Considering that parallel factors (number of tasks per layer in the
DAG) and heterogeneous factors (difference in processing ability between heterogeneous
processors) are selected at random in experimental parameter settings, indicating that
speedup fluctuations in the number of tasks are due to randomness generated by the DAG
graphs. In addition, the speedup of HSP-QGA is more significant than other algorithms for
each number of tasks, which proves that HSP-QGA has better performance.
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4.3.4. Experiment on the Effect of Different CCRs on Speedup

Experiments (1) to (3) show that the HSP-QGA algorithm has obvious advantages in
scheduling length, convergence speed, and algorithm performance in both large and small
tasks. However, in Experiment (3), speedup was significantly different when CCR = 0.1
and CCR = 4 were performed with the same number of tasks in the same algorithm.

In this experiment, we set the same number of tasks, to observe the influence of
different CCR values on the speedup, and compare and analyze the scheduling performance
and applicability of the algorithm. The relevant parameters are uniformly set: the number
of processors is 4, the number of tasks is 20, and the number of DAGs is 2. Experimental
results are shown in Figure 12. When CCR = 0.1, computing costs are much higher than
communication costs, the HSP-QGA has an acceleration ratio of 3.27, 24.3% higher than the
PA-CGA, 29.8% higher than the ACOQ, and 40.9% higher than the ACO. When CCR = 6,
communication costs are higher than computational costs, and the HSP-QGA has an
acceleration ratio of 1.09, which is 13.5%, 11.2%, and 15.9% higher than the other three
algorithms, respectively. When CCR = 8, the communication cost is far higher than the
computation cost, and the acceleration ratio for all algorithms is less than 1. The value
of CCR is usually used to determine the type of task scheduling. Tasks with CCR > 1
are expressed as communication-intensive, and vice versa for computational-intensive.
Experimental results show that the HSP-QGA speedup is larger and performs better when
CCR = 0.1; when CCR = 6, the performance of the algorithm is equivalent to that of a single
machine, but with a slight advantage; when CCR = 8, the algorithm performance is already
inferior to that of a single machine. Although the speedup of HSP-QGA is higher than other
algorithms under different CCR values, the experimental results show that the algorithm is
more suitable for computation-intensive task scheduling.
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4.3.5. Comparison Experiment of Applicability of HSP-QGA in Heterogeneous and
Homogeneous Systems

The above experiments have verified the advantages of HSP-QGA in task scheduling.
To verify the applicability of HSP-QGA to heterogeneous platforms, this experiment is
carried out in heterogeneous and homogeneous systems. Set three data groups with 10,
20, and 30 tasks to test the HSP-QGA algorithm and compare their efficiency. The other
relevant parameters except for the number of tasks in the two systems are set as follows:
the number of processors is 4, CCR is 0.3, and the number of DAGs is 2.

The experimental results show scheduling efficiency in 10, 20, and 30 tasks in hetero-
geneous and homogeneous systems, as shown in Figure 13. When the number of tasks
is 10, the scheduling efficiency of the heterogeneous system is 41.7% higher than that of
the homogeneous system; when the number of tasks is 20, the scheduling efficiency of the
heterogeneous system is 24.8% higher than the homogeneous system; when the number of
tasks is 30, the scheduling efficiency of the heterogeneous system is 43.3% higher than that
of the homogeneous system. Considering the negligible error caused by the difference in
processor release performance and the randomness of generated DAG, the results show
that HSP-QGA is more appropriate for heterogeneous scheduling platforms.
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5. Conclusions

This paper provided a new approach to task scheduling for heterogeneous signal
processing platforms. The main technology of this paper was the adaptation of quantum
genetic algorithms to task scheduling on heterogeneous processing platforms by improv-
ing traditional genetic algorithms through quantum computing. These included qubit
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coding to address the lack of population diversity, full-interference crossover operations
to address the problem of easily falling into local optima, and quantum rotation gates
to address the problem of slow convergence. From the analysis, it could be concluded
that the proposed algorithm had an average reduction in the scheduling length of 14.5%,
an average increase in the convergence speed of 1319.7%, and an average increase in the
speedup of 24.2% compared to other algorithms. The algorithm improved the scheduling
efficiency in heterogeneous systems by an average of 36.6% over homogeneous systems.
Overall, the algorithm offered higher scheduling performance and scenario adaptation for
computation-intensive tasks and heterogeneous systems. However, task scheduling is a
NP-hard problem, and the hardware structure and signal resources of heterogeneous signal
processing platforms are complex. The algorithm in this paper still has some shortcomings
and needs to be improved in practical applications:

(1) When modeling the hardware structure, this paper set the communication transmis-
sion between heterogeneous processors as an ideal state, without considering the
problem of communication competition. However, in the actual platform application,
the transmission bandwidth between processors or boards is different, and the com-
munication competition during data transmission may cause delays. The next step is
to improve and perfect the DAG model and hardware architecture model.

(2) The algorithm proposed in this paper used a large number of binary matrices in
encoding and decoding, which increased the time complexity of the algorithm and
the running time of the system. To solve this problem, we can map the processor
scheduling policy to the vector set. In decoding, the quantum individual is mapped
to a vector, thus a vector set is obtained, which corresponds to a processor scheduling
strategy. Or we can use algorithms that specifically calculate matrix operations, such
as the CORDIC (coordinated rotation digital computer) algorithm instead of quantum
rotation gate operation.

(3) The algorithm proposed in this paper was mainly aimed at computation-intensive
task scheduling, but there are also communication-intensive tasks in signal processing.
We can reduce the communication overhead by task clustering or task duplication.
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