
Citation: Lee, Y.; Kim, J. Robustness

of Deep Learning Models for Vision

Tasks. Appl. Sci. 2023, 13, 4422.

https://doi.org/10.3390/app13074422

Academic Editor: Luis Javier Garcia

Villalba

Received: 9 February 2023

Revised: 10 March 2023

Accepted: 19 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Robustness of Deep Learning Models for Vision Tasks
Youngseok Lee 1 and Jongweon Kim 2,*

1 Department of Electronics, Chungwoon University, Incheon 22100, Republic of Korea
2 Department of AIOT, Sangmyung University, Seoul 03016, Republic of Korea
* Correspondence: jwkim@smu.ac.kr

Abstract: In recent years, artificial intelligence technologies in vision tasks have gradually begun
to be applied to the physical world, proving they are vulnerable to adversarial attacks. Thus, the
importance of improving robustness against adversarial attacks has emerged as an urgent issue in
vision tasks. This article aims to provide a historical summary of the evolution of adversarial attacks
and defense methods on CNN-based models and also introduces studies focusing on brain-inspired
models that mimic the visual cortex, which is resistant to adversarial attacks. As the origination
of CNN models was in the application of physiological findings related to the visual cortex of the
time, new physiological studies related to the visual cortex provide an opportunity to create more
robust models against adversarial attacks. The authors hope this review will promote interest and
progress in artificially intelligent security by improving the robustness of deep learning models for
vision tasks.

Keywords: deep learning model; adversarial attack and defense; brain-inspired model

1. Introduction

Deep learning methods involve hierarchical learning through the construction of a
deep architecture in an artificial neural network (ANN), where features from lower levels
are combined into higher-level features. Because deep learning can automatically learn
features at multiple levels, it can learn complex features directly from data, without the
help of hand-crafted features. The most characteristic feature of deep learning methods is
the deep architecture of the models, which consists of the response of the output layer to
the input layer designed by configuring two or more hidden layers in the network. The
deep architecture was inspired by the mammalian brain, which processes input perceptions
by abstracting perceptual features to varying degrees. Neurophysiologists hierarchically
describe this set of abstract functions. It is assumed that the mammalian brain processes
information through multiple stages of transformation and representation. For example,
the primate visual system processes information about visual stimuli in a series of steps:
edge detection, basic shapes, and more complex visual shapes.

Recent developments in neural networks (e.g., involving regression [1], classifica-
tion [2–8], dimensionality reduction [9,10], modeling behavior [11,12], modeling tex-
ture [13], information retrieval [14–16], and natural language processing) have been suc-
cessfully applied in various fields, such as robotics [17], defect diagnosis [18], autonomous
driving [19], and medical diagnosis [20], which require vision tasks.

In addition, vulnerabilities of deep learning have been discovered. Szegedy et al. [21]
proposed the concept of the adversarial examples, which are an interesting weakness of
neural networks. Because adversarial attacks based on adversarial examples can be a fatal
weakness, particularly in vision tasks, such as autonomous driving, a defense technology
for such attacks has been proposed, along with a new adversarial attack that overcomes the
defense technology [22–32].

Recently, an attempt was made to construct a deep learning model that is robust against
adversarial attacks that are not similar to existing defense technologies. This attempt was

Appl. Sci. 2023, 13, 4422. https://doi.org/10.3390/app13074422 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8916-6431
https://doi.org/10.3390/app13074422
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074422?type=check_update&version=2

Appl. Sci. 2023, 13, 4422 2 of 36

inspired primarily by the fact that the visual cortex of mammals for vision tasks is robust to
adversarial attacks. Although early vision task-related deep learning technology mimicked
the early mammalian visual system, deep learning models are currently developing into
a completely different field from early neurophysiological brain models. However, deep
learning models using the mammalian visual cortex or cognitive processing methods have
been proposed on the basis of recent studies on the results of newly discovered visual
systems related to vision. The main contribution of our review introduced robust deep
learning models based on physiological observations and discoveries in the visual cortex
of mammals, including the contents of existing reviews that described the adversarial
attack and defense techniques. This review is intended to be useful for convolutional neural
network (CNN)-based neural networks, adversarial attacks, and defense methods for vision
tasks in state-of-the-art brain-inspired models that are robust against adversarial attacks.

The remainder of this paper is organized as follows. In Section 2, we describe biological
hierarchical vision processing, focusing on the visual cortex, and the deep learning model
derived from it, focusing on the CNN. In Section 3, we describe the adversarial attack,
which is the vulnerability of deep learning, and the defense method against it. In Section 4,
we discuss brain-inspired deep learning models as a new technique for defending against
adversarial attacks. Finally, in Section 5, we conclude the paper.

2. Biological Hierarchical Vision Processing
2.1. Biological Vision in Brain

The biological view of visual processing in the brain is represented by an ensemble
of deep cortical hierarchies. In [33], a biological hierarchical representation for visual
processing, even with insufficient information for an anatomical hierarchy, was proposed
in the field of computer vision. The hierarchical structure in biological vision has several
parallel streams of anatomical and physiological research [34–36].

Figure 1a,b show the vision path that flows from the retina to the primary visual cortex
(area V1) through two parallel retino–genicular–cortical pathways. The magnocellular (M)
pathway transmits information related to coarse luminance-based spatial input with strong
temporal sensitivity to layer 4Cα in the V1 region. The parvocellular (P) pathway transmits
information to retinal–thalamic–cortical inputs with high spatial resolution but low tempo-
ral sensitivity through the 4Cβ layer in the V1 region. The color-sensing input, which is
sent slowly within the different layers of V1, is sent to cortical region V2 and a network of
cortical regions involved in form processing. These two parallel retinal–thalamic–cortical
pathways are supported by neuropsychological studies.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 36

for object categorization [40], as shown in Figure 1d. Prominent, machine learning solu-
tions for object recognition follow the same feedforward hierarchical architecture, where
linear and nonlinear stages are cascaded between multiple layers representing increas-
ingly complex features [41,42].

Figure 1. The classical view of hierarchical feedforward visual processing. (a,b) show the vision path
that flows from the retina to the primary visual cortex (area V1) through two parallel retino–genic-
ular–cortical pathways and (c,d) show the CNN structures.

2.2. Categorization of Deep Learning in Vision Tasks
Deep learning has fueled significant strides in various computer-vision problems,

such as object detection [43,44], motion tracking [45,46], action recognition [47,48], human
pose estimation [49,50], and semantic segmentation. Regarding vision tasks, deep learning
models can be classified into four broad categories, CNNs, the “Boltzmann family” in-
cluding deep belief networks (DBNs) and deep Boltzmann machines (DBMs), and auto-
encoders and sparse coding as shown in Figure 2. However, the current coverage of deep
learning is by no means exhaustive; long short-term memory (LSTM), which belongs to
the category of recurrent neural networks, is not presented in this review, as it is predom-
inantly used for problems such as language modeling, text classification, handwriting
recognition, machine translation, and speech/music recognition, rather than computer-vi-
sion problems.

Figure 2. Categorization of the deep learning methods and their representative works.

Deep learning methods

CNN-based Methods

RBM-based Methods

Autoencoder-basesd Methods

Sparse Coding-based Methods

AlexNet

Clarifai

SPP

VGG

GoogLeNet

Deep Belief Networks

Deep Boltzmann Machines

Deep Energey Models

Sparse Autoencoder

Denoising Autoencoder

Contractive Autoencoder

Sparse Coding SPM
Laplacian Sparse Coding
Local Coordinate Coding
Super-Vector Coding

Figure 1. The classical view of hierarchical feedforward visual processing. (a,b) show the vision
path that flows from the retina to the primary visual cortex (area V1) through two parallel retino–
genicular–cortical pathways and (c,d) show the CNN structures.

Appl. Sci. 2023, 13, 4422 3 of 36

At the computational level, the concept of deep hierarchies is expressed as a linear
system used to model low-level visual processing. As shown in Figure 1c, the neurons in
the primary visual system have small receptive fields (RFs), resulting in high-resolution
retinal subject maps. The spatiotemporal structure of each RF corresponds to a processing
unit that filters a given image attribute locally. In V1, low-level features, such as orientation,
direction, color, or inconsistency, are encoded into different subpopulations, forming a
sparse and overly complete representation of the local feature dimension. These represen-
tations provide multiple parallel cascades of convergent influences, encoded for features of
increasingly large RFs and increasing complexity and coupling as they move through the
hierarchy [37,38].

Object recognition is a prototypical example in which the canonical view of hierar-
chical feedforward processing nearly perfectly integrates anatomical, physiological, and
computational knowledge. This synergy has resulted in realistic, computational models of
RFs, where converging outputs from linear filters are nonlinearly combined from one step
to the subsequent one [39]. It has also inspired feedforward models working at tasks for
object categorization [40], as shown in Figure 1d. Prominent, machine learning solutions for
object recognition follow the same feedforward hierarchical architecture, where linear and
nonlinear stages are cascaded between multiple layers representing increasingly complex
features [41,42].

2.2. Categorization of Deep Learning in Vision Tasks

Deep learning has fueled significant strides in various computer-vision problems, such
as object detection [43,44], motion tracking [45,46], action recognition [47,48], human pose
estimation [49,50], and semantic segmentation. Regarding vision tasks, deep learning mod-
els can be classified into four broad categories, CNNs, the “Boltzmann family” including
deep belief networks (DBNs) and deep Boltzmann machines (DBMs), and autoencoders
and sparse coding as shown in Figure 2. However, the current coverage of deep learning is
by no means exhaustive; long short-term memory (LSTM), which belongs to the category
of recurrent neural networks, is not presented in this review, as it is predominantly used for
problems such as language modeling, text classification, handwriting recognition, machine
translation, and speech/music recognition, rather than computer-vision problems.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 36

for object categorization [40], as shown in Figure 1d. Prominent, machine learning solu-
tions for object recognition follow the same feedforward hierarchical architecture, where
linear and nonlinear stages are cascaded between multiple layers representing increas-
ingly complex features [41,42].

Figure 1. The classical view of hierarchical feedforward visual processing. (a,b) show the vision path
that flows from the retina to the primary visual cortex (area V1) through two parallel retino–genic-
ular–cortical pathways and (c,d) show the CNN structures.

2.2. Categorization of Deep Learning in Vision Tasks
Deep learning has fueled significant strides in various computer-vision problems,

such as object detection [43,44], motion tracking [45,46], action recognition [47,48], human
pose estimation [49,50], and semantic segmentation. Regarding vision tasks, deep learning
models can be classified into four broad categories, CNNs, the “Boltzmann family” in-
cluding deep belief networks (DBNs) and deep Boltzmann machines (DBMs), and auto-
encoders and sparse coding as shown in Figure 2. However, the current coverage of deep
learning is by no means exhaustive; long short-term memory (LSTM), which belongs to
the category of recurrent neural networks, is not presented in this review, as it is predom-
inantly used for problems such as language modeling, text classification, handwriting
recognition, machine translation, and speech/music recognition, rather than computer-vi-
sion problems.

Figure 2. Categorization of the deep learning methods and their representative works.

Deep learning methods

CNN-based Methods

RBM-based Methods

Autoencoder-basesd Methods

Sparse Coding-based Methods

AlexNet

Clarifai

SPP

VGG

GoogLeNet

Deep Belief Networks

Deep Boltzmann Machines

Deep Energey Models

Sparse Autoencoder

Denoising Autoencoder

Contractive Autoencoder

Sparse Coding SPM
Laplacian Sparse Coding
Local Coordinate Coding
Super-Vector Coding

Figure 2. Categorization of the deep learning methods and their representative works.

In CNNs, which are among the most notable deep learning approaches, multiple
layers are trained in a robust manner [51]. This is highly effective and commonly used in
computer-vision applications. A CNN typically consists of three main neural layers: the
convolutional layer, pooling layer, and fully connected layer, which play different roles.
Figure 3 shows a typical CNN architecture for image classification [52]. There are two stages

Appl. Sci. 2023, 13, 4422 4 of 36

of network training: forward and backward training. The main goal of the forward stage
is to represent the input image using the current parameters (weights and biases) of each
layer. The predicted output is then used to compute the loss on the ground-truth label.
Next, according to the cost of loss, the rear stage uses the chain rule to calculate the gradient
of each parameter. All the parameters are updated using the gradient and prepared for the
next forward computation. After the forward and reverse steps are sufficiently repeated,
network learning can be stopped.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 36

In CNNs, which are among the most notable deep learning approaches, multiple lay-
ers are trained in a robust manner [51]. This is highly effective and commonly used in
computer-vision applications. A CNN typically consists of three main neural layers: the
convolutional layer, pooling layer, and fully connected layer, which play different roles.
Figure 3 shows a typical CNN architecture for image classification [52]. There are two
stages of network training: forward and backward training. The main goal of the forward
stage is to represent the input image using the current parameters (weights and biases) of
each layer. The predicted output is then used to compute the loss on the ground-truth
label. Next, according to the cost of loss, the rear stage uses the chain rule to calculate the
gradient of each parameter. All the parameters are updated using the gradient and pre-
pared for the next forward computation. After the forward and reverse steps are suffi-
ciently repeated, network learning can be stopped.

Figure 3. The pipeline of the general CNN architecture. A CNN typically consists of three main
neural layers: the convolutional layer, pooling layer, and fully connected layer, which play different
roles.

The restricted Boltzmann machine (RBM) is a generative stochastic neural network
that was proposed by Hinton et al. in 1986 [41]. It is a variant of the Boltzmann machine,
with the limitation that the visible and hidden units must form a bipartite graph. This
limitation allows more efficient training algorithms, particularly gradient-based con-
trasting divergence algorithms [53]. Because the model is a bipartite graph, the hidden
units, 𝐻𝐻, and the visible unit, 𝑉𝑉1, are conditionally independent. Therefore,

𝑃𝑃(𝑉𝑉1) = 𝑃𝑃(𝐻𝐻1|𝑉𝑉1)𝑃𝑃(𝐻𝐻2|𝑉𝑉1)⋯𝑃𝑃(𝐻𝐻𝑛𝑛|𝑉𝑉1). (1)

Here, both 𝐻𝐻 and 𝑉𝑉1 act in accordance with the Boltzmann distribution: given input
𝑉𝑉1, 𝐻𝐻 can be obtained through 𝑃𝑃(𝑉𝑉1). Likewise, one can obtain 𝑉𝑉2 through 𝑃𝑃(𝑉𝑉2|𝐻𝐻). By
tweaking these parameters, we can also reduce the disparity between 𝑉𝑉1 and 𝑉𝑉2, and the
resulting 𝐻𝐻 will serve as a good feature of 𝑉𝑉1. Hinton [54] provided a detailed explana-
tion and a practical method for training the RBM. Explaining the main difficulties of RBM
training in [54], a new algorithm, which consists of adaptive learning rates and enhanced
gradients to address these difficulties, was proposed. An improved version of the RBM
was presented in [55]. The improved model includes a noisy-modified unit in the approx-
imated binary unit to retain information regarding the relative intensity as the information
passes through multiple layers of the feature detector. Refinements not only work well on
this model but are also widely adopted by various CNN-based approaches [52,56]. The
RBM can be used as a learning module to create the following deep models: the DBN,
DBM, and deep energy model (DEM). A comparison of the three models is shown in Fig-
ure 4. The DBN has nondirectional connections in the upper two layers that form the RBM
and directional connections to the lower layers. The DBM has undirected connections be-
tween all layers of the network. The DEM has a deterministic hidden unit in the lower
layer and a stochastic hidden unit in the upper hidden layer [57].

Figure 3. The pipeline of the general CNN architecture. A CNN typically consists of three main neural
layers: the convolutional layer, pooling layer, and fully connected layer, which play different roles.

The restricted Boltzmann machine (RBM) is a generative stochastic neural network
that was proposed by Hinton et al. in 1986 [41]. It is a variant of the Boltzmann machine,
with the limitation that the visible and hidden units must form a bipartite graph. This
limitation allows more efficient training algorithms, particularly gradient-based contrasting
divergence algorithms [53]. Because the model is a bipartite graph, the hidden units, H,
and the visible unit, V1, are conditionally independent. Therefore,

P(V1) = P(H1|V1)P(H2|V1) · · · P(Hn|V1). (1)

Here, both H and V1 act in accordance with the Boltzmann distribution: given input
V1, H can be obtained through P(V1). Likewise, one can obtain V2 through P(V2|H) . By
tweaking these parameters, we can also reduce the disparity between V1 and V2, and the
resulting H will serve as a good feature of V1. Hinton [54] provided a detailed explanation
and a practical method for training the RBM. Explaining the main difficulties of RBM
training in [54], a new algorithm, which consists of adaptive learning rates and enhanced
gradients to address these difficulties, was proposed. An improved version of the RBM was
presented in [55]. The improved model includes a noisy-modified unit in the approximated
binary unit to retain information regarding the relative intensity as the information passes
through multiple layers of the feature detector. Refinements not only work well on this
model but are also widely adopted by various CNN-based approaches [52,56]. The RBM
can be used as a learning module to create the following deep models: the DBN, DBM,
and deep energy model (DEM). A comparison of the three models is shown in Figure 4.
The DBN has nondirectional connections in the upper two layers that form the RBM and
directional connections to the lower layers. The DBM has undirected connections between
all layers of the network. The DEM has a deterministic hidden unit in the lower layer and a
stochastic hidden unit in the upper hidden layer [57].

Appl. Sci. 2023, 13, 4422 5 of 36
Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 36

Figure 4. The illustration of RBM families, The RBM can be used as a learning module to create the
following deep models: the DBN, DBM, and DEM. (a) The DBN has nondirectional connections in
the upper two layers that form the RBM and directional connections to the lower layers. (b) The
DBM has undirected connections between all layers of the network. (c) The DEM has a deterministic
hidden unit in the lower layer and a stochastic hidden unit in the upper hidden layer.

Autoencoders are a special type of ANN used to learn efficient encodings [57]. Given
an input x, instead of training the network to predict a target value y, the autoencoder is
trained to reconstruct its input x; consequently, the output and input vectors have the
same dimensionality. The optimal autoencoder minimizes the reconstruction error, as de-
picted in Figure 5, resulting in a learned feature as the corresponding code. In general, a
single layer does not provide discriminating or representative functionality of the raw
data.

Hinton et al. proposed the deep autoencoder, which has been extensively studied in
[9]. Deep autoencoders are often trained with a variant of backpropagation such as the
conjugate gradient method.

Figure 5. The pipeline of an autoencoder. Autoencoders are a special type of ANN used to learn
efficient encodings, given an input x, instead of training the network to predict a target value y.

In many cases, it is effective; however, if there are errors in the first few layers, the
model can be completely ineffective. The network’s ability is limited to reconstructing
only the average of the training data, but a solution was proposed in [9] through the use
of a pretraining method that provides the network with initial weights closer to the final
solution.

Sparse coding provides a class of algorithms for finding succinct representations of
the given unlabeled input data and learns basis functions that capture higher-level fea-
tures in the data. When a sparse coding algorithm is applied to natural images, the learned
bases resemble RFs of neurons in the visual cortex [58,59] There are many advantages of
sparse coding [60–62]: (1) descriptors can be accurately reconstructed by using multiple
bases and capturing correlations between similar descriptors that share bases; (2) it is con-
sistent with the biological visual system, although there is debate about whether sparsity
is useful for learning; (3) the salient properties for the representation of images can be

Figure 4. The illustration of RBM families, The RBM can be used as a learning module to create the
following deep models: the DBN, DBM, and DEM. (a) The DBN has nondirectional connections in
the upper two layers that form the RBM and directional connections to the lower layers. (b) The
DBM has undirected connections between all layers of the network. (c) The DEM has a deterministic
hidden unit in the lower layer and a stochastic hidden unit in the upper hidden layer.

