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Abstract: Domain generation algorithms (DGAs) play an important role in network attacks and
can be mainly divided into two types: dictionary-based and character-based. Dictionary-based
algorithmically generated domains (AGDs) are similar in composition to normal domains and are
harder to detect. Although methods based on meaningful word segmentation and n-gram sequence
features exhibit good detection performance for AGDs, they are inadequate for mining meaningful
word features of domain names, and the performance of hybrid detection of character-based and
dictionary-based AGDs needs to be further improved. Therefore, in this paper, we first describe the
composition of dictionary-based AGDs using meaningful word segmentation, introduce the standard
deviation to better measure the word distribution features, and construct additional 11-dimensional
statistical features for word segmentation results as a supplement. Then, by combining 3-gram
and 1-gram sequence features, we improve the detection performance for both character-based and
dictionary-based AGDs. Finally, we perform feature fusion of the above four kinds of features to
achieve an end-to-end detection method for both kinds of AGDs. Experimental results showed that
our method achieved an accuracy of 97.24% on the full dataset and better accuracy and F1 values
than existing methods on both dictionary-based and character-based AGD datasets.

Keywords: AGD detection; meaningful word segmentation; n-gram; LSTM; feature fusion

1. Introduction

The domain name system (DNS) is a decentralized system that is mainly used to
build the mapping relationship between domain names and internet protocols (IPs) and to
convert readily memorized domain names to numerical IP addresses. For network attacks
such as botnets, to improve the reliability of the communication between the command and
control (C&C) server and infected devices, attackers use the domain generation algorithm
(DGA) to generate many random domain names, from which one or more domain names
are selected to be registered as the domain names of the C&C server. With the use of
many random domain names, i.e., algorithmically generated domains (AGDs), attackers
may prevent communication from being blocked by blacklists to evade the detection of
antiviruses. Therefore, DGA plays an important role in network attacks.

DGA usually generates a set of random strings with the help of random seeds and
combines them with specific top-level domain names (TLDs) to generate a set of AGDs.
Therefore, AGDs usually exhibit randomness in the character sequences. In addition,
the infected devices attempt to establish connections with the C&C server by querying
the randomly generated AGDs, which results in many nonexistent domains (NXDomain)
during the requests. Compared with normal DNS traffic, DGA traffic exhibits abnormalities
in both domain names and traffic behaviors. Therefore, common DGA attack detection
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methods can be generally divided into two types: domain name-based methods and traffic-
based methods. Domain name-based methods usually extract features such as character
entropy, domain name length, ratio of vowels and consonants from a single DNS domain
name [1–3] and use machine learning models [1–3], deep learning networks [4–6], or
clustering methods [7,8] to measure the randomness of the characters in domain names
and detect the AGDs. Common models used in these methods include support vector
machines (SVMs) [1,9], random forests (RFs) [1,10], recurrent neural networks (RNNs) [4,5],
convolutional neural networks (CNNs) [6,11], K-means [7] and DBSCAN [8]. Traffic-based
methods [12–16] usually obtain the traffic of a network device within a period and detect
DGA traffic by analyzing the behavior characters, such as the ratio of the NXDomain or
the similarity of queried domain names. Traffic-based methods are not limited by the
training samples and may achieve good detection effects on new DGA attacks. However,
in both the training and detection processes, they must buffer traffic for a certain period,
which makes it difficult to achieve real-time detection and makes the training process
relatively complicated. For domain name-based methods, the detection unit is usually a
single domain name, and only a domain name dataset are needed when training the model.
These methods achieve a better effect in real-time detection and are currently a popular
topic of research in DGA attack detection. Since domain name-based detection methods
mainly aim to detect AGDs, in this paper, AGD detection has the same meaning as domain
name-based detection of DGA attacks.

Traditional AGDs generated with random characters are quite different from normal
domain names, making them easy to detect. Therefore, to generate AGDs more like normal
domain names, attackers have developed the dictionary-based DGA (or wordlist-based
DGA). In the dictionary-based DGA, a dictionary or wordlist is first established and then
random domain names are generated by concatenating words selected from the dictionary
with random seeds. Such AGDs appear to have practical semantics, which is challenging
for domain name-based detection methods.

There are currently 5 main types of methods for dictionary-based AGD detection.
(1) Graph methods for discovering AGD words [9,17–19]: In terms of word selection,
dictionary-based DGAs tend to use different words from normal domain names. Therefore,
dictionary-based AGDs can be found by constructing word relationship graphs. This type
of method is usually used for the detection of dictionary-based AGDs, and like traffic-based
methods, a certain amount of data is required to perform detection, while a single domain
name cannot be detected in real-time. (2) Methods based on meaningful word segmenta-
tion [10,20–24]: Like the randomness of characters in character-based AGDs, dictionary-
based AGDs exhibit randomness in the words selected. Meaningful word segmentation
methods split the concatenated string into a set of meaningful English words to obtain the
component words of dictionary-based AGDs. Then, features, such as statistical features
and word distribution features are extracted from the word sets and used for classification.
This type of method performs well for dictionary-based AGDs, but the methods are usually
based on some distribution features, such as the average mean pooling of word features [20]
or the part-of-speech distribution features [25], without considering the word correlation in
a domain name. Therefore, the detection performance of dictionary-based AGDs should be
improved, and the detection performance of character-based AGDs is lower than that of
other types of methods. (3) Methods based on n-gram sequences [10,26–32]: Methods of
this type usually perform classification using the n-gram sequences obtained by the seg-
mentation of the domain name by the n-gram algorithm and extracting statistical features or
extract sequence features using deep neural networks such as RNN. Increasing the value of
n improves the description of the character fragment sequence but increases the complexity
exponentially. Therefore, the maximum value of n is usually 3. This kind of method can
detect both character-based and dictionary-based AGDs, but it is insufficient to describe the
characteristics of the component units (i.e., words) in dictionary-based AGDs. (4) Methods
based on local feature extraction using CNN models [32–37]: Methods of this type use a
CNN model to extract local features, which are similar to the features of n-grams. Then,
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the sequence composed of local features is obtained, and sequence detection methods such
as the long short-term memory (LSTM) model are used to perform classification. These
methods can also detect both character-based and dictionary-based AGDs, but they cannot
describe the word characteristics of dictionary-based AGDs. (5) Methods that introduce
external information [38]: When extracting the features of domain names, some external
features, such as WHOIS information, are extracted as auxiliary features for AGD detection.
Methods of this type can also detect both kinds of AGDs. However, these methods usually
require the internet for detection, making them difficult to use on offline devices.