Autoencoders are a special type of ANN used to learn efficient encodings [57]. Given
an input x, instead of training the network to predict a target value y, the autoencoder is
trained to reconstruct its input x; consequently, the output and input vectors have the same
dimensionality. The optimal autoencoder minimizes the reconstruction error, as depicted
in Figure 5, resulting in a learned feature as the corresponding code. In general, a single
layer does not provide discriminating or representative functionality of the raw data.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 36

Figure 4. The illustration of RBM families, The RBM can be used as a learning module to create the
following deep models: the DBN, DBM, and DEM. (a) The DBN has nondirectional connections in
the upper two layers that form the RBM and directional connections to the lower layers. (b) The
DBM has undirected connections between all layers of the network. (c) The DEM has a deterministic
hidden unit in the lower layer and a stochastic hidden unit in the upper hidden layer.

Autoencoders are a special type of ANN used to learn efficient encodings [57]. Given
an input x, instead of training the network to predict a target value y, the autoencoder is
trained to reconstruct its input x; consequently, the output and input vectors have the
same dimensionality. The optimal autoencoder minimizes the reconstruction error, as de-
picted in Figure 5, resulting in a learned feature as the corresponding code. In general, a
single layer does not provide discriminating or representative functionality of the raw
data.

Hinton et al. proposed the deep autoencoder, which has been extensively studied in
[9]. Deep autoencoders are often trained with a variant of backpropagation such as the
conjugate gradient method.

Figure 5. The pipeline of an autoencoder. Autoencoders are a special type of ANN used to learn
efficient encodings, given an input x, instead of training the network to predict a target value y.

In many cases, it is effective; however, if there are errors in the first few layers, the
model can be completely ineffective. The network’s ability is limited to reconstructing
only the average of the training data, but a solution was proposed in [9] through the use
of a pretraining method that provides the network with initial weights closer to the final
solution.

Sparse coding provides a class of algorithms for finding succinct representations of
the given unlabeled input data and learns basis functions that capture higher-level fea-
tures in the data. When a sparse coding algorithm is applied to natural images, the learned
bases resemble RFs of neurons in the visual cortex [58,59] There are many advantages of
sparse coding [60–62]: (1) descriptors can be accurately reconstructed by using multiple
bases and capturing correlations between similar descriptors that share bases; (2) it is con-
sistent with the biological visual system, although there is debate about whether sparsity
is useful for learning; (3) the salient properties for the representation of images can be

Figure 5. The pipeline of an autoencoder. Autoencoders are a special type of ANN used to learn
efficient encodings, given an input x, instead of training the network to predict a target value y.

Hinton et al. proposed the deep autoencoder, which has been extensively studied
in [9]. Deep autoencoders are often trained with a variant of backpropagation such as the
conjugate gradient method.

In many cases, it is effective; however, if there are errors in the first few layers, the
model can be completely ineffective. The network’s ability is limited to reconstructing
only the average of the training data, but a solution was proposed in [9] through the
use of a pretraining method that provides the network with initial weights closer to the
final solution.

Sparse coding provides a class of algorithms for finding succinct representations of
the given unlabeled input data and learns basis functions that capture higher-level features
in the data. When a sparse coding algorithm is applied to natural images, the learned bases
resemble RFs of neurons in the visual cortex [58,59] There are many advantages of sparse
coding [60–62]: (1) descriptors can be accurately reconstructed by using multiple bases
and capturing correlations between similar descriptors that share bases; (2) it is consistent
with the biological visual system, although there is debate about whether sparsity is useful

Appl. Sci. 2023, 13, 4422 6 of 36

for learning; (3) the salient properties for the representation of images can be captured
by sparsity; (4) there are studies related to image statistics that show image patches are
sparse signals; and (5) the linear separable property of the sparse pattern allows precise
classification and representation for the visual object.

The solution for sparse coding is not analytical. Consequently, solving the problem
typically results in intractable computations. Therefore, an alternating procedure can
involve the weight updating and the inferring routine for the feature activation values of
the input, given the current setting of the weights to optimize the sparse coding model.

2.3. CNN: Basis of Deep Neural Networks for Vision Tasks

No neural network model has made such a remarkable contribution to vision tasks as
the CNN. CNNs are applicable to almost all fields of image processing, such as object detec-
tion [63–68], facial recognition [69,70], recognition of human actions and activities [71–78],
and human pose estimation [77,79–84].

The structure of CNNs resembles that of a conventional neural network and is de-
signed based on the architecture of neurons in human and animal brains. In particular,
CNNs imitate the action potentials of simple and complex cells in the visual cortex to
reconstruct optical stimulation from the retina in a cat’s brain [85]. Typically, in traditional
artificial neural networks (ANNs), each neuron in a layer has complete connections to the
neurons in the subsequent layer, and each connection is a parameter in the network. This
results in a large number of parameters. In a CNN, the neurons are not fully connected;
rather, local connectivity is used to connect them to nearby neurons. This significantly
reduces the total number of parameters. Furthermore, all the connections between RFs and
neurons share a set of weights, which is called kernel weight sharing, between neurons in
the visual cortex, where only limited portions of the scene are perceived rather than the
entire scene. This sharing property on the CNN influences the capacity of the weights to
be stored, corresponding to the total number of parameters. The two properties of local
connectivity and sharing allow CNN to handle high-dimensional data. Each layer performs
a different function. The end of each layer consists of an activation function that transforms
input data into output data through a nonlinear operation. Finally, the two-dimensional
(2D) image acts as the input of the CNN result in a one-dimensional vector at the end of
the fully connected layer.

A CNN comprises three neural layers: convolutional, pooling, and fully connected
layers. Each layer of the CNN architecture is described below.

1. Convolutional layer: The input format of the CNN is a multichannel image, whereas
the inputs of the conventional neural network architectures are in vector format.
During the operation of the convolutional layer, the process involves sliding the
kernel over all the pixels in the image both horizontally and vertically. The feature
map of the output is created by performing a dot product between the values of
the kernel and the pixel values within the region covered by the kernel, resulting in
a single value, where the calculated dot product represents the feature map of the
output. Figure 6 shows the primary calculation of the convolution operation in each
step. Here, the blue color represents the 2 × 2 kernels, and the green color represents
the input region for taking the dot product in the input image. After the dot product
operation, the resulting value (brown) is used for constructing the output feature map.
The size of the output feature map depends on the stride value, the step size of the
kernel in the horizontal and vertical directions, and the padding number to represent
the border-side information of the image. Consequently, the size of the feature map
increases with the input image size.

2. Pooling layer: The purpose of the pooling layer is to perform subsampling on the
feature maps. A pooling operation transforms a large feature map into a smaller one,
and the input to the pooling layer retains most of the information from the feature
map. After the initial stride value and padding number are assigned, the pooling
operation is initiated. Generally, three types of pooling algorithms, max pooling,

Appl. Sci. 2023, 13, 4422 7 of 36

average pooling, and global average pooling, are executed in the pooling layer. The
max pooling algorithm selects the maximum value as the output feature map from
the dot products of the kernel and local region of the image. The average pooling
algorithm calculates the average value through the pooling operation, and the average
value is representative the local region of the image. Finally, global average pooling is
used to significantly reduce the number of CNN parameters to fully overcome the
connection in the layer. Figure 7 shows a conceptual illustration of the three pooling
methods. The pooling layer cannot avoid information loss owing to its operational
characteristics, and it allows the CNN to determine whether features are available in
the input image. Therefore, it affects the performance of the CNN.

3. Fully connected layer: At the end of the CNN architecture, each neuron of the fully
connected layer is connected to all the neurons of the previous layer. Similar to
a conventional multilayer perceptron neural network, the fully connected layer is
used as a classifier. The inputs of the fully connected layer are derived from the last
pooling or convolutional layer as vectors. After flattening, the output of the fully
connected layer is the output of the CNN. Figure 8 shows a schematic of the fully
connected layer.

4. Activation functions, cost functions, and optimizers: The activation function leads to
a nonlinear output of the layer for the linear summation of neurons as the input at the
end of all the layers in the CNN architecture. Along with nonlinearity, the condition
of differentiability must be satisfied. The differentiability condition is crucial for error
backpropagation for updating the weight values of neurons in the training process. In
most cases, the ReLU function or its variations are used as the activation functions,
which convert all the input values the into nonnegative numbers. To solve the dying
ReLU problem, the leaky ReLU, a variation of the ReLU that operates as the ReLU for
positive inputs and assigns a precise small negative value for negative inputs, is used.
Occasionally, the noisy ReLU is employed by adding Gaussian distribution noise to
the ReLU.

5. During the training process, the last layer of the CNN outputs the estimated result
for the underlying input and compares it with the label as an answer. The difference
between the predicted value and the answer is the predicted error, which must be
corrected close to the answer. A cost function is applied as the criterion to minimize
the prediction error. Several types of cost functions have been employed in different
cases. A commonly employed cost function is the cross-entropy criterion, which
expresses outputs as a probability distribution in the range by applying the softmax
function. The network parameters should be updated according to the cost function to
minimize the prediction error. This requires repetitive calculations using the optimizer
during every training epoch. The optimizer operates the gradient of the cost function
by taking the first-order derivative with respect to the network parameters, and
the updating process is performed through network backpropagation in which the
gradient of all neurons is backpropagated to all neurons in the preceding layer.

2.4. CNN Variations

Over the past decade, many variations of the CNN structure have been proposed for
different applications. Figure 9 shows the evolutionary history of machine vision, including
the CNN architecture. As neocognitron [86] mimics the brain for pattern recognition, the
CNN structure based on mammalian visual processing has been established as a useful
ANN structure in vision tasks.

Appl. Sci. 2023, 13, 4422 8 of 36
Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 36

Figure 6. During the operation of the convolutional layer, the process involves sliding the kernel
over all the pixels in the image both horizontally and vertically. The feature map of the output is
created by performing a dot product between the values of the kernel and the pixel values within
the region covered by the kernel, resulting in a single value.

2. Pooling layer: The purpose of the pooling layer is to perform subsampling on the
feature maps. A pooling operation transforms a large feature map into a smaller one,

Figure 6. During the operation of the convolutional layer, the process involves sliding the kernel over
all the pixels in the image both horizontally and vertically. The feature map of the output is created
by performing a dot product between the values of the kernel and the pixel values within the region
covered by the kernel, resulting in a single value.

Appl. Sci. 2023, 13, 4422 9 of 36

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 36

and the input to the pooling layer retains most of the information from the feature
map. After the initial stride value and padding number are assigned, the pooling op-
eration is initiated. Generally, three types of pooling algorithms, max pooling, aver-
age pooling, and global average pooling, are executed in the pooling layer. The max
pooling algorithm selects the maximum value as the output feature map from the dot
products of the kernel and local region of the image. The average pooling algorithm
calculates the average value through the pooling operation, and the average value is
representative the local region of the image. Finally, global average pooling is used
to significantly reduce the number of CNN parameters to fully overcome the connec-
tion in the layer. Figure 7 shows a conceptual illustration of the three pooling meth-
ods. The pooling layer cannot avoid information loss owing to its operational char-
acteristics, and it allows the CNN to determine whether features are available in the
input image. Therefore, it affects the performance of the CNN.

3. Fully connected layer: At the end of the CNN architecture, each neuron of the fully
connected layer is connected to all the neurons of the previous layer. Similar to a
conventional multilayer perceptron neural network, the fully connected layer is used
as a classifier. The inputs of the fully connected layer are derived from the last pool-
ing or convolutional layer as vectors. After flattening, the output of the fully con-
nected layer is the output of the CNN. Figure 8 shows a schematic of the fully con-
nected layer.

Figure 7. Three types of pooling operations. Three types of pooling algorithms, max pooling, aver-
age pooling, and global average pooling, are executed in the pooling layer.

4. Activation functions, cost functions, and optimizers: The activation function leads to
a nonlinear output of the layer for the linear summation of neurons as the input at
the end of all the layers in the CNN architecture. Along with nonlinearity, the condi-
tion of differentiability must be satisfied. The differentiability condition is crucial for
error backpropagation for updating the weight values of neurons in the training pro-
cess. In most cases, the ReLU function or its variations are used as the activation func-
tions, which convert all the input values the into nonnegative numbers. To solve the
dying ReLU problem, the leaky ReLU, a variation of the ReLU that operates as the
ReLU for positive inputs and assigns a precise small negative value for negative in-
puts, is used. Occasionally, the noisy ReLU is employed by adding Gaussian distri-
bution noise to the ReLU.

Figure 7. Three types of pooling operations. Three types of pooling algorithms, max pooling, average
pooling, and global average pooling, are executed in the pooling layer.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 36

Figure 8. Example of a fully connected layer. Each neuron of the fully connected layer is connected
to all the neurons of the previous layer. Similar to a conventional multilayer perceptron neural net-
work, the fully connected layer is used as a classifier.

5. During the training process, the last layer of the CNN outputs the estimated result
for the underlying input and compares it with the label as an answer. The difference
between the predicted value and the answer is the predicted error, which must be
corrected close to the answer. A cost function is applied as the criterion to minimize
the prediction error. Several types of cost functions have been employed in different
cases. A commonly employed cost function is the cross-entropy criterion, which ex-
presses outputs as a probability distribution in the range by applying the softmax
function. The network parameters should be updated according to the cost function
to minimize the prediction error. This requires repetitive calculations using the opti-
mizer during every training epoch. The optimizer operates the gradient of the cost
function by taking the first-order derivative with respect to the network parameters,
and the updating process is performed through network backpropagation in which
the gradient of all neurons is backpropagated to all neurons in the preceding layer.

2.4. CNN Variations
Over the past decade, many variations of the CNN structure have been proposed for

different applications. Figure 9 shows the evolutionary history of machine vision, includ-
ing the CNN architecture. As neocognitron [86] mimics the brain for pattern recognition,
the CNN structure based on mammalian visual processing has been established as a use-
ful ANN structure in vision tasks.

Attempts to improve the performance in various applications of vision tasks have
resulted as variations in the CNN structure. Such variations include novel blocks, param-
eter optimization, and structural reformulation. However, the most notable performance
improvement of the CNN structure was by increasing the depth of the network. In this
subsection, we describe some of the major CNN variations that are historical turning
points, from AlexNet [87] to DenseNet. Details regarding the recent trends related to the
CNN architecture can be found in [88,89].

Figure 8. Example of a fully connected layer. Each neuron of the fully connected layer is connected to
all the neurons of the previous layer. Similar to a conventional multilayer perceptron neural network,
the fully connected layer is used as a classifier.

Attempts to improve the performance in various applications of vision tasks have
resulted as variations in the CNN structure. Such variations include novel blocks, parameter
optimization, and structural reformulation. However, the most notable performance
improvement of the CNN structure was by increasing the depth of the network. In this
subsection, we describe some of the major CNN variations that are historical turning points,
from AlexNet [87] to DenseNet. Details regarding the recent trends related to the CNN
architecture can be found in [88,89].

Appl. Sci. 2023, 13, 4422 10 of 36

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 36

Figure 9. History of CNN variations arranged in chronological order.

6. AlexNet achieved remarkable improvements in performance and applicability com-
pared with the previously developed LeNet. Although the applicable areas of vision
tasks in the early days of deep neural networks (DNNs) were limited to handwritten
digit recognition, remarkable performance was achieved considering the hardware
of the time. Compared with LeNet, AlexNet significantly improves the performance
by innovating the structure of the CNN and the implemented hardware.
In LeNet, the performance of DNNs is limited by the hardware performance. To over-

come this limitation, AlexNet uses two graphics processing units (GPUs) for training and
decreases the depth of the network in the feature extraction stage. Figure 10 shows the
basic AlexNet structure. Improvements in the hardware performance, variations in the
CNN structure, and other performance enhancements including the ReLU function, have
made CNNs applicable to various categories of vision tasks for which LeNet is unsuitable.
ZefNet [90,91] begins with the visualization of features in hidden layers to optimize the
network performance. The structure of ZefNet in Figure 11 is similar to that of AlexNet,
except for the size of the filters and the use of a single GPU for training. Visualization of
features in a neural network implies that the activation of neurons can be monitored. Con-
sequently, it is possible to change the topology of the CNN structure, such as the filter and
stride sizes, such that the network can achieve optimal performance. In addition, the op-
timal combination of hyperparameters, which affects the performance of the network, can
be determined by observing the extracted features. ZefNet has been experimentally vali-
dated using AlexNet. According to the experiment results that certain neurons were

Figure 9. History of CNN variations arranged in chronological order.

6. AlexNet achieved remarkable improvements in performance and applicability com-
pared with the previously developed LeNet. Although the applicable areas of vision
tasks in the early days of deep neural networks (DNNs) were limited to handwritten
digit recognition, remarkable performance was achieved considering the hardware of
the time. Compared with LeNet, AlexNet significantly improves the performance by
innovating the structure of the CNN and the implemented hardware.

In LeNet, the performance of DNNs is limited by the hardware performance. To
overcome this limitation, AlexNet uses two graphics processing units (GPUs) for training
and decreases the depth of the network in the feature extraction stage. Figure 10 shows
the basic AlexNet structure. Improvements in the hardware performance, variations in the
CNN structure, and other performance enhancements including the ReLU function, have
made CNNs applicable to various categories of vision tasks for which LeNet is unsuitable.
ZefNet [90,91] begins with the visualization of features in hidden layers to optimize the
network performance. The structure of ZefNet in Figure 11 is similar to that of AlexNet,
except for the size of the filters and the use of a single GPU for training. Visualization

Appl. Sci. 2023, 13, 4422 11 of 36

of features in a neural network implies that the activation of neurons can be monitored.
Consequently, it is possible to change the topology of the CNN structure, such as the filter
and stride sizes, such that the network can achieve optimal performance. In addition, the
optimal combination of hyperparameters, which affects the performance of the network,
can be determined by observing the extracted features. ZefNet has been experimentally
validated using AlexNet. According to the experiment results that certain neurons were
activated, while others were inactivated, ZefNet can customize the topology of the CNN
structure to improve the performance.

7. Visual geometry group network (VGGNet): As indicated by the first paper [92] related
to VGGNet, the relationship between the depth of the network and performance has
been an important issue in vision tasks using CNN structures. Before the advent
of VGGNet, ZefNet and AlexNet were the winners of the ILSVRC (ImageNet large-
scale visual recognition challenge) competition [93] in 2012 and 2013, respectively.
The depth of the CNN structure is only eight layers, with 5 × 5 and 11 × 11 filters.
VGGNet is a CNN structure with a depth of 19 layers, wherein the existing CNN
structure is significantly changed to improve the performance. Even if the filter size is
reduced to 3 × 3 , an efficiency similar to that for the larger filters 5 × 5 and 11 × 11
can be achieved.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 36

activated, while others were inactivated, ZefNet can customize the topology of the CNN
structure to improve the performance.

Figure 10. Basic AlexNet architecture. AlexNet achieved remarkable improvements in performance
and applicability compared with the previously developed LeNet.

Figure 11. Basic ZefNet architecture. ZefNet can customize the topology of the CNN structure to
improve the performance.

7. Visual geometry group network (VGGNet): As indicated by the first paper [92] re-
lated to VGGNet, the relationship between the depth of the network and perfor-
mance has been an important issue in vision tasks using CNN structures. Before the
advent of VGGNet, ZefNet and AlexNet were the winners of the ILSVRC (ImageNet
large-scale visual recognition challenge) competition [93] in 2012 and 2013, respec-
tively. The depth of the CNN structure is only eight layers, with 5 × 5 and 11 × 11
filters. VGGNet is a CNN structure with a depth of 19 layers, wherein the existing
CNN structure is significantly changed to improve the performance. Even if the filter
size is reduced to 3 × 3, an efficiency similar to that for the larger filters 5 × 5 and 11
× 11 can be achieved.
Consequently, by reducing the number of parameters, the computational complexity

of the convolution operation is decreased. Although VGGNet exhibited improved perfor-
mance compared with the networks of the existing CNN structure owing to its efficient
and simple structure, the total computational cost due to the large depth cannot be ig-
nored, and the increase in the number of parameters due to the structure of

Figure 10. Basic AlexNet architecture. AlexNet achieved remarkable improvements in performance
and applicability compared with the previously developed LeNet.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 36

activated, while others were inactivated, ZefNet can customize the topology of the CNN
structure to improve the performance.