In summary, most current AGD detection methods use meaningful word segmentation
features or sequence features for detection. The word distribution features of domain names
can be effectively used to detect dictionary-based AGDs; character sequence features based
on n-grams can effectively detect character-based AGDs, and n-gram sequence features
can also help improve the detection performance of dictionary-based AGDs. However,
in previous studies, the methods are insufficient for mining meaningful word features
of the domain names, and the performance of hybrid detection of character-based and
dictionary-based AGDs needs to be further improved.

In this paper, we first enhance the meaningful word segmentation features based on
previous studies and analyze the n-gram sequence features under different values of n.
To improve the detection performance of dictionary-based AGDs, the word distribution
features, statistical features and 3-gram sequence features of the domain names are used
to describe the word features and sequence features of dictionary-based AGDs. The
1-gram sequence features of the domain names are used to ensure the detection of the
character-based AGDs. For meaningful word segmentation features, we first calculate the
context-sensitive word embedding features based on ELMo [39] after meaningful word
segmentation, which is similar to the method of Koh et al. [20]. To measure the word
correlations in a domain name, we calculate the standard deviation (Std) of each dimension
of word features in addition to the mean value of each dimension, and the concatenation
of mean and Std features are used as the final word distribution features. Statistical
features are widely used in the detection of AGDs, and the part-of-speech distribution
features of words are valuable for the detection of dictionary-based AGDs [25]; therefore,
we incorporate 3 additional kinds of statistical features, with a total of 11 dimensions,
including domain length features, character ratio features, and word statistical features. For
the n-gram sequence features, to mutually ensure the detection effects of character-based
and dictionary-based AGDs, we compare the performance of 1-gram, 2-gram, and 3-gram
sequence features and demonstrate that the combination of 1-gram and 3-gram sequence
features exhibit the best detection performance through experiments. Finally, we perform
feature fusion of the 4 kinds of features and perform classification to achieve end-to-end
detection of the two kinds of AGDs and effectively improve the detection performance.

In summary, our method makes the following contributions:
1. Based on meaningful word segmentation methods, we propose using the standard

deviation and mean value of word embedding features to form the word distribution
features. We also design multiple-dimensional statistical features and integrate n-gram
sequence features to improve the detection performance of dictionary-based AGDs.

2. We determine the best combination of n-gram sequence features in experiments, use
a 1-gram sequence to describe the character sequence features of character-based AGDs and
use a 3-gram sequence to describe the character fragment sequence features of dictionary-
based AGDs. By combining 1-gram and 3-gram sequence features, the detection effects of
character-based and dictionary-based AGDs can be jointly considered.

3. Our method achieves accuracies of 96.33% and 98.64% in the dictionary-based AGD
dataset and character-based AGD dataset, respectively, and achieves an accuracy of 97.24%
in the mixed dataset, exhibiting significantly better performance than the existing methods.

The remainder of the paper is organized as follows. Section 2 summarizes the previous
work related to DGA attack detection. Section 3 introduces the motivation and framework
of the detection method based on the feature fusion of meaningful word segmentation and
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n-gram sequences. In Section 4, we explain how the datasets were constructed and describe
the application of the model to the datasets, comparing our method with the state-of-the-art
method. Section 5 concludes the paper.

2. Related Work

In recent years, researchers have conducted many studies on DGA attacks. Most of
the studies focused on detecting AGDs more effectively, while some studies focused on
designing a more covert DGA that makes it harder to detect [40–45]. Detection methods can
be divided into domain name-based detection methods and traffic-based detection methods
according to their analysis units. Traffic-based methods divide the traffic into groups and
classify the groups by extracting behavior features to detect DGA attack events [12–16].
The domain name-based methods only analyze the queried domain names in DNS traffic
to detect AGDs. Common DGAs include arithmetic-based methods, hash-based methods,
permutation-based methods and dictionary-based methods. The domain names generated
by arithmetic-based methods, hash-based methods, and permutation-based methods usu-
ally exhibit randomness in character sequences, which are rarely meaningful in English.
Here, the AGDs generated by the three DGA methods are combined and classified as
character-based AGDs. The domain names generated by dictionary-based DGA meth-
ods are usually composed of English words, which are referred to as dictionary-based
AGDs. The two kinds of AGDs are quite different and the features for detection must
be designed accordingly. Due to the differences in character-based and dictionary-based
AGDs, domain name-based detection methods are further divided into character-based
AGD detection methods and dictionary-based AGD detection methods. Our method is a
domain name-based detection method, and we mainly focus on the domain name-based
detection methods in this section.

2.1. Domain Name-Based Methods for Character-Based AGDs

For character-based AGD detection, domain name-based methods could be divided
into methods based on feature engineering, methods based on deep learning-based meth-
ods, and methods based on clustering, according to the model they use.

Methods based on feature engineering usually construct features manually accord-
ing to the characteristics of AGDs and use machine learning models for detection [1–3].
Schüppen et al. [1] analyzed the domain names of the NXDomain, extracted three kinds of
features, including structural features, linguistic features and statistical features, and used
random forest and SVM models for classification. Sivaguru et al. [2] extracted 11 types of
features from domain names, including character entropy, n-gram median and consecutive
character ratio, and trained a binary classification model (B_RF) for AGD detection and
two multiclass classification models (M-RF and OVA-RF) for family classification based on
a random forest model. Feature engineering-based methods are difficult to implement in
feature design, and attackers can design new DGA categories to avoid detection.

For methods based on deep learning [4–6], common detection models include RNNs
and convolutional neural networks (CNNs). Woodbridge et al. [4] first proposed detecting
AGDs through the traditional LSTM model. They used the LSTM model to realize binary
classification for AGD detection and multiclass classification for DGA family classification.
Later, Tran et al. [5] further proposed LSTM.MI model to address the problem of imbalanced
samples by adding different weights to different DGA families. Similarly, Yu et al. [6] used
LSTM, CNN models, etc., to extract features and perform classification based on the
character sequences of the domain names.

In addition to supervised machine learning methods, some studies used clustering
methods to detect AGDs [7,8]. Tong et al. extracted features such as bigram frequency, n-
gram score, and entropy from the domain names and used K-means methods for clustering
and detecting AGDs according to Mahalanobis distance. The PHOENIX method proposed
by Schiavoni et al. [8] extracted a set of linguist features, used the DBSCAN model for
clustering to obtain a domain name set, and detected AGDs by calculating the Mahalanobis
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distance between the new domain name and the centroids of clusters. The accuracy of the
clustering-based method depends on the effect of clustering, and the accuracy varies in
different types of botnets.

The character-based LSTM method can effectively extract the character sequence
features of the domain names. Therefore, we also used the LSTM model to detect character-
based AGDs. In addition, some statistical features are valuable for AGD detection, and this
information is difficult to be reflected in deep learning networks. Therefore, we propose
multidimensional statistical features and fuse them with deep learning features to improve
the effectiveness of the features.

2.2. Domain Name-Based Methods for Dictionary-Based AGDs

Currently, domain name-based methods for detecting dictionary-based AGDs are
mainly divided into the following categories: (1) graph methods for discovering AGD
words, (2) methods based on meaningful word segmentation, (3) methods based on n-
gram sequences, (4) methods based on local feature extraction using CNN models, and
(5) methods that introduce external information.

Dictionary-based DGAs tend to use different words from benign domain names, and
dictionary-based AGDs can be found by constructing word relationship graphs [9,17–19].
Pereira et al. [17] first obtained words from the domain names and constructed a graph,
named WordGraph, based on the co-occurrence relationship of words in the same domain
name. In WordGraph, words in AGDs are usually used repeatedly, resulting in more
degrees than words in benign domain names. Therefore, the authors used the connected
components in WordGraph as units to extract the structural features, including degrees,
to determine their categories. When testing, a domain name was classified according to
whether it is an AGD by the word categories in the domain name. Shen et al. [18] also
constructed a word graph based on the co-occurrence relationship of words and used the
Infomap algorithm to perform community detection on the constructed word graph. Then,
they used communities as units and classified them with the decision tree method. When
testing, if all the words of a domain name belong to a word community, the domain name
was classified as a dictionary-based AGD of this community. This type of method can adapt
better to the detection of new AGDs, but like traffic-based DGA attack detection methods,
these methods require many samples to build the graph, which makes it hard to detect a
single AGD. This type of method is usually used for the detection of only dictionary-based
AGDs and typically does not apply to character-based AGDs.

Since the components of dictionary-based AGDs are English words, some studies
obtained the word sequences of a domain name based on meaningful word segmenta-
tion [10,20–24]. Koh et al. [20] used Wordninja [46] to perform meaningful word segmenta-
tion on domain names without TLD and calculated the context-sensitive word embedding
features of each word through the ELMo [39] model. After calculating the mean pooling
of the word features, the final features of the domain names are obtained and classi-
fied although fully-connected networks. Overall, the performance of methods based on
meaningful word segmentation for character-based AGDs has been relatively poor. Some
methods further split words on the basis of word segmentation, which is compatible with
the detection of character-based AGDs. Zhou et al. [21] used WordSegment [47] meth-
ods [47] for meaningful word segmentation and constructed a word frequency dictionary.
A word was further split into characters if the word was not in the frequency dictionary.
After calculating the word embedding features of each word, a CNN model was used for
classification. Methods based on meaningful word segmentation are intended to restore
the smallest components of AGDs as much as possible; the detection performance is more
affected by the word segmentation method, and the word sequences obtained are usually
short, so it is difficult to extract the sequence features from them.