Figure 10. Basic AlexNet architecture. AlexNet achieved remarkable improvements in performance
and applicability compared with the previously developed LeNet.

Figure 11. Basic ZefNet architecture. ZefNet can customize the topology of the CNN structure to
improve the performance.

7. Visual geometry group network (VGGNet): As indicated by the first paper [92] re-
lated to VGGNet, the relationship between the depth of the network and perfor-
mance has been an important issue in vision tasks using CNN structures. Before the
advent of VGGNet, ZefNet and AlexNet were the winners of the ILSVRC (ImageNet
large-scale visual recognition challenge) competition [93] in 2012 and 2013, respec-
tively. The depth of the CNN structure is only eight layers, with 5 × 5 and 11 × 11
filters. VGGNet is a CNN structure with a depth of 19 layers, wherein the existing
CNN structure is significantly changed to improve the performance. Even if the filter
size is reduced to 3 × 3, an efficiency similar to that for the larger filters 5 × 5 and 11
× 11 can be achieved.
Consequently, by reducing the number of parameters, the computational complexity

of the convolution operation is decreased. Although VGGNet exhibited improved perfor-
mance compared with the networks of the existing CNN structure owing to its efficient
and simple structure, the total computational cost due to the large depth cannot be ig-
nored, and the increase in the number of parameters due to the structure of

Figure 11. Basic ZefNet architecture. ZefNet can customize the topology of the CNN structure to
improve the performance.

Appl. Sci. 2023, 13, 4422 12 of 36

Consequently, by reducing the number of parameters, the computational complexity
of the convolution operation is decreased. Although VGGNet exhibited improved perfor-
mance compared with the networks of the existing CNN structure owing to its efficient
and simple structure, the total computational cost due to the large depth cannot be ignored,
and the increase in the number of parameters due to the structure of VGGNet may cause
gradient vanishing or overfitting. Figure 12 shows the basic VGG-16 structure.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 36

VGGNet may cause gradient vanishing or overfitting. Figure 12 shows the basic VGG-16
structure.

Figure 12. Basic VGG-16 structure. VGGNet is a CNN structure with a depth of 19 layers, wherein
the existing CNN structure is significantly changed to improve the performance.

8. GoogLeNet, the winner of the ILSVRC 2014 competition (also called Inception V1)
[94] achieved a 6.67% error rate, which was the best at the time and a reduction in
computational cost, which was the purpose of its implementation. The core of Goog-
LeNet is an inception block that employs multiscale convolutional transformation
based on merging, transforming, and split functions for feature extraction. The in-
ception block architecture integrates filters of varying sizes to gather channel infor-
mation across a broad range of spatial resolutions. Figure 13 shows the basic struc-
ture of the inception block in GoogLeNet. GoogLeNet aims to increase the efficiency
of the CNN parameters and enhance learning. The sparse connection applied to
GoogLeNet removes redundant information that increases the computation cost ow-
ing to the operations of an irrelevant channel. Additionally, the GAP layer is applied
as an end layer instead of a fully connected layer to reduce the density of the connec-
tion. Consequently, the number of parameters is significantly reduced from 40 mil-
lion to 5 million. To increase the learning capacity, GoogLeNet employs auxiliary
learners that accelerate the rate of convergence and solve the gradient vanishing
problem. The main weakness of this method is the heterogeneous topology of the
structure, which implies that information flow from one block to another requires an
adaptation block.

9. ResNet: As the performance of the model improves, the depth of the network tends
to increase. The most significant difference of ResNet from the existing model is that
the network is deeper [95]. The depth initially applied to ResNet was 34 layers, which
is more than four times that of AlexNet. Later, the depth of ResNet was increased to
1202 layers, and ResNet50, the most widely used variation of ResNet, consisted of 49
convolutional layers and one fully connected layer. The objectives of ResNet are to
solve the gradient vanishing problem and to increase the network depth. Gradient
vanishing that is a fatal weakness of the extreme deep model was resolved using the
bypass concept in ResNet. The bypass concept was proposed for Highway networks
[96]. Though there are differences between the two concepts, their basic meanings

Figure 12. Basic VGG-16 structure. VGGNet is a CNN structure with a depth of 19 layers, wherein
the existing CNN structure is significantly changed to improve the performance.

8. GoogLeNet, the winner of the ILSVRC 2014 competition (also called Inception V1) [94]
achieved a 6.67% error rate, which was the best at the time and a reduction in compu-
tational cost, which was the purpose of its implementation. The core of GoogLeNet
is an inception block that employs multiscale convolutional transformation based
on merging, transforming, and split functions for feature extraction. The inception
block architecture integrates filters of varying sizes to gather channel information
across a broad range of spatial resolutions. Figure 13 shows the basic structure of
the inception block in GoogLeNet. GoogLeNet aims to increase the efficiency of the
CNN parameters and enhance learning. The sparse connection applied to GoogLeNet
removes redundant information that increases the computation cost owing to the
operations of an irrelevant channel. Additionally, the GAP layer is applied as an
end layer instead of a fully connected layer to reduce the density of the connection.
Consequently, the number of parameters is significantly reduced from 40 million to
5 million. To increase the learning capacity, GoogLeNet employs auxiliary learners
that accelerate the rate of convergence and solve the gradient vanishing problem. The
main weakness of this method is the heterogeneous topology of the structure, which
implies that information flow from one block to another requires an adaptation block.

9. ResNet: As the performance of the model improves, the depth of the network tends
to increase. The most significant difference of ResNet from the existing model is
that the network is deeper [95]. The depth initially applied to ResNet was 34 layers,
which is more than four times that of AlexNet. Later, the depth of ResNet was

Appl. Sci. 2023, 13, 4422 13 of 36

increased to 1202 layers, and ResNet50, the most widely used variation of ResNet,
consisted of 49 convolutional layers and one fully connected layer. The objectives of
ResNet are to solve the gradient vanishing problem and to increase the network depth.
Gradient vanishing that is a fatal weakness of the extreme deep model was resolved
using the bypass concept in ResNet. The bypass concept was proposed for Highway
networks [96]. Though there are differences between the two concepts, their basic
meanings are the same. Figure 14 shows the basic structure of the ResNet. ResNet
is composed of the conventional feedforward of the CNN structure and residual
connection. The output of the residual layer is delivered from the preceding layer.
Using residual layers, ResNet can reduce the gradient vanishing according to the deep
network and accelerate the deep network convergence. ResNet was the winner of
the ILSVCR 2015 competition. It had 152 layers, exceeding the depth of the previous
year’s winner, i.e., GoogLeNet.

10. DenseNet: The strategy of DenseNet [97] for solving the gradient vanishing problem
is identical to that of ResNet. The causal difference between DenseNet and ResNet is
that DenseNet involves channel-wise concatenation that connects to neurons not only
on the next layer but also subsequent layers, whereas ResNet employs element-wise
addition, which results in an addition path with a skip connection. As a unique
parameter in DenseNet, the growth rate is defined to control the number of features
that increase the number of channels. As shown in Figure 15, DenseNet is also helpful
in learning because it can receive gradients through various paths, such as ResNet.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 36

are the same. Figure 14 shows the basic structure of the ResNet. ResNet is composed
of the conventional feedforward of the CNN structure and residual connection. The
output of the residual layer is delivered from the preceding layer. Using residual lay-
ers, ResNet can reduce the gradient vanishing according to the deep network and
accelerate the deep network convergence. ResNet was the winner of the ILSVCR 2015
competition. It had 152 layers, exceeding the depth of the previous year’s winner, i.e.,
GoogLeNet.

Figure 13. Basic structure of the inception block in GoogLeNet.

Figure 14. Basic structure of ResNet. ResNet is composed of the conventional feedforward of the
CNN structure and residual connection.

10. DenseNet: The strategy of DenseNet [97] for solving the gradient vanishing problem
is identical to that of ResNet. The causal difference between DenseNet and ResNet is
that DenseNet involves channel-wise concatenation that connects to neurons not
only on the next layer but also subsequent layers, whereas ResNet employs element-
wise addition, which results in an addition path with a skip connection. As a unique
parameter in DenseNet, the growth rate is defined to control the number of features
that increase the number of channels. As shown in Figure 15, DenseNet is also helpful
in learning because it can receive gradients through various paths, such as ResNet.

Figure 13. Basic structure of the inception block in GoogLeNet.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 36

are the same. Figure 14 shows the basic structure of the ResNet. ResNet is composed
of the conventional feedforward of the CNN structure and residual connection. The
output of the residual layer is delivered from the preceding layer. Using residual lay-
ers, ResNet can reduce the gradient vanishing according to the deep network and
accelerate the deep network convergence. ResNet was the winner of the ILSVCR 2015
competition. It had 152 layers, exceeding the depth of the previous year’s winner, i.e.,
GoogLeNet.

Figure 13. Basic structure of the inception block in GoogLeNet.

Figure 14. Basic structure of ResNet. ResNet is composed of the conventional feedforward of the
CNN structure and residual connection.

10. DenseNet: The strategy of DenseNet [97] for solving the gradient vanishing problem
is identical to that of ResNet. The causal difference between DenseNet and ResNet is
that DenseNet involves channel-wise concatenation that connects to neurons not
only on the next layer but also subsequent layers, whereas ResNet employs element-
wise addition, which results in an addition path with a skip connection. As a unique
parameter in DenseNet, the growth rate is defined to control the number of features
that increase the number of channels. As shown in Figure 15, DenseNet is also helpful
in learning because it can receive gradients through various paths, such as ResNet.

Figure 14. Basic structure of ResNet. ResNet is composed of the conventional feedforward of the
CNN structure and residual connection.

Appl. Sci. 2023, 13, 4422 14 of 36Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 36

Figure 15. Basic structure of DenseNet. DenseNet involves channel-wise concatenation that con-
nects to neurons not only on the next layer but also subsequent layers.

Moreover, compared with ResNet, the effect for the gradient vanishing problem is
better because the gradient can be propagated farther away simultaneously. In the net-
work, a low-level feature is created in the front layer close to the input, and a high-level
feature is created in the back layer close to the output. Feature reuse from a low level to a
high level based on feature concatenation improves the network performance through the
propagation of features in channel-wise operation. The weakness of concatenation is that
increasing the number of concatenations exponentially increases the number of features.
The control of concatenation based on the growth rate results in better performance in
DenseNet with fewer parameters for features compared with ResNet.

Although the six representative CNN structures have been briefly reviewed, there
are many CNN-based networks with various structural features that were not covered,
such as network-in-network, which employs multiple layers of perception convolution,
HighwayNet, which was inspired by ResNet, and WideNet [98] which improved the per-
formance of ResNet. Recently, CapsuleNet [99–102] was used to resolve the radical weak-
ness of the CNN structure.

3. Adversarial Attacks and Defenses
As described in the previous section, deep learning technology is expected to replace

existing technologies in various machine learning fields, including vision tasks [103–111].
However, in practical applications, security vulnerabilities have been raised, as described
later. Attacks on deep learning have been attempted in various ways as machine learning
methods have been developed. For example, poisoning attacks [106,108] change the prob-
ability distribution of the original training data by injecting malicious data into the train-
ing data during the training stage to reduce the prediction accuracy of the model, as
shown in Figure 16 [112].

Figure 16. Procedure of poisoning attacks. Poisoning attacks change the probability distribution of
the original training data by injecting malicious data into the training data during the training stage
to reduce the prediction accuracy of the model.

Figure 15. Basic structure of DenseNet. DenseNet involves channel-wise concatenation that connects
to neurons not only on the next layer but also subsequent layers.

Moreover, compared with ResNet, the effect for the gradient vanishing problem is
better because the gradient can be propagated farther away simultaneously. In the network,
a low-level feature is created in the front layer close to the input, and a high-level feature is
created in the back layer close to the output. Feature reuse from a low level to a high level
based on feature concatenation improves the network performance through the propagation
of features in channel-wise operation. The weakness of concatenation is that increasing the
number of concatenations exponentially increases the number of features. The control of
concatenation based on the growth rate results in better performance in DenseNet with
fewer parameters for features compared with ResNet.

Although the six representative CNN structures have been briefly reviewed, there
are many CNN-based networks with various structural features that were not covered,
such as network-in-network, which employs multiple layers of perception convolution,
HighwayNet, which was inspired by ResNet, and WideNet [98] which improved the
performance of ResNet. Recently, CapsuleNet [99–102] was used to resolve the radical
weakness of the CNN structure.

3. Adversarial Attacks and Defenses

As described in the previous section, deep learning technology is expected to replace
existing technologies in various machine learning fields, including vision tasks [103–111].
However, in practical applications, security vulnerabilities have been raised, as described
later. Attacks on deep learning have been attempted in various ways as machine learning
methods have been developed. For example, poisoning attacks [106,108] change the
probability distribution of the original training data by injecting malicious data into the
training data during the training stage to reduce the prediction accuracy of the model, as
shown in Figure 16 [112].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 36

Figure 15. Basic structure of DenseNet. DenseNet involves channel-wise concatenation that con-
nects to neurons not only on the next layer but also subsequent layers.

Moreover, compared with ResNet, the effect for the gradient vanishing problem is
better because the gradient can be propagated farther away simultaneously. In the net-
work, a low-level feature is created in the front layer close to the input, and a high-level
feature is created in the back layer close to the output. Feature reuse from a low level to a
high level based on feature concatenation improves the network performance through the
propagation of features in channel-wise operation. The weakness of concatenation is that
increasing the number of concatenations exponentially increases the number of features.
The control of concatenation based on the growth rate results in better performance in
DenseNet with fewer parameters for features compared with ResNet.

Although the six representative CNN structures have been briefly reviewed, there
are many CNN-based networks with various structural features that were not covered,
such as network-in-network, which employs multiple layers of perception convolution,
HighwayNet, which was inspired by ResNet, and WideNet [98] which improved the per-
formance of ResNet. Recently, CapsuleNet [99–102] was used to resolve the radical weak-
ness of the CNN structure.

3. Adversarial Attacks and Defenses
As described in the previous section, deep learning technology is expected to replace

existing technologies in various machine learning fields, including vision tasks [103–111].
However, in practical applications, security vulnerabilities have been raised, as described
later. Attacks on deep learning have been attempted in various ways as machine learning
methods have been developed. For example, poisoning attacks [106,108] change the prob-
ability distribution of the original training data by injecting malicious data into the train-
ing data during the training stage to reduce the prediction accuracy of the model, as
shown in Figure 16 [112].

Figure 16. Procedure of poisoning attacks. Poisoning attacks change the probability distribution of
the original training data by injecting malicious data into the training data during the training stage
to reduce the prediction accuracy of the model.

Figure 16. Procedure of poisoning attacks. Poisoning attacks change the probability distribution of
the original training data by injecting malicious data into the training data during the training stage
to reduce the prediction accuracy of the model.

Appl. Sci. 2023, 13, 4422 15 of 36

Evasion attacks deceive a target system by generating adversarial input examples
without altering the target model [109–111,113]. Szegedy et al. [21] proposed the concept
of an adversarial example as an evasion attack. In their experiment [21], a set of adversarial
examples for a given network was generated, and these examples were fed to another
network to evaluate the proportion of misclassified instances. Under the criterion of
average minimum distortion, the accuracy reached 0% for the entire training set. In [114],
Goodfellow et al. reported “the symbolic example” to influence adversarial examples in
vision tasks, as shown in Figure 17. A common concept of “adversary” is that deep learning
models in vision tasks act as fools by perturbing benign samples without being perceived
by the human visual system. As shown in Figure 17, perturbations that are imperceptible
to the human visual system can lead to incorrect outputs with high reliability in deep
learning models.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 36

Evasion attacks deceive a target system by generating adversarial input examples
without altering the target model [109–111,113]. Szegedy et al. [21] proposed the concept
of an adversarial example as an evasion attack. In their experiment [21], a set of adversar-
ial examples for a given network was generated, and these examples were fed to another
network to evaluate the proportion of misclassified instances. Under the criterion of aver-
age minimum distortion, the accuracy reached 0% for the entire training set. In [114],
Goodfellow et al. reported “the symbolic example” to influence adversarial examples in vi-
sion tasks, as shown in Figure 17. A common concept of ”adversary” is that deep learning
models in vision tasks act as fools by perturbing benign samples without being perceived
by the human visual system. As shown in Figure 17, perturbations that are imperceptible
to the human visual system can lead to incorrect outputs with high reliability in deep
learning models.

The reality of “adversary” is called an adversarial example that is a significant obstacle
to the application of vision tasks in industry [107]. Adversarial attacks in which the mod-
els are threatened by adversarial examples are categorized into white-box attacks, black-
box attacks, and gray-box attacks based according to the knowledge of the underlying
deep learning model. In white-box attacks, the attacker possesses complete knowledge of
the deep learning model, including its architecture and parameters.

Figure 17. Demonstration of adversarial example generation by adding an imperceptible vector ap-
plied to GoogLeNet for the ImageNet dataset.

Hence, attackers can craft adversarial examples directly on a target model. In black-
box attacks, attackers can access the target model through the query output. In gray-box
attacks, attackers have limited knowledge of the target model. Many methods for gener-
ating adversarial examples under the assumption of black-box attacks have been pro-
posed; however, because of practical limitations, white-box attacks, and gray-box attacks
are implemented in laboratories. Adversarial examples possess a crucial property called
transferability [115,116], meaning that adversarial examples designed to fool a specific
model can frequently be used to fool other models if they were trained on the same da-
tasets.

Attackers can construct adversarial examples in known deep learning models, such
as white-box attacks, and subsequently attack a related unknown model [107]. By analyz-
ing the causes of adversarial examples, it is possible to develop a defense method against
adversarial attacks. In [107], when a neural network was trained, it was operated in a lin-
ear region to avoid the gradient vanishing problem, although it was activated in nonlinear
ways by the ReLU or Maxout function. Consequently, DNNs are susceptible to adversar-
ial examples due to the local linearity of the models. In [21], researchers argued that ad-
versarial examples cause incorrect predictions because they lie in areas of low probability
in the data manifold space. Regarding the vulnerability of DNNs in the training process,
Arpit et al. [117] studied the memory capacity of neural networks during a training pro-
cess and discovered that DNNs that require large memory are susceptible to adversarial

Figure 17. Demonstration of adversarial example generation by adding an imperceptible vector
applied to GoogLeNet for the ImageNet dataset.

The reality of “adversary” is called an adversarial example that is a significant obstacle
to the application of vision tasks in industry [107]. Adversarial attacks in which the models
are threatened by adversarial examples are categorized into white-box attacks, black-box
attacks, and gray-box attacks based according to the knowledge of the underlying deep
learning model. In white-box attacks, the attacker possesses complete knowledge of the
deep learning model, including its architecture and parameters.

Hence, attackers can craft adversarial examples directly on a target model. In black-box
attacks, attackers can access the target model through the query output. In gray-box attacks,
attackers have limited knowledge of the target model. Many methods for generating
adversarial examples under the assumption of black-box attacks have been proposed;
however, because of practical limitations, white-box attacks, and gray-box attacks are
implemented in laboratories. Adversarial examples possess a crucial property called
transferability [115,116], meaning that adversarial examples designed to fool a specific
model can frequently be used to fool other models if they were trained on the same datasets.

Attackers can construct adversarial examples in known deep learning models, such as
white-box attacks, and subsequently attack a related unknown model [107]. By analyzing
the causes of adversarial examples, it is possible to develop a defense method against
adversarial attacks. In [107], when a neural network was trained, it was operated in
a linear region to avoid the gradient vanishing problem, although it was activated in
nonlinear ways by the ReLU or Maxout function. Consequently, DNNs are susceptible
to adversarial examples due to the local linearity of the models. In [21], researchers
argued that adversarial examples cause incorrect predictions because they lie in areas of
low probability in the data manifold space. Regarding the vulnerability of DNNs in the
training process, Arpit et al. [117] studied the memory capacity of neural networks during
a training process and discovered that DNNs that require large memory are susceptible
to adversarial examples. In [118], they argued that CNN architectures tend to learn the
statistical properties of the training dataset instead of “context”, which is a high-level

Appl. Sci. 2023, 13, 4422 16 of 36

abstract concept for recognizing objects. To solve adversarial examples, researchers have
presented partial solutions corresponding to specific adversarial examples using specific
generation methods. This remains an open research area.

3.1. Adversarial Attacks
3.1.1. L-BFGS Attack

Szegedy et al. proposed a “weird” method to fool neural networks for vision tasks [20].
The goal of this method is to find the input perturbation x′ that minimizes the Euclidean
distance ||x− x′||2 from the normalized input x within the bounds of the input domain,
where x′ leads to misclassification in the network model. To solve this optimization problem
under box-constrained conditions, Szegedy et al. utilized the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) method [119] to locate the x′ that minimizes the loss
function in (2):

c||x− x′||2 + L
(

x′, t
)

(2)

Here, L(x′, t) represents the loss function of the target model, and t represents the tar-
get misclassification label. The optimization process given by (2) was iteratively performed
to find the input perturbation x′, i.e., an adversarial example increasing c until x′ was
reached. In [21], experimental results indicated that an L-BFGS attack generated very close
and visually difficult adversarial examples that were misclassified by AlexNet. Figure 18
shows incorrect predictions of AlexNet being used for adversarial examples. The images
in the first and third columns are correctly and incorrectly predicted outputs, respectively,
and the images in the center columns differ from the images in the first and third columns.
All the images in the third column were predicted to be “ostrich, Struthio camelus”.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 36

examples. In [118], they argued that CNN architectures tend to learn the statistical prop-
erties of the training dataset instead of “context”, which is a high-level abstract concept for
recognizing objects. To solve adversarial examples, researchers have presented partial so-
lutions corresponding to specific adversarial examples using specific generation methods.
This remains an open research area.

3.1. Adversarial Attacks
3.1.1. L-BFGS Attack

Szegedy et al. proposed a “weird” method to fool neural networks for vision tasks
[20]. The goal of this method is to find the input perturbation 𝑥𝑥′ that minimizes the Eu-
clidean distance ‖x − x′‖2 from the normalized input 𝑥𝑥 within the bounds of the input
domain, where 𝑥𝑥′ leads to misclassification in the network model. To solve this optimi-
zation problem under box-constrained conditions, Szegedy et al. utilized the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method [119] to locate the 𝑥𝑥′
that minimizes the loss function in (2):

𝑐𝑐‖𝑥𝑥 − 𝑥𝑥′‖2 + ℒ(𝑥𝑥′, 𝑡𝑡) (2)

Here, ℒ(𝑥𝑥′, 𝑡𝑡) represents the loss function of the target model, and 𝑡𝑡 represents the
target misclassification label. The optimization process given by (2) was iteratively per-
formed to find the input perturbation 𝑥𝑥′, i.e., an adversarial example increasing c until
𝑥𝑥′ was reached. In [21], experimental results indicated that an L-BFGS attack generated
very close and visually difficult adversarial examples that were misclassified by AlexNet.
Figure 18 shows incorrect predictions of AlexNet being used for adversarial examples.
The images in the first and third columns are correctly and incorrectly predicted outputs,
respectively, and the images in the center columns differ from the images in the first and
third columns. All the images in the third column were predicted to be “ostrich, Struthio
camelus”.

Figure 18. Adversarial examples by L-BFGS attack generated for AlexNet. All the images in the third
columns of (a) and (b) were predicted to be “ostrich, Struthio camelus”.

In the context of the L-BFGS attack, generating an adversarial example is used to
change the paradigm of generating an adversarial example into an optimization problem.
In addition, it provides the possibility of generating adversarial examples by applying
various p-norms and Euclidean distances.

Figure 18. Adversarial examples by L-BFGS attack generated for AlexNet. All the images in the third
columns of (a,b) were predicted to be “ostrich, Struthio camelus”.

In the context of the L-BFGS attack, generating an adversarial example is used to
change the paradigm of generating an adversarial example into an optimization problem.
In addition, it provides the possibility of generating adversarial examples by applying
various p-norms and Euclidean distances.

Appl. Sci. 2023, 13, 4422 17 of 36

3.1.2. FGSM Attack

Goodfellow et al. [114] proposed the simplest and fastest method for constructing
adversarial examples. To reduce the classification confidence and increase the confusion
between classes, the fast gradient sign method (FGSM) attack adds perturbations and
linearizes the loss function in the gradient direction as follows:

x′ = x + ε·sign(∇X J(x, y)) (3)

where x′ represents an adversarial example from the given input x, ε is a randomly selected
initial hyperparameter, sign, (·) denotes the signum function, y represents the true label
corresponding to x, J(·) represents the cost function for training the neural network model,
and∇X(·) is the gradient of x. The FGSM attack employs analytical computation to calculate
the gradient, whereas the L-BFGS attack involves numerical optimization; thus, the FGSM
attack finds a solution significantly faster. This implies that the FGSM attack cannot produce
a perceptual minimal difference between x and x′ owing to ε. Once an appropriate value of
ε is found empirically, an imperceptible adversarial sample can be obtained by applying the
values around it. In experiments involving the MNIST dataset, a shallow softmax classifier
had an error rate of 99.9% owing to an FGSM attack.

The authors argued that the output of the neural network model is vulnerable to
adversarial examples when it is excessively biased toward linear processing, and the gener-
alization of adversarial examples across different models can be explained by adversarial
perturbations being highly aligned with the weight vectors of a model and different models
learning similar functions when trained to perform the same task. An adversarial example
and perturbation generated by an FGSM attack are shown in Figure 17.

Kurakin et al. [120] improved the effectiveness of FGSM attacks through a more refined
iterative optimization procedure to find the optimized solution. In their method, which is
called the Basic Iterative Method (BIM), in each iteration, an FGSM calculation is carried out
with a small step size to revise the adversarial sample and restrict the updated adversarial
example within a valid range for T iterations.

x′t+1 = clip(x′t + α·sign
(
∇X J

(
x′t, y

))
(4)

Here, αT = ε and α denotes the size of the disturbance in each iteration.

3.1.3. DeepFool Attack

Regarding the robustness of neural network models for image classification depends
on the boundaries of the interclasses formed by the model. If the output for a given input
of a neural network model is near the decision boundaries in a multiclassifier, an output
with a small disturbance leads to misclassification. A DeepFool attack [121] calculates the
distance of a sample x as an input to the closest decision boundary in the hyperplane and
considers the direction of adversarial perturbation. By extending the distance between a
point and a line in a 2D plane to the distance between the decision boundaries and classes
on the hyperplane, as shown in Figure 19, a DeepFool attack produces an adversarial
example x′ by iteratively perturbing the input x along the linearized decision boundaries
between classes until a target is achieved. In the DeepFool algorithm, the input x in class
j moves iteratively to the estimated closest decision boundary to generate an adversarial
example x′ for misclassification.

The DeepFool attack was applied to various neural network models, including LeNet,
NIN (Network-IN-Network), and GoogLeNet, in order to evaluate its performance and
compare it to leading attack methods. The experimental results indicated that DeepFool
generated adversarial examples that were approximately five times smaller than the results
of FGSM for the MNIST and CIFAR-10 datasets and approximately 10 times smaller for the
ImageNet dataset. Furthermore, compared to the L-BFGS attack, DeepFool generated a
smaller perturbation while increasing the computation speed.

Appl. Sci. 2023, 13, 4422 18 of 36
Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 36

Figure 19. Hyperplane 𝐺𝐺𝑖𝑖separates data points of different classes [122] by extending the distance
between a point and a line in a 2D plane to the distance between the decision boundaries and classes
on the hyperplane.

3.1.4. JSMA
The aim of the saliency map is to show how the original classification models make

predictions [123]. The JSMA, proposed by Papernot et al. [124], focuses on manipulating
the pixels of an image to change its classification by using the gradients of the saliency
map. This attack method models gradients proportional to the probability of a specific
class and changes pixels with the largest gradient to increase the chance of classifying the
image into a target class. The Jacobian matrix is used to determine how changes in the
input affect the logit outputs of different classes. The adversarial saliency map is then cre-
ated based on the information obtained from the Jacobian matrix to select the pixels that
need to be disturbed to achieve the desired changes in the logit outputs.

Depending on where the saliency map is selected, JSMA has several variants. Figure
20 shows an illustration of the JSMA variant based on the softmax probability. The JSMA
is effective in fooling neural network models by only modifying a small number of input
features. For example, Papernot et al. [124] fools the target MNIST model by 4% modifi-
cation of the input features. The JSMA is simpler for computing the minimum perturba-
tion for generating adversarial examples when the model is susceptible to changes in the
input values. The JSMA has a high success rate and transfer rate but also a large compu-
tational burden.

Figure 20. JSMA variant JSMA + F based on the logit saliency map. The JSMA is effective in fooling
neural network models by only modifying a small number of input features.

Figure 19. Hyperplane Gi separates data points of different classes [122] by extending the distance
between a point and a line in a 2D plane to the distance between the decision boundaries and classes
on the hyperplane.

3.1.4. JSMA

The aim of the saliency map is to show how the original classification models make
predictions [123]. The JSMA, proposed by Papernot et al. [124], focuses on manipulating
the pixels of an image to change its classification by using the gradients of the saliency map.
This attack method models gradients proportional to the probability of a specific class and
changes pixels with the largest gradient to increase the chance of classifying the image into
a target class. The Jacobian matrix is used to determine how changes in the input affect the
logit outputs of different classes. The adversarial saliency map is then created based on the
information obtained from the Jacobian matrix to select the pixels that need to be disturbed
to achieve the desired changes in the logit outputs.

Depending on where the saliency map is selected, JSMA has several variants. Figure 20
shows an illustration of the JSMA variant based on the softmax probability. The JSMA
is effective in fooling neural network models by only modifying a small number of in-
put features. For example, Papernot et al. [124] fools the target MNIST model by 4%
modification of the input features. The JSMA is simpler for computing the minimum
perturbation for generating adversarial examples when the model is susceptible to changes
in the input values. The JSMA has a high success rate and transfer rate but also a large
computational burden.

3.1.5. CW Attacks

Carlini and Wagner presented a series of adversarial attacks based on optimization,
which can produce adversarial examples with L0, L2, and L∞ norm measurements [125].
The authors used an empirically chosen loss function to cause maximum misclassification
in each norm-based attack, as follows:

L
(
x′, t

)
= max

(
max
i 6=t

{
Z
(

x′
)
(i)

}
− Z

(
x′
)
(t),−κ

)
, (5)

where Z(x′)(i) represents i-class’s logit, t represents the target label, and κ determines
the minimum level of confidence for the adversarial examples. The loss function in (5)
minimizes the difference between the logit values of target label, t, and the next closest
class. Once the target label, t, has the highest logit value, the optimization stops when the

Appl. Sci. 2023, 13, 4422 19 of 36

difference between t and the next closest class exceeds κ. If t does not have the highest logit
value, minimizing the loss function, L(x′, t) narrows the gap between the logit values, t,
and the class with the highest value.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 36

Figure 19. Hyperplane 𝐺𝐺𝑖𝑖separates data points of different classes [122] by extending the distance
between a point and a line in a 2D plane to the distance between the decision boundaries and classes
on the hyperplane.

3.1.4. JSMA
The aim of the saliency map is to show how the original classification models make

predictions [123]. The JSMA, proposed by Papernot et al. [124], focuses on manipulating
the pixels of an image to change its classification by using the gradients of the saliency
map. This attack method models gradients proportional to the probability of a specific
class and changes pixels with the largest gradient to increase the chance of classifying the
image into a target class. The Jacobian matrix is used to determine how changes in the
input affect the logit outputs of different classes. The adversarial saliency map is then cre-
ated based on the information obtained from the Jacobian matrix to select the pixels that
need to be disturbed to achieve the desired changes in the logit outputs.

Depending on where the saliency map is selected, JSMA has several variants. Figure
20 shows an illustration of the JSMA variant based on the softmax probability. The JSMA
is effective in fooling neural network models by only modifying a small number of input
features. For example, Papernot et al. [124] fools the target MNIST model by 4% modifi-
cation of the input features. The JSMA is simpler for computing the minimum perturba-
tion for generating adversarial examples when the model is susceptible to changes in the
input values. The JSMA has a high success rate and transfer rate but also a large compu-
tational burden.

Figure 20. JSMA variant JSMA + F based on the logit saliency map. The JSMA is effective in fooling
neural network models by only modifying a small number of input features.

Figure 20. JSMA variant JSMA + F based on the logit saliency map. The JSMA is effective in fooling
neural network models by only modifying a small number of input features.

The authors demonstrated that CW attacks had significantly higher success rates
compared to state-of-the-art attacks when evaluated on various datasets, including MNIST,
CIFAR 10, and ImageNet. The CW attacks in L0, L2, and L∞ were superior to the JSMA,
DeepFool attack, and FGSM attacks, respectively. However, the results indicated that the
JSMA has a higher success rate than the L0-CW attack for ImageNet, which was larger than
MNIST and CIFAR-10. Defensive distillation, which was the best defense at the time, had a
100% success rate.

In addition to the five adversarial attack methods that significantly affected the vision
task, various attack methods omitted from this chapter have been proposed, such as
universal adversarial perturbation [126], input-agnostic attacks, the variational autoencoder
(VAE) attack [127], generative models, and the zero-order optimization (ZOO) attack [128].

Most of the attack methods mentioned in this paper search for a solution in the direc-
tion of solving the optimization problem and require considerable time and computational
power to create adversarial examples. Figure 21 shows adversarial examples for four
adversarial attacks, with the exception of the L-BFGS attack. Interestingly, the human
visual system is unaffected by adversarial attacks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 36

3.1.5. CW Attacks
Carlini and Wagner presented a series of adversarial attacks based on optimization,

which can produce adversarial examples with 𝐿𝐿0, 𝐿𝐿2, and 𝐿𝐿∞ norm measurements [125].
The authors used an empirically chosen loss function to cause maximum misclassification
in each norm-based attack, as follows:

ℒ(𝑥𝑥′, 𝑡𝑡) = max �max
𝑖𝑖≠𝑡𝑡

�𝑍𝑍(𝑥𝑥′)(𝑖𝑖)� − 𝑍𝑍(𝑥𝑥′)(𝑡𝑡),−𝜅𝜅�, (5)

where 𝑍𝑍(𝑥𝑥′)(𝑖𝑖) represents i-class’s logit, t represents the target label, and 𝜅𝜅 determines
the minimum level of confidence for the adversarial examples. The loss function in (5)
minimizes the difference between the logit values of target label, t, and the next closest
class. Once the target label, t, has the highest logit value, the optimization stops when the
difference between t and the next closest class exceeds 𝜅𝜅. If t does not have the highest
logit value, minimizing the loss function, ℒ(𝑥𝑥′, 𝑡𝑡) narrows the gap between the logit
values, t, and the class with the highest value.

The authors demonstrated that CW attacks had significantly higher success rates
compared to state-of-the-art attacks when evaluated on various datasets, including
MNIST, CIFAR 10, and ImageNet. The CW attacks in 𝐿𝐿0, 𝐿𝐿2, and 𝐿𝐿∞ were superior to
the JSMA, DeepFool attack, and FGSM attacks, respectively. However, the results indi-
cated that the JSMA has a higher success rate than the 𝐿𝐿0-CW attack for ImageNet, which
was larger than MNIST and CIFAR-10. Defensive distillation, which was the best defense
at the time, had a 100% success rate.

In addition to the five adversarial attack methods that significantly affected the vision
task, various attack methods omitted from this chapter have been proposed, such as uni-
versal adversarial perturbation [126], input-agnostic attacks, the variational autoencoder
(VAE) attack [127], generative models, and the zero-order optimization (ZOO) attack
[128].

Most of the attack methods mentioned in this paper search for a solution in the di-
rection of solving the optimization problem and require considerable time and computa-
tional power to create adversarial examples. Figure 21 shows adversarial examples for
four adversarial attacks, with the exception of the L-BFGS attack. Interestingly, the human
visual system is unaffected by adversarial attacks.

Figure 21. Comparison of benign image and attacked images that are perturbated by FGSM, JSMA,
CW, and DeepFool attack.

3.2. Adversarial Defenses
Researchers have proposed various methods to counter adversarial attacks [114,129–

135]. Adversarial attack defenses have two primary approaches: enhancing the robustness
of the model and detecting adversarial examples in neural networks. In this section, we
describe the defense methods that represent significant advancements in the field of de-
fense from adversarial attacks.

Figure 21. Comparison of benign image and attacked images that are perturbated by FGSM, JSMA,
CW, and DeepFool attack.

Appl. Sci. 2023, 13, 4422 20 of 36

3.2. Adversarial Defenses

Researchers have proposed various methods to counter adversarial attacks [114,129–135].
Adversarial attack defenses have two primary approaches: enhancing the robustness of the
model and detecting adversarial examples in neural networks. In this section, we describe
the defense methods that represent significant advancements in the field of defense from
adversarial attacks.

3.2.1. Adversarial Training

Adversarial training enhances the resilience of neural network models by incorporat-
ing adversarial examples created by adversarial attacks into the training dataset. Conse-
quently, the neural network model is retrained until it is robust to the generated adversarial
examples. For either multiple attacks or a single attack, the adversarial training method
improves the accuracy and robustness of the updated model. Adversarial training has been
proven to be one of the most effective methods for defending against adversarial attacks,
according to recent studies.

Goodfellow et al. [114] proposed enhancing the robustness of a neural network by
incorporating both regular (non-adversarial) and adversarial examples generated by the
FGSM attack into the training dataset. In their experiment, the neural network model
reduced the rate due to adversarial examples generated by the FGSM attacks. Although,
this adversarial training method was effective for all adversary examples from FGSM
attacks, it was vulnerable to other attacks based on optimization and iterative methods.
The performance of defense methods against adversarial attacks has improved gradually;
therefore, Fischer et al. [132] introduced a method of adversarial training called the projec-
tion gradient descent (PGD) method. This method utilizes the iterative version of the fast
gradient sign method (FGSM) with the L∞ norm, known as PGD, to train neural networks
on both benign and adversarial examples. Madry’s method significantly improves the
robustness of neural network models against FGSM attacks, PGD attacks, CW attacks with
L∞ norms, and distributional adversarial attacks (DAAs), which were the strongest attacks
at the time.

However, the computational complexity is so high that PGD adversarial training
requires approximately 72 h to train a basic ResNet for CIFAR-10 on a Titan V GPU. In
addition, the PGD adversarial training method was found to be effective for L∞ norm-based
attacks but vulnerable to Lp norm-based attacks such as CW with the Lp norm [136,137].

The ensemble adversarial training (ETA) [129] method involves using adversarial
examples from multiple pretrained models to enhance the training process, thereby increas-
ing the robustness of the neural network against a wider range of adversarial attacks. In an
experiment, ETA models improved the robustness of black-box and gray-box attacks to a
greater degree than PGD adversarial training.

Defenses based on adversarial training aim to make the model more robust by in-
corporating adversarial examples generated by a specific attack into the training process.
Consequently, adversarial training techniques that are robust to specific attacks are vul-
nerable to other attacks. To overcome this limitation, a generative adversarial training
method [138] that generates an adversarial sample in the adversarial training process was
proposed. In the proposed method, adversarial samples with perturbations similar to those
of the FGSM are generated by a generator that extracts gradients from a classifier trained
by benign samples as inputs. Training is performed on benign and adversarial samples.
Thus, compared with the training techniques for FGSM attacks, it is possible to obtain a
more robust model.