In addition, the n-gram algorithm is often applied to the detection of dictionary-based
AGDs. The n-gram algorithm usually takes every n characters of the domain name as
a window, extracts an n-gram sequence by the sliding window method, and performs
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classification by sequence detection methods [10,26–32]. Xu et al. [26] first removed the
TLD from the domain name and split it by the n-gram algorithm, in which n was set
to 2 and 3. Then, each n-gram was encoded with one-hot encoding to form a feature
matrix, and the CNN model was used for classification. Morbidoni et al. [27] extracted
n-gram sequences and calculated embedding vectors for each n-gram, then used the LSTM
model for binary classification, and further performed family classification for the domain
names that were classified as AGDs. They used unlabeled samples to pre-train the n-gram
embedding model, thereby solving the problem of insufficient labeled samples in the
classifier training stage. Overall, the methods based on n-gram sequences usually deal
with both character-based and dictionary-based AGDs at the same time. However, when
encoding the n-grams, the number of distinct n-grams grows exponentially with the value
of n, so usually, 3 is the maximum value of n. To address this problem, Selvi et al. [28]
proposed a masked n-gram method, which first replaced the characters in the domain
name with the 4 character types and used the n-gram algorithm for segmentation. In this
way, the number of distinct n-grams was significantly decreased by the replacement, and
a larger n-gram (i.e., 4 grams) was extracted. After constructing features based on the
occurrence of each distinct n-gram, along with 18-dimensional lexical features, they used a
random forest model for classification. However, the performance of methods based on
the n-gram sequence was largely limited by the value of n, and it was insufficient for these
methods to be able to describe the characteristics of the component unit (i.e., words) of
dictionary-based AGDs.

Some researchers used a CNN model to extract local features to detect dictionary-
based AGDs [32–37], which has features similar to those of n-grams, and can extract a
larger range of local features than methods based on n-gram sequences. Yang et al. [33] first
transformed domain names into feature sequences according to the character embeddings,
extracted local features in parallel through a CNN network with multiple convolution
kernels of different sizes, and extracted character sequence features through a bidirectional
LSTM model. Then, the features from the CNN and bidirectional LSTM were concatenated
for classification. Ren et al. [34,35] proposed the ATT-CNN-BiLSTM model based on CNN,
bidirectional LSTM and the attention mechanism. Feature sequences were first obtained
by character embeddings of domain names without TLD, and CNN layers were used to
extract local features from the feature sequences. Then, sequence features were extracted by
bidirectional LSTM layers, and an attention layer was used to allocate the corresponding
weight. Finally, the features were input into fully-connected layers for classification. Overall,
this kind of method can effectively extract the features from the sequence constructed by
local features from the domain names. However, like n-gram sequence-based methods,
these methods are insufficient for describing the characteristics of the words of dictionary-
based AGDs. In addition to features from the domain names themselves, some methods
obtain additional external information, such as WHOIS information [38], as supplementary
data. However, the acquisition of this external information requires the use of the internet,
which makes the methods difficult to use on offline devices.

Based on the above findings, we chose to combine the meaningful word segmentation
and n-gram sequence features of the domain names to improve the detection effect of
dictionary-based AGDs and take into account the detection effect of character-based AGDs
by n-gram sequence features.

3. Method
3.1. Motivation

The domain names in normal DNS traffic can be regarded as semantical sequences,
while the AGDs generated by the pseudorandom method often exhibit a certain degree
of randomness. A domain name can be defined as “subdomain.2LD.TLD”, meaning the
top-level domain (TLD) [48] is managed by the root nameserver, and the 2LD is the next-
level label of TLD and is usually registered by a company or a group below a certain TLD.
Therefore, the random string of an AGD usually appears in 2LD, and common AGDs do not
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contain subdomain parts. However, since some domain names also support the registration
of subdomains, such as “github.io”, the random string of an AGD may also occur in the
subdomain. Therefore, we mainly use the “subdomain.2LD” as the main detection unit.
In addition, some TLDs named country code TLDs (ccTLDs) often have subdomains such
as “com.cn”, “net.uk”, “gov.au”, and “edu.co”. Such 2LD.TLDs are not registered by a
company or a group and are also regarded as TLDs. In this situation, these 2LD.TLDs
are considered TLDs, and the 3rd level label of the domain name is considered 2LD. The
2LD.TLDs that can be regarded as TLDs are listed in [49].

The AGDs generated by character-based and dictionary-based methods are quite
different and features for detection must be designed accordingly. Our method mainly
considers two types of features: meaningful word segmentation features and n-gram
sequence features. The overall design of our method is shown in Figure 1. For meaningful
word segmentation features, since the components of a dictionary-based AGD are English
words, the component units (i.e., words) of a dictionary-based AGD can be restored by
meaningful word segmentation. However, the number of words obtained is relatively
small (usually less than 10), making it difficult to extract the word sequence features;
therefore, after the context-sensitive word embedding feature extraction, the word features
are summarized to construct word distribution features. In addition, based on the domain
names and the segmented words, we additionally extract 11-dimensional statistical features,
including word part-of-speech distribution, to improve the detection ability for dictionary-
based AGDs.

For n-gram sequence features, we use the n-gram algorithm with the LSTM model to
characterize the morpheme correlation in domain names. The randomness of the character
sequence is weak in dictionary-based AGDs and strong in character-based AGDs. Therefore,
for sequence feature extraction of dictionary-based AGDs, we use the LSTM model of
a 3-gram sequence that contains more characters in an n-gram. For sequence feature
extraction of character-based AGDs, we use the LSTM model of a 1-gram sequence (i.e.,
character LSTM model) that contains fewer characters in an n-gram.

Finally, we fuse the 4 kinds of obtained features based on the fully-connected layers
and perform classification to realize an end-to-end detection method for the detection of
both character-based and dictionary-based AGDs.
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Figure 1. Overall concept of the detection method.

3.2. Model Structure

The structure of our AGD detection method is shown in Figure 2. Our method
is divided into 3 parts: data preprocessing, feature extraction, and feature fusion and
classification.

First, during data preprocessing, the TLD is removed from the domain name, and
the remaining sections are mainly used as the basic unit for classification. We use Word-
ninja [46] for meaningful word segmentation and use n-gram algorithms to construct
n-gram sequences for the domain name without TLD. Here, we construct 1-gram and
3-gram sequences, as discussed in Section 3.4.