An auxiliary classifier generative adversarial network (AC-GAN) [139] method was
proposed to enhance the generalization of adversarial examples generated by PGD attacks.
It generates fake samples similar to PGD adversarial samples and uses them to train the
auxiliary classifier with the pretrained discriminator. The Rob-GAN [140], a variant of
AC-GAN, combines a generator, a discriminator, and an adversarial attacker into one

Appl. Sci. 2023, 13, 4422 21 of 36

system and performs end-to-end training. This leads to improved performance with a
stronger generator and robust discriminator, as demonstrated by experimental results.

3.2.2. Defensive Distillation

The purpose of distillation [141] is to reduce the size of DNN architectures or ensembles
of DNN architectures and also reduce the amount of computing resources required, so
they can be deployed on resource-constrained devices such as IoTs and smartphones. This
technique trains a second DNN with lower dimensions, while maintaining accuracy, by
using the class probability vector generated by an ensemble of DNNs as input.

The main idea behind this technique is that the knowledge acquired by the DNN
during training is not only encoded in the weight parameters but also in the probability
vectors generated by the network. Distillation transfers this class knowledge from the
probability vectors to other DNN architectures. It does so by using the classification
predictions of the first DNN to label the inputs in the training dataset of the second DNN.
The use of class probabilities instead of hard labels provides additional information about
each class and can be obtained from the additional entropy they contain.

Defensive distillation [130] was proposed as a defense for DNNs against adversarial
attacks, where adversarial samples are not allowed. The idea behind defensive distillation,
as depicted in Figure 22, is that transferring knowledge in the form of probability vectors
from larger networks to smaller networks can help maintain accuracy comparable to larger
networks and also enhance the generalization abilities of deep neural networks outside of
their training dataset, thereby increasing their resistance to perturbations.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 36

This technique trains a second DNN with lower dimensions, while maintaining accuracy,
by using the class probability vector generated by an ensemble of DNNs as input.

The main idea behind this technique is that the knowledge acquired by the DNN
during training is not only encoded in the weight parameters but also in the probability
vectors generated by the network. Distillation transfers this class knowledge from the
probability vectors to other DNN architectures. It does so by using the classification pre-
dictions of the first DNN to label the inputs in the training dataset of the second DNN.
The use of class probabilities instead of hard labels provides additional information about
each class and can be obtained from the additional entropy they contain.

Defensive distillation [130] was proposed as a defense for DNNs against adversarial
attacks, where adversarial samples are not allowed. The idea behind defensive distillation,
as depicted in Figure 22, is that transferring knowledge in the form of probability vectors
from larger networks to smaller networks can help maintain accuracy comparable to
larger networks and also enhance the generalization abilities of deep neural networks out-
side of their training dataset, thereby increasing their resistance to perturbations.

However, defensive distillation has been found to be ineffective against adversarial
examples generated by JSMA-F attacks. This defense strategy was demonstrated to be
vulnerable to a variation of the JSMA-Z and CW attacks. Carlini and Wigner demon-
strated that this defense can be bypassed by JSMA-Z variants that divide the logits by the
temperature constant T prior to computing the gradients [142].

Figure 22. Overview of defense mechanism based on a transfer of knowledge contained in proba-
bility vectors through distillation. The main idea behind distillation is that the knowledge acquired
by the DNN during training is not only encoded in the weight parameters but also in the probability
vectors generated by the network.

3.2.3. Randomization
Recently developed defense techniques tend to rely on randomization schemes to

mitigate the effects of adversarial examples on the input and feature domains. Inspired by
these types of defense techniques, DNNs are robust to random perturbations. Defense
methods based on randomization involve randomizing adversarial perturbations using a
random effect.

Xie et al. [143] proposed a defense method called RRP to combat adversarial effects.
The method involves transforming the input through random resizing and padding to
make it difficult for an attacker to calculate the gradient of the loss on the input. This is
achieved by adding two layers after the input layer of a neural network, which converts
the input image to multiple resized images, and then randomly pads them with zeros as
shown in Figure 23. The final image is selected at random for classification. The authors
showed that this defense method requires no fine-tuning, does not compromise accuracy
on clean examples, and can be used in conjunction with other defense techniques such as
adversarial training.

Figure 22. Overview of defense mechanism based on a transfer of knowledge contained in probability
vectors through distillation. The main idea behind distillation is that the knowledge acquired by the
DNN during training is not only encoded in the weight parameters but also in the probability vectors
generated by the network.

However, defensive distillation has been found to be ineffective against adversarial
examples generated by JSMA-F attacks. This defense strategy was demonstrated to be vul-
nerable to a variation of the JSMA-Z and CW attacks. Carlini and Wigner demonstrated that
this defense can be bypassed by JSMA-Z variants that divide the logits by the temperature
constant T prior to computing the gradients [142].

3.2.3. Randomization

Recently developed defense techniques tend to rely on randomization schemes to
mitigate the effects of adversarial examples on the input and feature domains. Inspired
by these types of defense techniques, DNNs are robust to random perturbations. Defense

Appl. Sci. 2023, 13, 4422 22 of 36

methods based on randomization involve randomizing adversarial perturbations using a
random effect.

Xie et al. [143] proposed a defense method called RRP to combat adversarial effects.
The method involves transforming the input through random resizing and padding to
make it difficult for an attacker to calculate the gradient of the loss on the input. This is
achieved by adding two layers after the input layer of a neural network, which converts
the input image to multiple resized images, and then randomly pads them with zeros as
shown in Figure 23. The final image is selected at random for classification. The authors
showed that this defense method requires no fine-tuning, does not compromise accuracy
on clean examples, and can be used in conjunction with other defense techniques such as
adversarial training.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 36

Figure 23. Pipeline of randomization-based defense mechanism. The RRP method involves trans-
forming the input through random resizing and padding to make it difficult for an attacker to cal-
culate the gradient of the loss on the input.

This defense technique showed robustness against white-box attacks such as FGSM,
BIM, DeepFool, and CW. It was second in the 2017 NIPS adversarial example defense
challenge [143]. Xie et al. [143] believed that random resizing and padding had a large
enough computational space to deter attackers. However, [110] and Uesato et al. [144]
discovered that the technique was based on gradient masking [110] and could be defeated
using expectation over transformation (EOT) [145].

3.2.4. Defense-GAN
Defense-GAN [146] is a technique for defending against both white-box and black-

box adversarial attacks on classification networks.
GANs are trained on a classification dataset through unsupervised learning. Classi-

fication in a typical GAN can be trained using the original training images, the recon-
structed images generated by G, or a combination of both. Ideally, if the GAN is properly
trained and has a strong representation of the data, the original clean image and its recon-
struction should be similar. Therefore, these two classifier training methods are expected
to perform similarly. From this point of view, as shown in Figure 24, the defensive strate-
gies of Defensive-GAN that differ from other defense mechanisms can be represented as
follows:

1. Defense-GAN can be utilized with any classifier and does not alter the classifier’s
design. It functions as an auxiliary step or a preprocessing step before the classification
process.

2. If the GAN has a strong representation, there is no need to retrain the classifier and
the integration of Defense-GAN should not cause a significant drop in performance.

3. Defense-GAN can be applied as a defense against any type of attack as it does not
rely on a specific attack model. It simply takes advantage of the generative capabilities of
GANs to reconstruct adversarial examples.

4. Defense-GAN is highly nonlinear, making it challenging for white-box gradient-
based attacks due to the gradient descent loop.

Samangouei [146] showed that Defense-GAN is effective in identifying and rejecting
adversarial examples. In particular, they revealed that this method is highly effective in
detecting FGSM adversarial examples in MNIST and fashion MNIST datasets, resulting
in high AUC scores. While its robustness may not match that of adversarial training, De-
fense-GAN demonstrates greater stability against FGSM compared to MagNet and adver-
sarial training when tested on MNIST and F-MNIST datasets in black-box settings. In ad-
dition, Defense-GAN performed better than MagNet and adversarial training against

Figure 23. Pipeline of randomization-based defense mechanism. The RRP method involves trans-
forming the input through random resizing and padding to make it difficult for an attacker to
calculate the gradient of the loss on the input.

This defense technique showed robustness against white-box attacks such as FGSM,
BIM, DeepFool, and CW. It was second in the 2017 NIPS adversarial example defense
challenge [143]. Xie et al. [143] believed that random resizing and padding had a large
enough computational space to deter attackers. However, [110] and Uesato et al. [144]
discovered that the technique was based on gradient masking [110] and could be defeated
using expectation over transformation (EOT) [145].

3.2.4. Defense-GAN

Defense-GAN [146] is a technique for defending against both white-box and black-box
adversarial attacks on classification networks.

GANs are trained on a classification dataset through unsupervised learning. Classifi-
cation in a typical GAN can be trained using the original training images, the reconstructed
images generated by G, or a combination of both. Ideally, if the GAN is properly trained
and has a strong representation of the data, the original clean image and its reconstruction
should be similar. Therefore, these two classifier training methods are expected to per-
form similarly. From this point of view, as shown in Figure 24, the defensive strategies of
Defensive-GAN that differ from other defense mechanisms can be represented as follows:

1. Defense-GAN can be utilized with any classifier and does not alter the classifier’s design.
It functions as an auxiliary step or a preprocessing step before the classification process.

Appl. Sci. 2023, 13, 4422 23 of 36

2. If the GAN has a strong representation, there is no need to retrain the classifier and
the integration of Defense-GAN should not cause a significant drop in performance.

3. Defense-GAN can be applied as a defense against any type of attack as it does not rely
on a specific attack model. It simply takes advantage of the generative capabilities of
GANs to reconstruct adversarial examples.

4. Defense-GAN is highly nonlinear, making it challenging for white-box gradient-based
attacks due to the gradient descent loop.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 36

FGSM and CW attacks for both MNIST and F-MNIST. However, Athalye et al. [147] found
that Defense-GAN is not effective when applied to CIFAR-10 datasets and is vulnerable
to back-pass differentiable attacks (BPDAs).

Figure 24. Overview of the Defense-GAN [146]. If the GAN is properly trained and has a strong
representation of the data, the original clean image and its reconstruction should be similar.

3.2.5. Adversary Detector Networks
Metzen et al. [148] presented a method for detecting adversarial examples by enhanc-

ing the classification network with a small subnetwork that serves as a detector in Figure
25. Detectors, which are sometimes referred to as adversarial detection networks, train
their inputs to classify network inputs as benign examples or specific adversarial exam-
ples. For this, they first train the classification networks on a benign (non-adversarial) da-
taset as usual and then adversarial examples are generated for each data point of the train-
ing set using one of the attack methods in Section 3.1.

To train the classification network, benign datasets were first used, and then adver-
sarial examples were generated for each data point of the training datasets via FGSM,
BIM, and DeepFool attacks. Thus, a binary classification dataset that has double the size
of the original dataset consisting of the original data (label 0) and its adversarial examples
(label 1) was obtained. The training procedure of the detector minimizes the cross-entropy
of the probability of the input adversary and freezes the weights of the classification net-
work.

This approach was successful in mitigating FGSM, BIM, and DeepFool attacks on the
CIFAR-10 and 10-class ImageNet datasets. Metzen et al. [148] asserted that the locations
of the detector network in different layers lead to different results depending on the type
of attack and that the proposed method presents a greater challenge for attackers, as they
must generate adversarial examples that can fool both the classifier and the detector. Gong
et al. [133] put forth a defense strategy similar to Metzen et al. [148] utilizing a binary
classifier network trained to distinguish between adversarial and benign examples. Their
method deals with the classifier and detector separately.

Figure 25. Overview of the adversary detector network.

The experimental results indicated that the detector in Gong et al. [133] is sensitive
to perturbation values in FGSM and BIM attacks and that a detector trained for FGSM
attacks cannot detect other attacks. Gong et al. [133] and Grosse et al. [134] proposed

Figure 24. Overview of the Defense-GAN [146]. If the GAN is properly trained and has a strong
representation of the data, the original clean image and its reconstruction should be similar.

Samangouei [146] showed that Defense-GAN is effective in identifying and rejecting
adversarial examples. In particular, they revealed that this method is highly effective in
detecting FGSM adversarial examples in MNIST and fashion MNIST datasets, resulting
in high AUC scores. While its robustness may not match that of adversarial training,
Defense-GAN demonstrates greater stability against FGSM compared to MagNet and
adversarial training when tested on MNIST and F-MNIST datasets in black-box settings. In
addition, Defense-GAN performed better than MagNet and adversarial training against
FGSM and CW attacks for both MNIST and F-MNIST. However, Athalye et al. [147] found
that Defense-GAN is not effective when applied to CIFAR-10 datasets and is vulnerable to
back-pass differentiable attacks (BPDAs).

3.2.5. Adversary Detector Networks

Metzen et al. [148] presented a method for detecting adversarial examples by enhanc-
ing the classification network with a small subnetwork that serves as a detector in Figure 25.
Detectors, which are sometimes referred to as adversarial detection networks, train their
inputs to classify network inputs as benign examples or specific adversarial examples. For
this, they first train the classification networks on a benign (non-adversarial) dataset as
usual and then adversarial examples are generated for each data point of the training set
using one of the attack methods in Section 3.1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 36

FGSM and CW attacks for both MNIST and F-MNIST. However, Athalye et al. [147] found
that Defense-GAN is not effective when applied to CIFAR-10 datasets and is vulnerable
to back-pass differentiable attacks (BPDAs).

Figure 24. Overview of the Defense-GAN [146]. If the GAN is properly trained and has a strong
representation of the data, the original clean image and its reconstruction should be similar.

3.2.5. Adversary Detector Networks
Metzen et al. [148] presented a method for detecting adversarial examples by enhanc-

ing the classification network with a small subnetwork that serves as a detector in Figure
25. Detectors, which are sometimes referred to as adversarial detection networks, train
their inputs to classify network inputs as benign examples or specific adversarial exam-
ples. For this, they first train the classification networks on a benign (non-adversarial) da-
taset as usual and then adversarial examples are generated for each data point of the train-
ing set using one of the attack methods in Section 3.1.

To train the classification network, benign datasets were first used, and then adver-
sarial examples were generated for each data point of the training datasets via FGSM,
BIM, and DeepFool attacks. Thus, a binary classification dataset that has double the size
of the original dataset consisting of the original data (label 0) and its adversarial examples
(label 1) was obtained. The training procedure of the detector minimizes the cross-entropy
of the probability of the input adversary and freezes the weights of the classification net-
work.

This approach was successful in mitigating FGSM, BIM, and DeepFool attacks on the
CIFAR-10 and 10-class ImageNet datasets. Metzen et al. [148] asserted that the locations
of the detector network in different layers lead to different results depending on the type
of attack and that the proposed method presents a greater challenge for attackers, as they
must generate adversarial examples that can fool both the classifier and the detector. Gong
et al. [133] put forth a defense strategy similar to Metzen et al. [148] utilizing a binary
classifier network trained to distinguish between adversarial and benign examples. Their
method deals with the classifier and detector separately.

Figure 25. Overview of the adversary detector network.

The experimental results indicated that the detector in Gong et al. [133] is sensitive
to perturbation values in FGSM and BIM attacks and that a detector trained for FGSM
attacks cannot detect other attacks. Gong et al. [133] and Grosse et al. [134] proposed

Figure 25. Overview of the adversary detector network.

Appl. Sci. 2023, 13, 4422 24 of 36

To train the classification network, benign datasets were first used, and then adversar-
ial examples were generated for each data point of the training datasets via FGSM, BIM,
and DeepFool attacks. Thus, a binary classification dataset that has double the size of the
original dataset consisting of the original data (label 0) and its adversarial examples (label 1)
was obtained. The training procedure of the detector minimizes the cross-entropy of the
probability of the input adversary and freezes the weights of the classification network.

This approach was successful in mitigating FGSM, BIM, and DeepFool attacks on the
CIFAR-10 and 10-class ImageNet datasets. Metzen et al. [148] asserted that the locations
of the detector network in different layers lead to different results depending on the type
of attack and that the proposed method presents a greater challenge for attackers, as
they must generate adversarial examples that can fool both the classifier and the detector.
Gong et al. [133] put forth a defense strategy similar to Metzen et al. [148] utilizing a binary
classifier network trained to distinguish between adversarial and benign examples. Their
method deals with the classifier and detector separately.

The experimental results indicated that the detector in Gong et al. [133] is sensitive
to perturbation values in FGSM and BIM attacks and that a detector trained for FGSM
attacks cannot detect other attacks. Gong et al. [133] and Grosse et al. [134] proposed similar
methods that changed the training procedure, but their detection results were limited and
vulnerable to the detection of a specific attack.

In conclusion, adversary detector networks are controversial methods for detecting
adversarial examples. For example, powerful attacks, such as CW attacks, have a relatively
high false-positive rate and respond sensitively to perturbation parameters to generate
adversarial examples.

4. Brain-Inspired Neural Architectures against Adversarial Attacks
4.1. CNN with Feedback Model

In many neuroscience studies, the robustness of human vision has been associated
with feedforward signals from bottom-up pathways in the visual cortex. It has been
argued that this association is due to the interaction between the feedback signals in the
top-down pathway.

In contrast to CNN models, the human visual cortex has not only feedforward but
also feedback connections propagating from low-level visual cortical similar to predictive
coding models [149].

Inspired by this, a CNN model with feedback (CNN-F) was developed, as shown in
Figure 26 [150]. The proposed model reinforces the CNN by sharing the feedback generation
network between each layer. The experimental results of applying the proposed model
to the MNIST dataset indicated that the different layers of the CNN-F model captured
different aspects of the reconstructed image, and that the reconstructed image was cleaner
after 10 iterations.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 36

similar methods that changed the training procedure, but their detection results were lim-
ited and vulnerable to the detection of a specific attack.

In conclusion, adversary detector networks are controversial methods for detecting
adversarial examples. For example, powerful attacks, such as CW attacks, have a rela-
tively high false-positive rate and respond sensitively to perturbation parameters to gen-
erate adversarial examples.

4. Brain-Inspired Neural Architectures against Adversarial Attacks
4.1. CNN with Feedback Model

In many neuroscience studies, the robustness of human vision has been associated
with feedforward signals from bottom-up pathways in the visual cortex. It has been ar-
gued that this association is due to the interaction between the feedback signals in the top-
down pathway.

In contrast to CNN models, the human visual cortex has not only feedforward but
also feedback connections propagating from low-level visual cortical similar to predictive
coding models [149].

Inspired by this, a CNN model with feedback (CNN-F) was developed, as shown in
Figure 26 [150]. The proposed model reinforces the CNN by sharing the feedback gener-
ation network between each layer. The experimental results of applying the proposed
model to the MNIST dataset indicated that the different layers of the CNN-F model cap-
tured different aspects of the reconstructed image, and that the reconstructed image was
cleaner after 10 iterations.

Figure 26. Sequential graphical model of the CNN-F (k iterations). Latent variables (z) are inferred
by propagating along both bottom-up and top-down pathways.

Although the proposed model was not applied to optimization-based adversarial at-
tacks, it was more robust than the CNN model against Gaussian noise addition, blurring,
and occlusion attacks.

4.2. Hyperdimensional Computing Model
Inspired by the brain’s efficient and robust learning, a hyperdimensional computing

model was proposed. It is a cognitive model that converts raw data into hyperdimensional
vectors and then performs operations such as dot product and addition between each vec-
tor.

In [151], HDC was employed as a robust learning solution for diagnosing intelligent
fault problems against various black-box adversarial attacks. The black-box attack was
carried out using a transferable attack strategy [152]. A deep learning model was trained
as a wide deep convolutional neural network (WDCNN), and artificial test samples gen-
erated by this model were then transferred to target neural network models as shown in
Figure 27.

Figure 26. Sequential graphical model of the CNN-F (k iterations). Latent variables (z) are inferred
by propagating along both bottom-up and top-down pathways.

Appl. Sci. 2023, 13, 4422 25 of 36

Although the proposed model was not applied to optimization-based adversarial
attacks, it was more robust than the CNN model against Gaussian noise addition, blurring,
and occlusion attacks.

4.2. Hyperdimensional Computing Model

Inspired by the brain’s efficient and robust learning, a hyperdimensional computing
model was proposed. It is a cognitive model that converts raw data into hyperdimen-
sional vectors and then performs operations such as dot product and addition between
each vector.

In [151], HDC was employed as a robust learning solution for diagnosing intelligent
fault problems against various black-box adversarial attacks. The black-box attack was
carried out using a transferable attack strategy [152]. A deep learning model was trained as
a wide deep convolutional neural network (WDCNN), and artificial test samples generated
by this model were then transferred to target neural network models as shown in Figure 27.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 25 of 36

In an experiment, they selected nine deep learning models, including recurrent
(LSTM [153] and GRU [154]), convolutional (WDCNN [155]), and hybrid (convolutional
recurrent neural network, spiking convolutional recurrent network [151]), and their vari-
ations, and applied them to the proposed HDC-based model. To evaluate the perfor-
mance, adversarial examples were generated by four attacks: FGSM, BIM, momentum it-
erative, and robust optimization attacks. The experimental results indicated that the HDC-
based model improved the resiliency of the deep learning methods by up to 67.5%. In
addition, it showed improved speed in training, with a boost of up to 25.1 times compared
to other deep learning models tested. This implies that HDC could offer both good per-
formance and efficiency in combating adversarial attacks.

Figure 27. Overview of the HDC model. A deep learning model was trained as a wide deep convo-
lutional neural network, and artificial test samples generated by this model were then transferred
to target neural network models.

4.3. Integrated Contour Model
Under difficult viewing conditions, the brain uses a variety of contextual modulation

techniques, whereby signals from outside the RF of neurons are altered within RF re-
sponses to augment weak and confusing feedforward inputs. One such technique, con-
tour integration [156], is employed with edge extraction from the primary visual cortex
(V1). Contour integration was first observed psycho-physically as the popping out of pat-
terns of small line segments that followed smooth trajectories in the presence of distractors
[157], as shown in Figure 28.

Next, V1 neurons whose RFs overlapped with the co-aligned fragments were found
in elevated responses [158]. As the contours of natural objects are mostly smooth with a
few sharp edges, contour integration is thought to be a mechanism for separating object
contours from irrelevant backgrounds. Contour integration operates in conjunction with
edge detection. Once pertinent edges are extracted, contour integration modulates the
output of each edge-extracting neuron according to the number of neighbors that detect
co-aligned edges.

In [159], a neural network model suitable for image classification was developed by
modifying the previous standalone integrated contour model [160], and adversarial im-
ages were used to evaluate its efficiency in defending against adversarial attacks. AlexNet
was selected as the base classification model with the proposed contour integration layer
inserted after the first convolutional layer. The structure of the contour integration layer

Figure 27. Overview of the HDC model. A deep learning model was trained as a wide deep convolu-
tional neural network, and artificial test samples generated by this model were then transferred to
target neural network models.

In an experiment, they selected nine deep learning models, including recurrent
(LSTM [153] and GRU [154]), convolutional (WDCNN [155]), and hybrid (convolutional
recurrent neural network, spiking convolutional recurrent network [151]), and their varia-
tions, and applied them to the proposed HDC-based model. To evaluate the performance,
adversarial examples were generated by four attacks: FGSM, BIM, momentum iterative,
and robust optimization attacks. The experimental results indicated that the HDC-based
model improved the resiliency of the deep learning methods by up to 67.5%. In addition, it
showed improved speed in training, with a boost of up to 25.1 times compared to other
deep learning models tested. This implies that HDC could offer both good performance
and efficiency in combating adversarial attacks.

4.3. Integrated Contour Model

Under difficult viewing conditions, the brain uses a variety of contextual modulation
techniques, whereby signals from outside the RF of neurons are altered within RF responses
to augment weak and confusing feedforward inputs. One such technique, contour integra-

Appl. Sci. 2023, 13, 4422 26 of 36

tion [156], is employed with edge extraction from the primary visual cortex (V1). Contour
integration was first observed psycho-physically as the popping out of patterns of small
line segments that followed smooth trajectories in the presence of distractors [157], as
shown in Figure 28.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 36

in the proposed model is similar to that of a convolutional feature-extracting layer but
includes constraints that replicate the properties of the lateral connections of V1 neurons.
First, contour integration is a modulatory effect that occurs only when a signal exists
within the RF. Second, if there is no contour enhancement, the feedforward input passes
through. Third, the spatial extent of lateral connections is far larger than the RF of V1
neurons. To induce misclassification, one-pixel attacks were applied in the experiment.
Compared with other attacks, a one-pixel attack has advantages of applicability to more
models and the easy control of perturbations. The results of adversarial attacks on the
contour integration model and the classical AlexNet model are presented in Table 1.

As shown in Table 1, regardless of the number of pixels for perturbation, the attack
success rate was reduced compared with the results of AlexNet. In addition, the author
claimed that applying the same contour integration layer to the pretrained MobileNet
model yielded an accuracy improvement of 67% and a low attack success rate of approx-
imately 13%.

Figure 28. Example of contour integration for a natural input image. The contour integration is em-
ployed with edge extraction from the primary visual cortex (V1).

Figure 28. Example of contour integration for a natural input image. The contour integration is
employed with edge extraction from the primary visual cortex (V1).

Next, V1 neurons whose RFs overlapped with the co-aligned fragments were found
in elevated responses [158]. As the contours of natural objects are mostly smooth with a
few sharp edges, contour integration is thought to be a mechanism for separating object
contours from irrelevant backgrounds. Contour integration operates in conjunction with
edge detection. Once pertinent edges are extracted, contour integration modulates the
output of each edge-extracting neuron according to the number of neighbors that detect
co-aligned edges.

In [159], a neural network model suitable for image classification was developed by
modifying the previous standalone integrated contour model [160], and adversarial images
were used to evaluate its efficiency in defending against adversarial attacks. AlexNet
was selected as the base classification model with the proposed contour integration layer

Appl. Sci. 2023, 13, 4422 27 of 36

inserted after the first convolutional layer. The structure of the contour integration layer
in the proposed model is similar to that of a convolutional feature-extracting layer but
includes constraints that replicate the properties of the lateral connections of V1 neurons.
First, contour integration is a modulatory effect that occurs only when a signal exists within
the RF. Second, if there is no contour enhancement, the feedforward input passes through.
Third, the spatial extent of lateral connections is far larger than the RF of V1 neurons. To
induce misclassification, one-pixel attacks were applied in the experiment. Compared with
other attacks, a one-pixel attack has advantages of applicability to more models and the
easy control of perturbations. The results of adversarial attacks on the contour integration
model and the classical AlexNet model are presented in Table 1.

Table 1. Adversarial attack results by integrated contour model in [151].

Model Top-1 Accuracy Pixels Attack Success

AlexNet 36.1 ± 0.4
1 8.5 ± 0.4%
3 10.6 ± 2.2%
5 10.4 ± 2.1%

AlexNet + Contour 38.0 ± 1.1
1 8.22 ± 1.8%
3 9.76 ± 20%
5 9.55 ± 1.75%

As shown in Table 1, regardless of the number of pixels for perturbation, the attack suc-
cess rate was reduced compared with the results of AlexNet. In addition, the author claimed
that applying the same contour integration layer to the pretrained MobileNet model yielded
an accuracy improvement of 67% and a low attack success rate of approximately 13%.

4.4. Generalized Likelihood Ratio Model

The neural network and ANN of the brain operate via different mechanisms. The first
difference is that the activation of brain neurons is achieved by electrical stimulation and
detected by a threshold activation function, which is generated in each neuron, whereas
ANNs apply continuous activation functions such as the sigmoid or ReLU functions and
nonlinear transformations. The second difference is that the human brain recognizes objects
as a specific category; thus, the loss function operating in the human brain mechanism is
a discontinuous function with a value of 0 or 1, whereas the loss function of an ANN is
continuous and differentiable, similar to a cross-entropy function.

Therefore, the human neural network is not affected by the derivative of the loss
function, such as the backpropagation method but is directly affected by electrical signals
received from the sensory system or endocrine chemical system. Moreover, HDC is not
susceptible to the derivative of the loss function, unlike backpropagation.

In [161], a method inspired by the human brain’s biological learning process, the
generalized likelihood ratio (GLR) method with neural noise, was proposed for training
artificial neural networks (ANNs). This method uses the loss value, instead of its derivative,
for training the model. This enables the method to be applied to samples that cannot be
differentiated or are discontinuous, unlike the backpropagation method. The proposed
method was tested against adversarial examples generated by L-BFGS and FGSM attacks
on the MNIST dataset to assess its performance.

As shown in Table 2, the accuracy reached 96% when the backpropagation was applied
to the benign examples. However, when it was applied to adversarial examples generated
via the L_BFGS method and FGSM for the same model, the accuracies decreased to 57%
and 28%, respectively. For the model trained using the proposed method, the accuracies
of the adversarial examples were 78% and 53% for L_BFGS and the FGSM, respectively,
indicating a significant accuracy improvement.

Appl. Sci. 2023, 13, 4422 28 of 36

Table 2. The results of adversarial tests for two hidden layers artificial neural network trained by the
GLR with different activation and loss functions in [161].

Activations + Entropy Orig. Adv_L_BFGS Adv_FGSM

Sigmoid (trained by BP) 0.96 0.57 0.28

Sigmoid 0.94 0.77 0.45

Threshold 0.93 0.73 0.52

y = |x| 0.94 0.78 0.53

Activations + 0–1 loss Orig. Adv_L_BFGS Adv_FGSM

Sigmoid 0.84 0.76 0.58

Threshold 0.83 0.72 0.57

4.5. Biological Mechanism Model

To explore biological processes that could contribute to adversarial robustness, two
mechanisms present in biological vision systems were proposed and tested against PGD
attacks [159]. The first mechanism involves nonuniform spatial sampling of visual stimuli
by the retina’s photoreceptors, mimicking the exponential decrease in cones’ density in the
eccentric direction, as taken from [156]. The second mechanism is the variation in RFs with
eccentricity to avoid aliasing [157,158,162,163] in V1 neurons. To realize the area of scale
according to each eccentricity of V1 neurons, the authors constructed fovea receptacles
with five frequency bands and estimated a set of scale-space bands in V1. Four models in
Figure 29 were applied to the ResNet-20 and ResNet-18 architectures using the CIFAR-10
and ImageNet datasets, respectively. The first model was the standard CNN, and the
second mechanism was described as “coarse fixations”, which involves roughly focusing
on different regions of the image, simulating the fixation effect in a standard CNN network,
to achieve a cropping effect without flipping the image. The third model was “retina
fixation” to extract nonuniform sampling. The final mechanism was “cortical fixations”,
where the ResNet architecture is separated into multiple independent branches to process
the scales at each eccentricity.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 28 of 36

To explore biological processes that could contribute to adversarial robustness, two
mechanisms present in biological vision systems were proposed and tested against PGD
attacks [159]. The first mechanism involves nonuniform spatial sampling of visual stimuli
by the retina’s photoreceptors, mimicking the exponential decrease in cones’ density in
the eccentric direction, as taken from [156]. The second mechanism is the variation in RFs
with eccentricity to avoid aliasing [157,158,162,163] in V1 neurons. To realize the area of
scale according to each eccentricity of V1 neurons, the authors constructed fovea recepta-
cles with five frequency bands and estimated a set of scale-space bands in V1. Four models
in Figure 29 were applied to the ResNet-20 and ResNet-18 architectures using the CIFAR-
10 and ImageNet datasets, respectively. The first model was the standard CNN, and the
second mechanism was described as “coarse fixations”, which involves roughly focusing
on different regions of the image, simulating the fixation effect in a standard CNN net-
work, to achieve a cropping effect without flipping the image. The third model was “retina
fixation” to extract nonuniform sampling. The final mechanism was “cortical fixations”,
where the ResNet architecture is separated into multiple independent branches to process
the scales at each eccentricity.

In almost all experiments for all datasets, the results showed that the bio-inspired
mechanisms improved the robustness against adversarial examples with minor modifica-
tions. While the specific model with the most improvement varied, both the retinal and
cortical fixation models had a similar effect. When evaluated on ImageNet 10, the pro-
posed model had a greater improvement in accuracy when facing PGD attacks compared
to FGSM attacks. This implies that the mechanisms are effective in PGD attacks for im-
proving robustness, with the retinal and cortical fixation models. However, as the pertur-
bations grew, the bio-inspired mechanisms showed no notable improvement in robust-
ness.

(A) (B) (C) (D)

Figure 29. Standard CNN and its fixation models. The (A) was the standard CNN, and the (B) was
coarse fixations, which involves roughly focusing on different regions of the image. The (C) was
retina fixation to extract nonuniform sampling, and the (D) was cortical fixations, where the ResNet
architecture is separated into multiple independent branches to process the scales at each eccen-
tricity.

4.6. CNN-Based Visual Cortex Model
Dapello et al. [164] introduced VOneNet, a hybrid CNN model depicted in Figure 30.

It consists of a fixed-weight neural network called VOneBlock at the front-end, which em-
ulates the V1 area in the primate visual cortex and follows the linear–nonlinear–Poisson
(LNP) framework, and a CNN-based neural network at the back end. VOneBlock features
biologically inspired Gabor filters, basic and advanced cellular nonlinearities, and

Figure 29. Standard CNN and its fixation models. The (A) was the standard CNN, and the (B) was
coarse fixations, which involves roughly focusing on different regions of the image. The (C) was
retina fixation to extract nonuniform sampling, and the (D) was cortical fixations, where the ResNet
architecture is separated into multiple independent branches to process the scales at each eccentricity.

Appl. Sci. 2023, 13, 4422 29 of 36

In almost all experiments for all datasets, the results showed that the bio-inspired
mechanisms improved the robustness against adversarial examples with minor modifica-
tions. While the specific model with the most improvement varied, both the retinal and
cortical fixation models had a similar effect. When evaluated on ImageNet 10, the proposed
model had a greater improvement in accuracy when facing PGD attacks compared to
FGSM attacks. This implies that the mechanisms are effective in PGD attacks for improving
robustness, with the retinal and cortical fixation models. However, as the perturbations
grew, the bio-inspired mechanisms showed no notable improvement in robustness.

4.6. CNN-Based Visual Cortex Model

Dapello et al. [164] introduced VOneNet, a hybrid CNN model depicted in Figure 30.
It consists of a fixed-weight neural network called VOneBlock at the front-end, which
emulates the V1 area in the primate visual cortex and follows the linear–nonlinear–Poisson
(LNP) framework, and a CNN-based neural network at the back end. VOneBlock features
biologically inspired Gabor filters, basic and advanced cellular nonlinearities, and proba-
bility generators that mimic V1 neurons. In a white-box attack experiment using the PGD
attack, the author found that accuracy was closely linked to the explained variance. They
also observed that the explained variance in neural activation occurred more frequently
than that in nontrained models, even in models that are hardly affected by adversarial
attacks, such as the adversarially trained ResNet-50. This observation implies that there is
a strong positive correlation between the perturbation in adversarial attacks and the V1
explained variance following the attacks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 36

probability generators that mimic V1 neurons. In a white-box attack experiment using the
PGD attack, the author found that accuracy was closely linked to the explained variance.
They also observed that the explained variance in neural activation occurred more fre-
quently than that in nontrained models, even in models that are hardly affected by adver-
sarial attacks, such as the adversarially trained ResNet-50. This observation implies that
there is a strong positive correlation between the perturbation in adversarial attacks and
the V1 explained variance following the attacks.

VOneNet in [157] is a hybrid CNN model consisting of VOneBlock and a back-end
network modeled after a standard CNN, such as ResNet or AlexNet. VOneBlock is based
on the LNP framework for the V1 area of the primate visual cortex and includes Gabor
filters, basic and advanced cellular nonlinearities, and a generator of randomness that
mimics V1 neurons. VOneBlock has 256 fixed units per spatial location and two types of
neurons: simple and complex cells. The standard CNN is altered by replacing the first
block with VOneBlock and a trained transition layer, resulting in a VOneNet with match-
ing spatial map dimensions but potentially more channels.

As shown in Figure 31, all the components of VOneBlock contributed to the robust-
ness of the model against adversarial attacks in a robustness test against PGD attacks
when ResNet-50 was used as the base model. Their main contribution was that VOneNet
played a distinct role against white-box attacks compared with other defense methods.
Thus, the effectiveness of brain-inspired neural networks for defense against adversarial
attacks was demonstrated. In addition, compared with training-based defense methods,
which are known as the strongest defense methods, VOneNet had shorter computation
and training times than any other optimization-based defense methods.

Figure 30. VOneBlock and a back-end network modeled after a standard CNN, such as ResNet or
AlexNet. The (A) shows VOneBlock is based on the LNP framework for the V1 area of the primate
visual cortex and includes Gabor filters, basic and advanced cellular nonlinearities, and a generator
of randomness that mimics V1 neurons. The (B) shows the performance analysis of VOneNet.

Figure 30. VOneBlock and a back-end network modeled after a standard CNN, such as ResNet or
AlexNet. The (A) shows VOneBlock is based on the LNP framework for the V1 area of the primate
visual cortex and includes Gabor filters, basic and advanced cellular nonlinearities, and a generator
of randomness that mimics V1 neurons. The (B) shows the performance analysis of VOneNet.

VOneNet in [157] is a hybrid CNN model consisting of VOneBlock and a back-end
network modeled after a standard CNN, such as ResNet or AlexNet. VOneBlock is based

Appl. Sci. 2023, 13, 4422 30 of 36

on the LNP framework for the V1 area of the primate visual cortex and includes Gabor
filters, basic and advanced cellular nonlinearities, and a generator of randomness that
mimics V1 neurons. VOneBlock has 256 fixed units per spatial location and two types of
neurons: simple and complex cells. The standard CNN is altered by replacing the first
block with VOneBlock and a trained transition layer, resulting in a VOneNet with matching
spatial map dimensions but potentially more channels.

As shown in Figure 31, all the components of VOneBlock contributed to the robustness
of the model against adversarial attacks in a robustness test against PGD attacks when
ResNet-50 was used as the base model. Their main contribution was that VOneNet played
a distinct role against white-box attacks compared with other defense methods. Thus, the
effectiveness of brain-inspired neural networks for defense against adversarial attacks was
demonstrated. In addition, compared with training-based defense methods, which are
known as the strongest defense methods, VOneNet had shorter computation and training
times than any other optimization-based defense methods.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 30 of 36

Figure 31. (A) All the components of VOneBlock contributed to the robustness of the model against
adversarial attacks in a robustness test against PGD attacks when ResNet-50 was used as the base
model. (B) the performance changes in absent of stichasticity in V1 feature.

5. Conclusions
In this review, historically significant deep learning models, adversarial attacks that

generate adversarial examples centered on vision tasks, defense techniques, and robust
brain-inspired models were described. Although many different defense strategies have
been proposed against adversarial attacks with various deep learning models based on
CNNs, many of them are vulnerable to specific types of attacks. The results of these de-
fenses raise the question of whether a defense strategy against adversarial attacks is ap-
propriate. The recent focus in research has been on more general robustness strategies,
such as brain-inspired defenses, instead of defenses for specific attacks. A future direction
is to examine properties that can provide a mathematical basis for robustness to adversar-
ial attacks through a combination of mathematical analysis and empirical experiments.

Ultimately, we have no choice but to ask the question again: “Why is the human brain
robust to adversarial examples?” ANNs related to vision tasks have been developed to mimic
the visual cortex; however, current neural networks have become a separate field from
earlier models. The future of ANNs will emerge from brain-inspired models with the dis-
covery of new brain neurophysiological functions.