The next step is feature extraction. For the extraction of meaningful word segmen-
tation features, we first calculate the context-sensitive word embedding features using
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ELMo [39] and summarize the word features to obtain 128-dimensional word distribution
features, as discussed in Section 3.3. Next, based on the domain name and the segmented
words, we extract 11-dimensional statistical features and transfer them into 8-dimensional
statistical features, as discussed in Section 3.5. For n-gram sequence feature extraction,
based on the results of 1-gram and 3-gram sequences, we use the LSTM model to calcu-
late the 128-dimensional 1-gram and 3-gram sequence features, respectively, as discussed
in Section 3.4. Finally, the four parts of features are concatenated, and 392-dimensional
features (128 + 8 + 128 * 2) are obtained.

In the feature fusion and classification step, we use two fully-connected layers to fuse
the 4 features and use the sigmoid activation function to calculate the classification result,
which is a value in the interval [0, 1]. When the value is greater than 0.5, the domain name
is classified as an AGD, and when the value is less than 0.5, the domain name is classified
as a benign domain name.
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3.3. Word Distribution Feature Extraction

This section describes how word distribution features are extracted based on mean-
ingful word segmentation, which primarily focuses on the detection of dictionary-based
AGDs. Since dictionary-based DGAs use English words to randomly generate the AGDs,
we adopt the same approach as Koh et al. [20], by restoring the component words of a do-
main name through meaningful word segmentation to improve the detection effect of such
AGDs. For English word segmentation methods, Wordninja [46] and WordSegment [47]
are commonly used, and based on our experiments, we believe that Wordninja performs
better in this scenario.

The process of word distribution feature extraction is shown in Figure 3. We first
use Wordninja to obtain the word sequence of the domain name and use the ELMo [39]
model to extract a 1024-dimensional context-sensitive word embedding feature vector for
each word. For benign domain names, the words contained in a domain name usually
have a certain semantic correlation, while for dictionary-based AGDs constructed by
random concatenate words, the semantic correlation is relatively low. Therefore, we use
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the correlation between words to detect the dictionary-based AGDs. Since the output of
the ELMo model is a 1024-dimensional feature vector, we calculate the standard deviation
(Std) of each dimension of the word features, which obtains 1024-dimensional Std features
to measure the correlations. In addition, we extract the mean value of each dimension of
word features to represent the distribution of the features, which is the same as the Koh
method [20]. Since the original ELMo model is trained based on natural languages, it is
difficult to fully adapt to the words in domain names, but if the ELMo model is iterated,
it will result in a very large training time cost. Therefore, we add a fully-connected layer
after ELMo to transform the output features of ELMo. After that, the mean features and Std
features are calculated and concatenated to obtain 2048-dimensional distribution features.
Last, through a fully-connected layer, the features are transformed into 128-dimensional
feature vectors, which are regarded as the final word distribution features.

Word_1 Word_2 Word_n

Domain without TLD

ELMo

Embed_1 Embed_2 Embed_n

mean1 mean1024 std1 std1024

......

......Fully-Connected1

（1024）

Fully-Connected2

（128）

mean+std

（2048）
... ...

...

...

Embeded vectors

（1024）

Embeddings

（1024）

Word_1 Word_2 Word_n

Domain without TLD

ELMo

Embed_1 Embed_2 Embed_n

mean1 mean1024 std1 std1024

...

...Fully-Connected1

（1024）

Fully-Connected2

（128）

mean+std

（2048）
... ...

...

...

Embeded vectors

（1024）

Embeddings

（1024）

Figure 3. Process of word distribution feature extraction.

3.4. N-Gram Sequence Feature Extraction

This section describes how n-gram sequence features are extracted from the domain
names using the LSTM model. After analysis, we select 1-gram and 3-gram sequence
features; 1-gram sequence features are mainly used for the detection of character-based
AGDs, and 3-gram features are mainly used for the detection of dictionary-based AGDs.

According to the RFC specification of the DNS [50], the common characters in the
domain names are digits (0–9), letters (a–z and A–Z), hyphen (“-”) and dot (“.”). Since
the domain name resolution process is case-insensitive, a total of 38 common characters
are considered. In addition, some domain names in the dataset may contain underlines
(“_”). To calculate the string embedding vector without throwing an exception, 39 valid
characters are considered here. Therefore, the number of distinct 1-grams is 39, 2-grams
may be 392 = 1521, 3-grams may be 393 = 59,319, and 4-grams may be 394 = 2,313,441.
Since the LSTM model needs to calculate the embedding vector for each n-gram, there
are too many distinct 4-grams, so only 1-grams, 2-grams, and 3-grams are considered
here. When the value of n increases, the n-gram better describes the character fragment
sequence, which is suitable for the detection of dictionary-based AGDs; in contrast, the
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1-gram can better describe the character sequence, which is more suitable for the detection
of character-based AGDs. Therefore, for character-based AGDs, the relative detection
performance is as follows: 1-gram > 2-gram > 3-gram. For dictionary-based AGDs, the
detection performance is as follows: 3-gram > 2-gram > 1-gram. This is demonstrated in
experiments. We fuse 1-gram and 3-gram sequence features to detect both character-based
and dictionary-based AGDs, as shown in Figure 2. We experimentally show that the fusion
of 1-gram and 3-gram sequence features exhibits the best performance.

For each n-gram sequence, the character sequence of the domain name without TLD
is split according to the step size of 1 character and then truncated or padded to a fixed
length. According to the RFC specification of the DNS, the maximum length of each label
in a domain name is 63, and the random string of an AGD mostly appears at the first label
of the domain name, so we set the sequence length to 64. Last, based on the sequences
obtained by 1-gram and 3-gram, we extract sequence features, although the LSTM model
and output 128-dimensional features separately.

3.5. Statistical Feature Extraction

In the word distribution feature extraction, we consider the mean and Std of word
features as the final word distribution features. In addition, we believe that the statistical
values of segmented words and the distribution of part-of-speech are also of great value.
Therefore, after meaningful word segmentation, we additionally extract statistical features
to supplement the above deep learning features to enrich the feature types and improve
the detection effect. We extract statistical features with a total of 11 dimensions from three
perspectives: domain length features, character ratio features, and word statistical features.

The first type of feature includes domain length features. Since the main detection
unit is the domain name without a TLD, the length of the original domain name and the
length of the domain name without a TLD are considered here. The second type of feature
is the character ratio feature. We use the ratio of vowel, consonant and digit characters
in the domain without TLD as features. In addition, some dictionary-based DGAs use
hyphens (“-”) to concatenate the selected words from the dictionary (such as the Matsnu
family), so we take the occurrence of hyphens “-” as one dimension of the features. The
third type of feature is word statistical features. We mainly focus on the number of words
and the average length of words after meaningful word segmentation. In addition, the
part-of-speech distribution of words plays an important role in dictionary-based AGD
detection [25], so we use the part-of-speech ratio of the words as features. The part-of-
speech of words are extracted using the NLTK package of Python language. Since each
domain name contains a small number of words, we only consider the ratio of adjectives
(JJ), nouns (NN), and verbs (VB) and do not consider the subtypes of part-of-speech. For
instance, adjectives (JJ), comparatives adjectives (JJR), and superlative adjectives (JJS) are
all considered the same type.

Since the values of the four dimensions of the statistical features are integers, including
the length of the original domain name, the length of the domain name without TLD, the
number of words, and the average length of words, we divide them by the maximum
value in their dataset for normalization. The values of the other 7-dimensional features
already belong to the interval [0, 1], and there is no need for further normalization. Finally,
we use a fully-connected layer to transform the 11-dimensional statistical features into
8-dimensional features. The details of the 11-dimensional statistical features are shown in
Table 1.
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Table 1. Summary of statistical features.

Feature Type Feature Name Description Whether Need
Normalization

Domain
length

features

Len_total Total length of original domain name Yes

Len_no_tld Total length of domain name
without TLD Yes

Character
ratio

features

Ratio_vow Ratio of vowel characters in domain
name without TLD No

Ratio_con Ratio of consonant characters in
domain name without TLD No

Ratio_dig Ratio of digit characters in domain
name without TLD No

If_contain
_hypen

Whether to contain hyphen (“-”).
1 indicates yes and 0 indicates no No

Word
statistical
features

Num_words The total number of words after
meaningful word segmentation Yes

Avg_word
_len

The average length of words after
meaningful word segmentation Yes

Ratio_JJ The ratio of adjectives in a word after
meaningful word segmentation No

Ratio_NN The ratio of nouns in a word after
meaningful word segmentation No

Ratio_VB The ratio of verbs in a word after
meaningful word segmentation No

4. Experiments
4.1. Datasets and Indicators

This paper builds datasets based on Alexa [51] and UMUDGA [52]. Alexa contains
nearly 1,000,000 benign domain names, and UMUDGA was released in 2020 and contains
50 families of AGDs, including 6 families with 11 variants of dictionary-based AGDs and
32 families with 39 variants of character-based AGDs. Domain names in some character-
based DGA families are also similar to dictionary-based AGDs, such as Vawtrak_v3, but
most of the words do not have English meanings, so they are also regarded as character-
based AGDs. In our experiments, we regarded each variant as an independent DGA family.

Earlier papers usually used DGArchive [53] and Netlab 360 DGA [54] to construct
their datasets, but these AGDs are derived from real network traffic, and the number of
samples of each family is quite different in the two datasets, which makes them difficult to
use. UMUDGA is a relatively standardized dataset that has been used for experiments in
many papers since its release in 2020. Here, we selected 500,000 domain names from Alexa
and 500,000 AGDs from UMUDGA (10,000 for each DGA family) to build our datasets.
We constructed 3 datasets: a dictionary-based dataset that contained 210,000 samples, a
character-based dataset that contained 790,000 samples, and a full dataset that contained
1,000,000 samples. For each dataset, 70% of the samples were used as the training set, 10%
as the validation set, and the other 20% as the testing set. The validation set was used to
estimate the fitting state of the model during the training stage. When the accuracy of the
validation set decreased significantly, the epoch with the highest accuracy on the validation
set was selected as the final model, and the performance of the model on the testing set
was recorded as the final result.
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In addition, we constructed 3 generalization testing sets based on the AGDs from
DGArchive and Netlab 360 to measure the real-world detection performance of our final
model and the three comparison methods, which were trained on the full dataset. First, we
constructed 2 generalization testing sets based on the AGDs from DGArchive. We selected
up to 5,000 AGDs from each family, based on whether or not the family was included in the
UMUDGA, the AGDs were divided into two generalization testing sets. Then, we selected
up to 1,000 AGDs for each family after October 2022 from Netlab 360 and built the third
generalization dataset. The details of our final datasets are shown in Table 2.

Table 2. Descriptions of datasets.