Author Contributions: All authors have read and agreed to the published version of the manu-
script.

Funding: This work was conducted with the support of the National Research Foundation of Korea
(NRF-2020RIA2C1101938).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hinton, G.; Neural, R.S.-A. Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes. In Proceedings of the

20th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 7 December 2007.
2. Ahmed, A.; Yu, K.; Xu, W.; Gong, Y.; Xing, E. Training Hierarchical Feed-Forward Visual Recognition Models Using Transfer Learning

from Pseudo-Tasks; Springer: Berlin/Heidelberg, Germany, 2008.
3. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy Layer-Wise Training of Deep Networks. In Proceedings of the 19th

International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006.
4. Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An Empirical Evaluation of Deep Architectures on Problems

with Many Factors of Variation. ACM Int. Conf. Proceeding Ser. 2007, 227, 473–480. https://doi.org/10.1145/1273496.1273556.

Figure 31. (A) All the components of VOneBlock contributed to the robustness of the model against
adversarial attacks in a robustness test against PGD attacks when ResNet-50 was used as the base
model. (B) the performance changes in absent of stichasticity in V1 feature.

5. Conclusions

In this review, historically significant deep learning models, adversarial attacks that
generate adversarial examples centered on vision tasks, defense techniques, and robust
brain-inspired models were described. Although many different defense strategies have
been proposed against adversarial attacks with various deep learning models based on
CNNs, many of them are vulnerable to specific types of attacks. The results of these
defenses raise the question of whether a defense strategy against adversarial attacks is
appropriate. The recent focus in research has been on more general robustness strategies,
such as brain-inspired defenses, instead of defenses for specific attacks. A future direction
is to examine properties that can provide a mathematical basis for robustness to adversarial
attacks through a combination of mathematical analysis and empirical experiments.

Ultimately, we have no choice but to ask the question again: “Why is the human brain
robust to adversarial examples?” ANNs related to vision tasks have been developed to mimic
the visual cortex; however, current neural networks have become a separate field from
earlier models. The future of ANNs will emerge from brain-inspired models with the
discovery of new brain neurophysiological functions.

Appl. Sci. 2023, 13, 4422 31 of 36

Author Contributions: J.K. and Y.L. proposed the article; J.K. supervised the work; Y.L. wrote the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was conducted with the support of the National Research Foundation of Korea
(NRF-2020RIA2C1101938).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hinton, G.; Neural, R.S.-A. Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes. In Proceedings of the

20th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 7 December 2007.
2. Ahmed, A.; Yu, K.; Xu, W.; Gong, Y.; Xing, E. Training Hierarchical Feed-Forward Visual Recognition Models Using Transfer Learning

from Pseudo-Tasks; Springer: Berlin/Heidelberg, Germany, 2008.
3. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy Layer-Wise Training of Deep Networks. In Proceedings of the 19th

International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006.
4. Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An Empirical Evaluation of Deep Architectures on Problems with

Many Factors of Variation. ACM Int. Conf. Proc. Ser. 2007, 227, 473–480. [CrossRef]
5. Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of

Hierarchical Representations. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC,
Canada, 14–18 June 2009; pp. 609–616. [CrossRef]

6. Ranzato, M.; Boureau, Y.L.; Cun, Y. Sparse Feature Learning for Deep Belief Networks. In Advances in Neural Information Processing
Systems; MIT Press: Cambridge, MA, USA, 2007; Volume 20.

7. Aurelio, M.; Poultney, R.C.; Chopra, S.; Lecun, Y. Efficient Learning of Sparse Representations with an Energy-Based Model. In
Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2006; Volume 19.

8. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and Composing Robust Features with Denoising Autoencoders.
In Proceedings of the 25th International Conference on Machine Learning, Montreal, QC, Canada, 11–15 April 2008; pp. 1096–1103.
[CrossRef]

9. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.
[CrossRef] [PubMed]

10. Salakhutdinov, R.; Hinton, G. Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure. In Proceedings of
the Eleventh International Conference on Artificial Intelligence and Statistics, San Juan, Puerto Rico, 21–24 March 2007.

11. Taylor, G.W.; Hinton, G.E. Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style. ACM Int. Conf. Proc.
Ser. 2009, 382, 1025–1032. [CrossRef]

12. Taylor, G.; Hinton, G.E.; Roweis, S. Modeling Human Motion Using Binary Latent Variables. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2006; Volume 19.

13. Osindero, S.; Hinton, G.E. Modeling Image Patches with a Directed Hierarchy of Markov Random Fields. In Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA, 2007; Volume 20.

14. Ranzato, M.; Szummer, M. Semi-Supervised Learning of Compact Document Representations with Deep Networks. In Proceed-
ings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, 5–9 June 2008.

15. Salakhutdinov, R.; Approximate, G.H.-I.J. Semantic Hashing; Elsevier: Amsterdam, The Netherlands, 2009.
16. Utgoff, P.; Stracuzzi, D.J. Many-Layered Learning. Neural Comput. 2002, 14, 2497–2529. [CrossRef] [PubMed]
17. Hadsell, R.; Erkan, A.; Sermanet, P.; Scoffier, M.; Muller, U.; LeCun, Y. Deep Belief Net Learning in a Long-Range Vision System

for Autonomous off-Road Driving. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Nice, France, 22–26 September 2008.

18. Xie, D.; Bai, L. A Hierarchical Deep Neural Network for Fault Diagnosis on Tennessee-Eastman Process. In Proceedings of the
2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015.

19. Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J.I. Road Crack Detection Using Deep Convolutional Neural Network. In Proceedings of
the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016.

20. Lee, J.; Jun, S.; Cho, Y.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview. Korean J.
Radiol. 2017, 18, 570–584. [CrossRef] [PubMed]

21. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing Properties of Neural Networks.
arXiv 2013, arXiv:1312.6199.

22. Drenkow, N.; Sani, N.; Shpitser, I.; Unberath, M. A Systematic Review of Robustness in Deep Learning for Computer Vision:
Mind the Gap? arXiv 2021, arXiv:2112.00639. [CrossRef]

23. Yan, H.; Tan, V.Y.F. Towards Adversarial Robustness of Deep Vision Algorithms. arXiv 2020, arXiv:2211.10670. [CrossRef]

http://doi.org/10.1145/1273496.1273556
http://doi.org/10.1145/1553374.1553453
http://doi.org/10.1145/1390156.1390294
http://doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://doi.org/10.1145/1553374.1553505
http://doi.org/10.1162/08997660260293319
http://www.ncbi.nlm.nih.gov/pubmed/12396572
http://doi.org/10.3348/kjr.2017.18.4.570
http://www.ncbi.nlm.nih.gov/pubmed/28670152
http://doi.org/10.48550/arxiv.2112.00639
http://doi.org/10.48550/arxiv.2211.10670

Appl. Sci. 2023, 13, 4422 32 of 36

24. Zheng, J.; Zhang, Y.; Li, Y.; Wu, S.; Yu, X. Towards Evaluating the Robustness of Adversarial Attacks Against Image Scaling
Transformation. Chin. J. Electron. 2023, 32, 151–158.

25. Ren, C.; Xu, Y. Robustness Verification for Machine-Learning-Based Power System Dynamic Security Assessment Models Under
Adversarial Examples. IEEE Trans. Control. Netw. Syst. 2022, 9, 1645–1654. [CrossRef]

26. Ibrahim, M.S.; Dong, W.; Yang, Q. Machine learning driven smart elctric power systems: Current trens and new perspectives.
Appl. Energy 2020, 272, 115237. [CrossRef]

27. Chattopadhyay, N.; Chatterjee, S.; Chattopadhyay, A. Robustness Against Adversarial Attacks Using Dimensionality. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Cham, Switzerland, 2022; pp. 226–241. [CrossRef]

28. Zhang, S.; Huang, K.; Xu, Z. Re-Thinking Model Robustness from Stability: A New Insight to Defend Adversarial Examples.
Mach. Learn. 2022, 111, 2489–2513. [CrossRef]

29. Borji, A.; Ai, Q.; Francisco, S. Overparametrization Improves Robustness against Adversarial Attacks: A Replication Study. arXiv
2002, arXiv:2202.09735.

30. Borji, A.; Ai, Q.; Francisco, S. Is Current Research on Adversarial Robustness Addressing the Right Problem? arXiv 2022,
arXiv:2208.00539.

31. Wang, Y.; Tan, Y.A.; Baker, T.; Kumar, N.; Zhang, Q. Deep Fusion: Crafting Transferable Adversarial Examples and Improv-
ing Robustness of Industrial Artificial Intelligence of Things. In IEEE Transactions on Industrial Informatics; IEEE: New York,
NY, USA, 2022. [CrossRef]

32. Jankovic, A.; Mayer, R. An Empirical Evaluation of Adversarial Examples Defences, Combinations and Robustness Scores. In
Proceedings of the IWSPA ’22: Proceedings of the 2022 ACM on International Workshop on Security and Privacy Analytics,
Baltimore, MD, USA, 27 April 2022.

33. Poggio, T. Marr’s Computational Approach to Vision; Elsevier: Amsterdam, The Netherlands, 1981.
34. Ungerleider, L.; Haxby, J.V. ’What’ and ’Where’ in the Human Brain; Elsevier: Amsterdam, The Netherlands, 1994.
35. Markov, N.T.; Ercsey-Ravasz, M.; van Essen, D.C.; Knoblauch, K.; Toroczkai, Z.; Kennedy, H. Cortical High-Density Counterstream

Architectures. Science 2013, 342, 1238406. [CrossRef] [PubMed]
36. Fattori, P.; Pitzalis, S.; Galletti, C. The Cortical Visual Area V6 in Macaque and Human Brains; Elsevier: Amsterdam, The Netherlands,

2009; Volume 103, pp. 88–97. [CrossRef]
37. DeYoe, E.A.; van Essen, D.C. Concurrent Processing Streams in Monkey Visual Cortex. Trends. Neurosci. 1988, 11, 219–226.

[CrossRef]
38. Bassett, D.S.; Cullen, K.E.; Eickhoff, S.B.; Farah, M.J.; Goda, Y.; Haggard, P.; Hu, H.; Hurd, Y.L.; Josselyn, S.A.; Khakh, B.S.; et al.

Reflections on the Past Two Decades of Neuroscience. Nat. Rev. Neurosci. 2020, 21, 524–534. [CrossRef]
39. Cadieu, C.; Kouh, M.; Pasupathy, A.; Connor, C.E.; Riesenhuber, M.; Poggio, T. A Model of V4 Shape Selectivity and Invariance.

J. Neurophysiol. 2007, 98, 1733–1750. [CrossRef]
40. Serre, T.; Wolf, L.; Bileschi, S.; Riesenhuber, M.; Poggio, T. Robust Object Recognition with Cortex-like Mechanisms. IEEE Trans.

Pattern Anal. Mach. Intell. 2007, 29, 411–426. [CrossRef]
41. Hinton, G.; Osindero, S.; Teh, Y.W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
42. Cox, D.D.; Dean, T. Neural Networks and Neuroscience-Inspired Computer Vision. Curr. Biol. 2014, 24, R921–R929. [CrossRef]

[PubMed]
43. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
44. Cai, Z.; Vasconcelos, N. Cascade R-Cnn: Delving into High Quality Object Detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.
45. Shreyas, E.; Sheth, M.H. 3D Object Detection and Tracking Methods Using Deep Learning for Computer Vision Applications. In

Proceedings of the 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology
(RTEICT), Bangalore, India, 27–28 August 2021. [CrossRef]

46. Dai, X.; Lei, Y.; Roper, J.; Chen, Y.; Bradley, J.D.; Curran, W.J.; Liu, T.; Yang, X.; Xiaofeng Yang, C. Deep Learning—Based Motion
Tracking Using Ultrasound Images. Wiley Online Libr. 2021, 48, 7747–7756. [CrossRef] [PubMed]

47. Kiran, S.; Khan, M.; Javed, M.; Alhaisoni, M.; Tariq, U. Multi-Layered Deep Learning Features Fusion for Human Action
Recognition. CMC Comput. Mater. Contin. 2021, 69, 3. [CrossRef]

48. Ronald, M.; Poulose, A.; Han, D.S. ISPLInception: An Inception-ResNet Deep Learning Architecture for Human Activity
Recognition. IEEE Access 2021, 9, 68985–69001. [CrossRef]

49. Liu, Z.; Chen, H.; Feng, R.; Wu, S.; Ji, S.; Yang, B.; Wang, X. Deep Dual Consecutive Network for Human Pose Estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June
2021; pp. 525–534.

50. Wang, J.; Jin, S.; Liu, W.; Liu, W.; Qian, C.; Luo, P. When Human Pose Estimation Meets Robustness: Adversarial Algorithms
and Benchmarks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville,
TN, USA, 20–25 June 2021; pp. 11855–11864.

51. Lecun, Y.; Haffner, P.; Eon Bottou, L.; Bengio, Y.; Abstract|, P.H. Gradient-Based Learning Applied to Document Recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

http://doi.org/10.1109/TCNS.2022.3145285
http://doi.org/10.1016/j.apenergy.2020.115237
http://doi.org/10.1007/978-3-030-95085-9_12
http://doi.org/10.1007/s10994-022-06186-9
http://doi.org/10.1109/TII.2022.3168874
http://doi.org/10.1126/science.1238406
http://www.ncbi.nlm.nih.gov/pubmed/24179228
http://doi.org/10.1016/j.jphysparis.2009.05.012
http://doi.org/10.1016/0166-2236(88)90130-0
http://doi.org/10.1038/s41583-020-0363-6
http://doi.org/10.1152/jn.01265.2006
http://doi.org/10.1109/TPAMI.2007.56
http://doi.org/10.1162/neco.2006.18.7.1527
http://doi.org/10.1016/j.cub.2014.08.026
http://www.ncbi.nlm.nih.gov/pubmed/25247371
http://doi.org/10.1109/RTEICT52294.2021.9573964
http://doi.org/10.1002/mp.15321
http://www.ncbi.nlm.nih.gov/pubmed/34724712
http://doi.org/10.32604/cmc.2021.017800
http://doi.org/10.1109/ACCESS.2021.3078184
http://doi.org/10.1109/5.726791

Appl. Sci. 2023, 13, 4422 33 of 36

52. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

53. Carreira-Perpinan, M.; Hinton, G. On Contrastive Divergence Learning. In Proceedings of the Machine Learning Research, New
York, NY, USA, 24 June 2016.

54. Hinton, G.E. A Practical Guide to Training Restricted Boltzmann Machines. In Lecture Notes in Computer Science (Including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012; pp. 599–619.

55. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines; Department of Computer Science, University of
Toronto: Toronto, ON, Canada, 2010.

56. Zeiler, M.D.; Fergus, R. Stochastic Pooling for Regularization of Deep Convolutional Neural Networks. arXiv 2013, arXiv:1301.355.
57. Liou, C.; Cheng, W.; Liou, J.; Liou, D.R. Autoencoder for Words; Elsevier: Amsterdam, The Netherlands, 2014.
58. Hyvärinen, A.; Hoyer, P. Emergence of Phase-and Shift-Invariant Features by Decomposition of Natural Images into Independent

Feature Subspaces. Neural Comput. 2000, 12, 1705–1720. [CrossRef]
59. Olshausen, B.; Field, D.J. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Elsevier: Amsterdam, The

Netherlands, 1997.
60. Yu, K.; Zhang, T.; Gong, Y. Nonlinear Learning Using Local Coordinate Coding. In Proceedings of the 23rd Annual Conference on

Neural Information Processing Systems 2009, Vancouver, BC, Canada, 7–10 December 2009.
61. Raina, R.; Battle, A.; Lee, H.; Packer, B.; Ng, A.Y. Self-Taught Learning: Transfer Learning from Unlabeled Data. ACM Int. Conf.

Proceeding Ser. 2007, 227, 759–766. [CrossRef]
62. Wang, J.; Yang, J.; Yu, K.; Huang, T.; Gong, Y. Locality-Constrained Linear Coding for Image Classification. In Proceedings of the

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010.
63. Ouyang, W.; Zeng, X.; Wang, X.; Luo, P.; Tian, Y.; Li, H.; Yang, S.; Wang, Z.; Li, H.; Wang, K.; et al. DeepID-Net: Object Detection

with Deformable Part Based Convolutional Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1320–1334.
[CrossRef] [PubMed]

64. Liu, J.; Lay, N.; Wei, Z.; Lu, L.; Kim, L.; Turkbey, E.; Summers, R.M. Colitis Detection on Abdominal CT Scans by Rich Feature
Hierarchies. Proc. SPIE 2016, 9785, 423–429.

65. Luo, G.; An, R.; Wang, K.; Zhang, H. A Deep Learning Network for Right Ventricle Segmentation in Short-Axis MRI. In
Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016. [CrossRef]

66. Diao, W.; Sun, X.; Zheng, X.; Dou, F.; Wang, H.; Fu, K. Efficient Saliency-Based Object Detection in Remote Sensing Images Using
Deep Belief Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 137–141. [CrossRef]

67. Shin, H.-C.; Orton, M.R.; Collins, D.J.; Doran, S.J.; Leach, M.O. Stacked Autoencoders for Unsupervised Feature Learning and
Multiple Organ Detection in a Pilot Study Using 4D Patient Data. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1930–1943.
[CrossRef] [PubMed]

68. Doulamis, N.; Doulamis, A. Fast and Adaptive Deep Fusion Learning for Detecting Visual Objects. In Lecture Notes in Computer
Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2012; pp. 345–354. [CrossRef]

69. Lawrence, S.; Lee Giles, C.; Member, S.; Chung Tsoi, A.; Back, A.D. Face Recognition: A Convolutional Neural-Network Approach.
IEEE Trans. Neural Netw. 1997, 8, 98–113. [CrossRef] [PubMed]

70. Amos, B.; Ludwiczuk, B.; Satyanarayanan, M. Openface: A General-Purpose Face Recognition Library with Mobile Applications.
CMU Sch. Comput. Sci. 2016, 6, 20.

71. Voulodimos, A.; Kosmopoulos, D.; Doulamis, N.; Varvarigou, T.; Voulodimos, A.S.; Kosmopoulos, D.I.; Doulamis, N.D.;
Varvarigou, T.A.; Voulodimos, A.S.; Doulamis, N.D.; et al. A Top-down Event-Driven Approach for Concurrent Activity
Recognition. Multimed. Tools Appl. 2014, 69, 293–311. [CrossRef]

72. Voulodimos, A.S.; Doulamis, N.D.; Kosmopoulos, D.I.; Varvarigou, T.A. Improving Multi-Camera Activity Recognition by
Employing Neural Network Based Readjustment. Appl. Artif. Intell. 2012, 26, 97–118. [CrossRef]

73. Makantasis, K.; Doulamis, A.; Doulamis, N.; Psychas, K. Deep Learning Based Human Behavior Recognition in Industrial
Workflows. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28
September 2016. [CrossRef]

74. Gan, C.; Wang, N.; Yang, Y.; Yeung, D.-Y.; Hauptmann, A.G. Devnet: A Deep Event Network for Multimedia Event Detection and
Evidence Recounting. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015.

75. Kautz, T.; Groh, B.H.; Hannink, J.; Jensen, U.; Strubberg, H.; Eskofier, B.M. Activity Recognition in Beach Volleyball Using a
Deep Convolutional Neural Network: Leveraging the Potential of Deep Learning in Sports. Data Min. Knowl. Discov. 2017, 31,
1678–1705. [CrossRef]

76. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-Scale Video Classification with Convolutional
Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus,
OH, USA, 23–28 June 2014; pp. 1725–1732.