Dataset Composition Description

Dictionary-based
dataset

Total: 210,000
AGD: 110,000

Benign: 100,000

11 families of dictionary-based AGDs from
UMUDGA and random selected 100,000 benign
domain names from Alexa

Character-based
dataset

Total: 790,000
AGD: 390,000

Benign: 400,000

39 families of character-based AGDs from
UMUDGA and random selected 400,000 benign
domain names from Alexa

Full dataset
Total: 1,000,000
AGD: 500,000

Benign: 500,000

Equal to the union of the dictionary-based dataset
and the character-based dataset

DGArchive
in UMUDGA AGD: 146,648 Families contained in UMUDGA

DGArchive not
in UMUDGA AGD: 137,457 Families not contained in UMUDGA

Netlab 360 AGD: 20,950 Latest AGDs from Netlab 360 DGA

For the three datasets, the number of positive samples (AGD) and negative samples
(benign) were roughly equal, so the accuracy, precision, recall and F-measure could be
used to evaluate the model effects. Furthermore, the three generalization testing sets only
contained AGDs, so only the recall rate was considered. The definitions of the indicators
are as follows:

Accuracy (A): The ratio of the correctly classified samples to the total samples, which
represents the confidence of the classification.

A =
TP + TN

TP + FP + FN + TN
(1)

Precision (P): The ratio of the true positives (TPs) to the sum of the TPs and the false
positives (FPs), which represents the confidence of the classification.

P =
TP

TP + FP
(2)

Recall (R): The ratio of the TPs to the sum of the TPs and the false negatives (FNs),
which represents the completeness of the classification.

R =
TP

TP + FN
(3)

F-Measure (F1): The harmonic mean of the precision and recall, which represents the
synthesis of the performance of the classification.

F 1 =
2 ∗ P ∗ R

P + R
(4)
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where TP represents the number of samples correctly classified as positive, FN represents
the number of samples incorrectly classified as negative, FP represents the number of
samples incorrectly classified as positive, and TN represents the true negatives that are
correctly classified as negative.

4.2. Experimental Settings

In this paper, three existing methods were selected for comparison: the Koh method [20]
based on meaningful word segmentation, the ATT-CNN-BiLSTM method [34] based on
local features extracted by CNN and LSTM.MI method [5] based on character LSTM.
(1) Koh et al. (2018) [20] used Wordninja [46] for word segmentation and extracted context-
sensitive word embedding features through ELMo [39]. The mean values of each dimension
of word features were calculated for classification. This method is suitable for the detection
of dictionary-based AGDs. (2) ATT-CNN-BiLSTM (2020) [34] used a CNN to extract local
features and used bidirectional LSTM to extract sequence features for classification. This
method is suitable for the detection of both dictionary-based and character-based AGDs.
(3) LSTM.MI (2018) [5] used the LSTM model for unbalanced AGD classification. Since
the datasets we constructed were roughly balanced, this method is basically the same
as the method of Woodbridge (2016) [4], and this method is suitable for the detection of
character-based AGDs.

Our experiments could be divided into three categories: the comparison experiments
with existing detection methods, the ablation experiments, and the comparison experiment
with detection engines.

(1) Comparison experiments with existing detection methods
We conducted 4 groups of compassion experiments, to compare the overall detection

effects, the recall rate of certain DGA families, the detection ability on real-world samples,
and the detection ability against adversarial DGA families between our method and the
three comparison methods. The details of the experiments are as follows.

• Comparison experiment for detection effects. We compared our method with the
Koh method, ATT-CNN-BiLSTM method, and LSTM. MI method on the three datasets.

• Comparison experiment for family recall. We compared the recall rate of each DGA
family of our method with the Koh method, ATT-CNN-BiLSTM method, and LSTM.MI
method. For each method, we used the final model trained on the full dataset and
calculated the recall rate of each DGA family in the full dataset to show the detection
ability of different methods for each DGA family.

• Comparison experiment for generalization recall. We compared the recall rate
of each generalization dataset of our method with the Koh method, ATT-CNN-
BiLSTM method, and LSTM.MI method. For each method, we used the final model
trained on the full dataset to test the recall rate on the three generalization datasets
constructed based on DGArchive and Netlab 360 to show the detection ability on
real-world samples.

• Comparison experiment for adversarial DGA families. Based on adversarial DGA
families named deception and deception2 proposed by Spooren et al. [42], we recon-
structed a new dataset to compare the detection effects on such kinds of DGA families
with the Koh method, ATT-CNN-BiLSTM method, and LSTM.MI method.

(2) Ablation experiments
Our method fuses a variety of features. We conducted 3 groups of ablation experiments

for the selection of word distribution features, the selection of n-gram sequence features,
and feature fusion. The details of the experiments are as follows.

• Effectiveness experiment for word distribution features. We compared the detection
effects of two-word segmentation methods, including Wordninja [46] and WordSeg-
ment [47], and the detection effects of two kinds of features, including Mean and Std,
to select the best word distribution features.
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• Effectiveness experiment for n-gram sequence. We compared the detection effects
of 1-gram, 2-gram and 3-gram sequence features and the detection effects of different
combinations of n-gram sequence features to select the best combination of n-grams.

• Effectiveness experiment for feature fusion. We added each type of feature in se-
quence and observed the changes in the detection effect to verify the effectiveness of
each type of feature.

(3) Comparison experiment with detection engines
Based on Netlab 360 generalization set, we compared the recall rates of our method

with the detection engines in VirusTotal [55].