77. Ronao, C.; Cho, S.-B. Human Activity Recognition with Smartphone Sensors Using Deep Learning Neural Networks. Expert Syst.
Appl. 2016, 59, 235–244. [CrossRef]

http://doi.org/10.1145/3065386
http://doi.org/10.1162/089976600300015312
http://doi.org/10.1145/1273496.1273592
http://doi.org/10.1109/TPAMI.2016.2587642
http://www.ncbi.nlm.nih.gov/pubmed/27392342
http://doi.org/10.22489/CinC.2016.139-406
http://doi.org/10.1109/LGRS.2015.2498644
http://doi.org/10.1109/TPAMI.2012.277
http://www.ncbi.nlm.nih.gov/pubmed/23787345
http://doi.org/10.1007/978-3-642-33885-4_35
http://doi.org/10.1109/72.554195
http://www.ncbi.nlm.nih.gov/pubmed/18255614
http://doi.org/10.1007/s11042-012-0993-4
http://doi.org/10.1080/08839514.2012.629540
http://doi.org/10.1109/ICIP.2016.7532630
http://doi.org/10.1007/s10618-017-0495-0
http://doi.org/10.1016/j.eswa.2016.04.032

Appl. Sci. 2023, 13, 4422 34 of 36

78. Shao, J.; Loy, C.; Kang, K.; Wang, X. Crowded Scene Understanding by Deeply Learned Volumetric Slices. IEEE Trans. Circuits
Syst. Video Technol. 2016, 27, 613–623. [CrossRef]

79. Tang, K.; Yao, B.; Fei-Fei, L.; Koller, D. Combining the Right Features for Complex Event Recognition. In Proceedings of the 2013
IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013. [CrossRef]

80. Song, S.; Chandrasekhar, V.; Mandal, B.; Li, L.; Lim, J.-H.; Sateesh Babu, G.; Phyo San, P.; Cheung, N.-M. Multimodal Multi-Stream
Deep Learning for Egocentric Activity Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016.

81. Kavi, R.; Kulathumani, V.; Kecojevic, V. Multiview Fusion for Activity Recognition Using Deep Neural Networks. J. Electron.
Imaging 2016, 25, 043010. [CrossRef]

82. Kitsikidis, A.; Dimitropoulos, K.; Douka, S.; Grammalidis, N. Dance Analysis Using Multiple Kinect Sensors; SciTePress: Odense,
Denmark, 2014.

83. Felzenszwalb, P.F.; Huttenlocher, D.P. Pictorial Structures for Object Recognition. Int. J. Comput. Vis. 2005, 61, 55–79. [CrossRef]
84. Jain, A.; Tompson, J.; Andriluka, M.; Taylor, G.W.; Bregler, C. Learning Human Pose Estimation Features with Convolutional

Networks. arXiv 2013, arXiv:1312.7302.
85. Hubel, D.H.; Wiesel, T.N. Receptive Fields of Single Neurones in the Cat’s Striate Cortex. J. Physiol. 1959, 148, 574. [CrossRef]
86. Fukushima, K. Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern Recognition; Elsevier: Amsterdam, The

Netherlands, 1988.
87. Yan, L.; Yoshua, B.; Hinton, G. Deep Learning. Nature 2016, 521, 436–444.
88. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional Neural Networks.

Artif. Intell. Rev. 2020, 53, 5455–5516. [CrossRef]
89. Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision:

History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [CrossRef]
90. Zeiler, M.; Vision, R.F.-E. Visualizing and Understanding Convolutional Networks; Springer: Berlin/Heidelberg, Germany, 2014.
91. Zeiler, M.; Taylor, G.; Fergus, R. Adaptive Deconvolutional Networks for Mid and High Level Feature Learning. In Proceedings

of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011.
92. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the

3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA,
7–9 May 2015.

93. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

94. Lee, S.; Sung, Y.; Kim, Y.; Cha, E.-Y. Variations of AlexNet and GoogLeNet to Improve Korean Character Recognition Performance.
J. Inf. Process. Syst. 2018, 14, 205–217. [CrossRef]

95. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

96. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway Networks. arXiv 2015, arXiv:1505.00387.
97. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 261–2269. [CrossRef]
98. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In Proceedings of the British Machine Vision Conference (BMVC), York,

UK, 19–22 September 2016; pp. 1–12. [CrossRef]
99. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing between Capsules. arXiv 2017, arXiv:1710.09829.
100. Quang, N.V.; Chun, J.; Tokuyama, T. CapsuleNet for Micro-Expression Recognition. In Proceedings of the 2019 14th IEEE

International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019.
101. Arun, P.; Buddhiraju, K.M.; Porwal, A. Capsulenet-Based Spatial–Spectral Classifier for Hyperspectral Images. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2019, 12, 1849–1865. [CrossRef]
102. Stoica, A.; Kadar, T.; Lemnaru, C.; Potolea, R.; Dîns, M. Intent Detection and Slot Filling with Capsule Net Architectures for a

Romanian Home Assistant. Sensors 2021, 21, 1230. [CrossRef]
103. Liu, X.; Zhang, J.; Lin, Y.; Lin, H.I. ATMPA: Attacking Machine Learning-Based Malware Visualization Detection Methods via

Adversarial Examples. In Proceedings of the International Symposium on Quality of Service, IWQoS 2019, Phoenix, AZ, USA,
24–25 June 2019.

104. Biggio, B.; Roli, F. Wild Patterns: Ten Years after the Rise of Adversarial Machine Learning Half-Day Tutorial. Proc. ACM Conf.
Comput. Commun. Secur. 2018, 2154–2156. [CrossRef]

105. Bhatnagar, S.; Cotton, T.; Brundage, M.; Avin, S.; Clark, J.; Toner, H.; Eckersley, P.; Garfinkel, B.; Dafoe, A.; Scharre, P.; et al. The
Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. arXiv 2018, arXiv:1802.07228.

106. Wittel, G. On Attacking Statistical Spam Filters. In Proceedings of the CEAS 2004—First Conference on Email and Anti-Spam,
Mountain View, CA, USA, 30–31 July 2004.

107. Zhang, J.; Li, C. Adversarial Examples: Opportunities and Challenges. IEEE Trans. Neural Netw. Learn. Syst. 2019, 1–16. [CrossRef]
108. Biggio, B.; Didaci, L.; Fumera, G.; Roli, F. Poisoning Attacks to Compromise Face Templates. In Proceedings of the 2013

International Conference on Biometrics (ICB), Madrid, Spain, 4–7 June 2013.

http://doi.org/10.1109/TCSVT.2016.2593647
http://doi.org/10.1109/ICCV.2013.335
http://doi.org/10.1117/1.JEI.25.4.043010
http://doi.org/10.1023/B:VISI.0000042934.15159.49
http://doi.org/10.1113/jphysiol.1959.sp006308
http://doi.org/10.1007/s10462-020-09825-6
http://doi.org/10.3390/electronics10202470
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.3745/JIPS.04.0061
http://doi.org/10.1109/CVPR.2017.243
http://doi.org/10.5244/C.30.87
http://doi.org/10.1109/JSTARS.2019.2913097
http://doi.org/10.3390/s21041230
http://doi.org/10.1145/3243734.3264418
http://doi.org/10.1109/TNNLS.2019.2933524

Appl. Sci. 2023, 13, 4422 35 of 36

109. Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.; Laskov, P.; Giacinto, G.; Roli, F. Evasion Attacks against Machine
Learning at Test Time. Lect. Notes Comput. Sci. 2013, 8190, 387–402. [CrossRef]

110. Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; Mcdaniel, P. Adversarial Examples for Malware Detection; Springer:
Berlin/Heidelberg, Germany, 2013.

111. Abaid, Z.; Kaafar, M.; Jha, S. Quantifying the Impact of Adversarial Evasion Attacks on Machine Learning Based Android
Malware Classifiers. In Proceedings of the 2017 IEEE 16th International Symposium on Network Computing and Applications
(NCA), Cambridge, MA, USA, 30 October–1 November 2017.

112. Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru, C.; Li, B. Manipulating Machine Learning: Poisoning Attacks and
Countermeasures for Regression Learning. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 21–23 May 2018.

113. Bulò, S.; Biggio, B.; Pillai, I.; Pelillo, M.; Roli, F. Randomized Prediction Games for Adversarial Machine Learning. IEEE Trans.
Neural Networks Learn. Syst. 2016, 28, 2466–2478. [CrossRef]

114. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015—Conference Track Proceeding, San Diego, CA, USA, 7–9 May 2015.

115. Papernot, N.; McDaniel, P.; Ian, G. Transferability in Machine Learning: From Phenomena to Black-Box Attacks Using Adversarial
Samples. arXiv 2016, arXiv:1605.07277.

116. Liu, Y.; Chen, X.; Liu, C.; Song, D. Delving into Transferable Adversarial Examples and Black-Box Attacks. In Proceedings of the
5th International Conference on Learning Representations, ICLR 2017—Conference Track Proceedings, Toulon, France, 24–26
April 2017.

117. Arpit, D.; Jastrz, S.; Ballas, N.; Krueger, D.; Bengio, E.; Kanwal, M.S.; Maharaj, T.; Fischer, A.; Courville, A.; Bengio, Y.; et al. A
Closer Look at Memorization in Deep Networks. arXiv 2017, arXiv:1706.05394.

118. Jo, J.; Bengio, Y. Measuring the Tendency of CNNs to Learn Surface Statistical Regularities. arXiv 2017, arXiv:1711.11561.
119. Liu, D.; Nocedal, J. On the Limited Memory BFGS Method for Large Scale Optimization. Math. Program. 1989, 45, 503–528.

[CrossRef]
120. Kurakin, A.; Goodfellow, I.; Samy, B. Adversarial Examples in the Physical World. arXiv 2017, arXiv:1607.02533.
121. Moosavi-Dezfooli, S.-M.; Fawzi, A.; Frossard’, P.F.; Polytechnique, F.; de Lausanne, F. Deepfool: A Simple and Accurate Method

to Fool Deep Neural Networks. arXiv 2015, arXiv:1511.04599.
122. Xu, H.; Ma, Y.; Liu, H.C.; Deb, D.; Liu, H.; Tang, J.L.; Jain, A.K. Adversarial Attacks and Defenses in Images, Graphs and Text: A

Review. Int. J. Autom. Comput. 2020, 17, 151–178. [CrossRef]
123. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside Convolutional Networks: Visualising Image Classification Models and

Saliency Maps. arXiv 2013, arXiv:1312.6034.
124. Papernot, N.; Mcdaniel, P.; Jha, S.; Fredrikson, M.; Berkay Celik, Z.; Swami, A. The Limitations of Deep Learning in Adversarial

Settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany,
21–24 March 2016.

125. Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium on
Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017.

126. Moosavi-Dezfooli, S.-M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal Adversarial Perturbations. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

127. Kingma, D.; Welling, M. An Introduction to Variational Autoencoders. Found. Trends®Mach. Learn. 2019, 12, 307–392. [CrossRef]
128. Chen, P.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.-J. Zoo: Zeroth Order Optimization Based Black-Box Attacks to Deep Neural

Networks without Training Substitute Models. In Proceedings of the AISec ’17, the 10th ACM Workshop on Artificial Intelligence
and Security, Dallas, TX, USA, 3 November 2017.

129. Tramèr, F.; Kurakin, A.; Brain, G.; Papernot, N.; Goodfellow, I.; Boneh, D.; Mcdaniel, P. Ensemble Adversarial Training: Attacks
and Defenses. arXiv 2020, arXiv:1705.07204.

130. Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a Defense to Adversarial Perturbations against Deep Neural
Networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016.

131. Adry, A.M.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks.
arXiv 2017, arXiv:1706.06083.

132. Fischer, V.; Kumar, M.C.; Metzen, J.H.; Brox, T. Adversarial Examples for Semantic Image Segmentation. In Proceedings
of the 5th International Conference on Learning Representations, ICLR 2017—Workshop Track Proceedings, Toulon, France,
24–26 April 2017.

133. Gong, Z.; Wang, W.; Ku, W.-S. Adversarial and Clean Data Are Not Twins. arXiv 2017, arXiv:1704.04960.
134. Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; Mcdaniel, P. On the (Statistical) Detection of Adversarial Examples. arXiv

2017, arXiv:1702.06280.
135. Feinman, R.; Curtin, R.; Shintre, S.; Gardner, A.B. Detecting Adversarial Samples from Artifacts. arXiv 2017, arXiv:1703.00410.
136. Chen, P.; Sharma, Y.; Zhang, H.; Yi, J.; Hsieh, C.-J. Ead: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples. In

Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 3–7 February 2018; Volume 32. [CrossRef]

http://doi.org/10.1007/978-3-642-40994-3_25
http://doi.org/10.1109/TNNLS.2016.2593488
http://doi.org/10.1007/BF01589116
http://doi.org/10.1007/s11633-019-1211-x
http://doi.org/10.1561/2200000056
http://doi.org/10.1609/aaai.v32i1.11302

Appl. Sci. 2023, 13, 4422 36 of 36

137. Sharma, Y.; Chen, P.Y. Attacking the Madry Defense Model with L1-Based Adversarial Examples. In Proceedings of the 6th
International Conference on Learning Representations, ICLR 2018—Workshop Track Proceedings, Vancouver, BC, Canada,
3 May 2018.

138. Lee, H.; Han, S.; Lee, J. Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN. arXiv 2017,
arXiv:1705.03387.

139. Odena, A.; Olah, C.; Shlens, J. Conditional Image Synthesis with Auxiliary Classifier Gans. arXiv 2017, arXiv:1610.09585.
140. Liu, X.; Hsieh, C.J. Rob-Gan: Generator, Discriminator, and Adversarial Attacker. In Proceedings of the 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.
141. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
142. Carlini, N.; Wagner, D.A. Defensive Distillation Is Not Robust to Adversarial Examples. arXiv 2016, arXiv:1607.04311.
143. Xie, C.; Zhang, Z.; Yuille, A.L.; Wang, J.; Ren, Z. Mitigating Adversarial Effects through Randomization. In Proceedings of the

6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings, Vancouver, BC, Canada,
30 April–3 May 2018.

144. Uesato, J.; O’donoghue, B.; van den Oord, A.; Kohli, P. Adversarial Risk and the Dangers of Evaluating against Weak Attacks.
arXiv 2018, arXiv:1802.05666.

145. Athalye, A.; Engstrom, L.; Ilyas, A.; Kwok, K. Synthesizing Robust Adversarial Examples. arXiv 2018, arXiv:1707.07397.
146. Samangouei, P.; Kabkab, M.; Chellappa, R. Defense-Gan: Protecting Classifiers against Adversarial Attacks Using Generative

Models. arXiv 2018, arXiv:1805.06605.
147. Athalye, A.; Carlini, N.; David, N.W. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial

Examples. arXiv 2018, arXiv:1802.00420.
148. Metzen, J.; Genewein, T.; Fischer, V.; Bischoff, B. On Detecting Adversarial Perturbations. arXiv 2017, arXiv:1702.04267.
149. Rao, R.; Ballard, D.H. Predictive Coding in the Visual Cortex: A Functional Interpretation of Some Extra-Classical Receptive-Field

Effects. Nat. Neurosci. 1999, 2, 79–87. [CrossRef] [PubMed]
150. Huang, Y.; Gornet, J.; Dai, S.; Yu, Z.; Nguyen, T.; Tsao, D.; Anandkumar, A. Neural Networks with Recurrent Generative Feedback.

Adv. Neural Inf. Process. Syst. 2020, 33, 535–545.
151. Gungor, O.; Rosing, T.; Aksanli, B. RES-HD: Resilient Intelligent Fault Diagnosis Against Adversarial Attacks Using Hyper-

Dimensional Computing. arXiv 2022, arXiv:2203.08148.
152. Bhambri, S.; Muku, S.; Tulasi, A.; Buduru, A.B. A Survey of Black-Box Adversarial Attacks on Computer Vision Models. arXiv

2019, arXiv:1912.01667.
153. Lei, J.; Liu, C.; Jiang, D. Fault Diagnosis of Wind Turbine Based on Long Short-Term Memory Networks. Renew. Energy 2019, 133,

422–432. [CrossRef]
154. Tao, Y.; Wang, X.; Sánchez, R.; Yang, S.; Bai, Y. Spur Gear Fault Diagnosis Using a Multilayer Gated Recurrent Unit Approach

with Vibration Signal. IEEE Access 2019, 7, 56880–56889. [CrossRef]
155. Shenfield, A.; Howarth, M. A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults.

Sensors 2020, 20, 5112. [CrossRef] [PubMed]
156. Li, W.; Piëch, V.; Gilbert, C.D. Contour Saliency in Primary Visual Cortex. Neuron 2006, 50, 951–962. [CrossRef]
157. VanRullen, R.; Delorme, A.; Thorpe, S. Feed-Forward Contour Integration in Primary Visual Cortex Based on Asynchronous

Spike Propagation. Neurocomputing 2001, 38–40, 1003–1009. [CrossRef]
158. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M. Mobilenets: Efficient Convolutional

Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
159. Khan, S.; Wong, A.; Tripp, B. Guarding against Adversarial Attacks Using Biologically Inspired Contour Integration. J. Comput.

Vis. Imaging Syst. 2018, 4, 3. [CrossRef]
160. Li, Z. A Neural Model of Contour Integration in the Primary Visual Cortex. Neural. Comput. 1998, 10, 903–940. [CrossRef]
161. Xiao, L.; Peng, Y.; Hong, J.; Ke, Z.; Yang, S. Training Artificial Neural Networks by Generalized Likelihood Ratio Method:

Exploring Brain-like Learning to Improve Robustness. arXiv 2019, arXiv:1902.00358.
162. Ursino, M.; La Cara, G.E. A Model of Contextual Interactions and Contour Detection in Primary Visual Cortex. Neural Netw. 2004,

17, 719–735. [CrossRef] [PubMed]
163. Stettler, D.; Das, A.; Bennett, J.; Gilbert, C.D. Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex.

Neuron 2002, 36, 739–750. [CrossRef] [PubMed]
164. Dapello, J.; Marques, T.; Schrimpf, M.; Geiger, F.; Cox, D.D.; Dicarlo, J.J. Simulating a Primary Visual Cortex at the Front of CNNs

Improves Robustness to Image Perturbations. In Proceedings of the 34th Conference on Neural Information Processing Systems
(NeurIPS 2020), Vancouver, BC, Canada, 6–12 December 2020. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/4580
http://www.ncbi.nlm.nih.gov/pubmed/10195184
http://doi.org/10.1016/j.renene.2018.10.031
http://doi.org/10.1109/ACCESS.2019.2914181
http://doi.org/10.3390/s20185112
http://www.ncbi.nlm.nih.gov/pubmed/32911771
http://doi.org/10.1016/j.neuron.2006.04.035
http://doi.org/10.1016/S0925-2312(01)00445-3
http://doi.org/10.15353/jcvis.v4i1.336
http://doi.org/10.1162/089976698300017557
http://doi.org/10.1016/j.neunet.2004.03.007
http://www.ncbi.nlm.nih.gov/pubmed/15288894
http://doi.org/10.1016/S0896-6273(02)01029-2
http://www.ncbi.nlm.nih.gov/pubmed/12441061
http://doi.org/10.1101/2020.06.16.154542

	Introduction
	Biological Hierarchical Vision Processing
	Biological Vision in Brain
	Categorization of Deep Learning in Vision Tasks
	CNN: Basis of Deep Neural Networks for Vision Tasks
	CNN Variations

	Adversarial Attacks and Defenses
	Adversarial Attacks
	L-BFGS Attack
	FGSM Attack
	DeepFool Attack
	JSMA
	CW Attacks

	Adversarial Defenses
	Adversarial Training
	Defensive Distillation
	Randomization
	Defense-GAN
	Adversary Detector Networks

	Brain-Inspired Neural Architectures against Adversarial Attacks
	CNN with Feedback Model
	Hyperdimensional Computing Model
	Integrated Contour Model
	Generalized Likelihood Ratio Model
	Biological Mechanism Model
	CNN-Based Visual Cortex Model

	Conclusions
	References