4.3. Results
4.3.1. Comparison Experiments with Existing Detection Methods

(1) Comparison experiment for detection effects
The comparison methods we implemented were the Koh method [20] based on mean-

ingful word segmentation, the ATT-CNN-BiLSTM method [34] based on local features
extracted by CNN, and the LSTM.MI method [5] based on character LSTM. Our method
was implemented based on the PyTorch and Allennlp packages. The initial learning rate
was set to 0.001, and Adam was selected as the optimizer. During the training stage, a
total of 25 epochs were iterated, and the learning rate decayed to 0.1 of the previous rate
every 5 iterations. The source code for the LSTM.MI method was released based on Keras,
and we directly used the original implementation for experiments. For the Koh method,
we reimplemented the method in the paper. For the implementation of ELMo, we chose
two methods: one was based on TensorFlow_hub [56] as described in the paper, and the
other was based on Allennlp with PyTorch, which was the same as our method. We found
that the effect of ELMo implemented based on PyTorch was better in experiments, so we
chose it as the final implementation. For the ATT-CNN-BiLSTM method, we referred to the
source code of LSTM.MI and reimplemented the method based on Keras according to the
description in the paper. The performances of the four methods are shown in Table 3.

Table 3. Performance of comparison experiments.

Datasets Indicators Ours Koh ATT-CNN-
BiLSTM LSTM.MI

Dictionary-based
dataset

Accuracy 96.33% 94.39% 94.13% 93.09%

Precision 96.34% 94.34% 93.61% 92.88%

Recall 96.64% 94.95% 95.25% 93.96%

F1 96.49% 94.64% 94.43% 93.42%

Character-based
dataset

Accuracy 98.64% 96.79% 98.13% 98.42%

Precision 98.68% 96.72% 98.53% 98.57%

Recall 98.56% 96.78% 97.68% 98.23%

F1 98.62% 96.75% 98.10% 98.40%

Full dataset

Accuracy 97.24% 94.63% 96.14% 96.12%

Precision 97.22% 94.78% 96.16% 96.72%

Recall 97.25% 94.46% 96.10% 95.47%

F1 97.23% 94.62% 96.13% 96.09%

In all tables of the experimental results, the best result is shown in red, and the second-
best result is shown in blue. Based on the results of the comparison, we found that our
method achieved the highest detection performance on all three datasets. The Koh method
uses the mean values of the context-sensitive word embedding features of the words as
the final features, and it achieved better detection performance for dictionary-based AGDs,
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while the detection effect of character-based AGDs was relatively poor. The LSTM.MI
method uses the traditional character sequence detection method, so it exhibited relatively
good detection performance for character-based AGDs. The ATT-CNN-BiLSTM method
achieved better results on the full dataset by fusing local features and sequence features.

By the effective fusion of the multiple features, our method significantly improved the
performance of both the dictionary-based dataset and the full dataset. Since only 1-gram
sequence features in our method were specifically for the detection of character-based
AGDs and the gain of other features on character-based AGDs was relatively small, the
performance of our method was only slightly better than that of the LSTM.MI method.

(2) Comparison experiment for family recall
We compared the recall rate of each DGA family of our method with that of the Koh

method, ATT-CNN-BiLSTM method, and the LSTM.MI method. For each method, we used
the final model trained on the full dataset and calculated the recall rate of each DGA family in
the full dataset to show the detection ability of different methods for each DGA family. The
recall rate of each method for each family is shown in Table 4. In Table 4, the first 11 families,
are dictionary-based DGA families, and the rest are character-based DGA families.

Table 4. Comparison of recall of different families.

Family
Recall

Ours Koh ATT-CNN-
BiLSTM LSTM.MI

Gozi_gpl 94.55% 91.50% 87.70% 86.30%

Gozi_luther 93.00% 82.70% 88.40% 85.35%

Gozi_nasa 94.00% 87.60% 89.35% 87.30%

Gozi_rfc4343 94.90% 88.55% 88.50% 85.80%

Matsnu 88.75% 81.15% 84.95% 79.80%

Nymaim 67.20% 52.60% 58.30% 54.85%

Pizd 98.54% 97.28% 97.91% 95.40%

Rovnix 97.90% 97.70% 95.30% 92.70%

Suppobox_1 98.54% 98.06% 97.38% 95.45%

Suppobox_2 97.35% 95.35% 94.40% 94.85%

Suppobox_3 99.90% 97.65% 99.50% 99.50%

Alureon 98.20% 97.95% 97.65% 96.65%

Banjori 100.00% 100.00% 100.00% 100.00%

Bedep 99.55% 99.40% 99.45% 99.35%

Ccleaner 100.00% 99.80% 99.90% 100.00%

Chinad 100.00% 99.85% 100.00% 99.90%

Corebot 100.00% 100.00% 100.00% 99.95%

Cryptolocker 99.30% 98.70% 98.75% 98.80%

Dircrypt 98.55% 98.20% 98.25% 98.20%

Dyre 100.00% 100.00% 100.00% 100.00%

Fobber_v1 99.85% 99.90% 99.75% 99.75%

Fobber_v2 97.90% 97.15% 97.50% 96.85%

Kraken_v1 99.95% 99.65% 99.85% 99.80%

Kraken_v2 98.60% 97.60% 97.95% 97.20%
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Table 4. Cont.

Family
Recall

Ours Koh ATT-CNN-
BiLSTM LSTM.MI

Locky 97.10% 95.65% 96.25% 95.90%

Murofet_v1 100.00% 100.00% 100.00% 100.00%

Murofet_v2 99.80% 99.70% 99.85% 99.65%

Murofet_v3 100.00% 100.00% 100.00% 100.00%

Necurs 98.55% 97.55% 98.05% 97.65%

Padcrypt 99.65% 98.70% 99.40% 99.55%

Proslikefan 91.65% 87.85% 89.60% 88.55%

Pushdo 95.25% 86.15% 95.15% 93.90%

Pykspa 92.20% 88.35% 90.70% 89.70%

Pykspa_noise 92.40% 89.20% 91.70% 90.60%

Qadars 99.40% 98.80% 99.10% 98.95%

Qakbot 99.25% 98.70% 99.10% 98.65%

Ramdo 99.65% 99.25% 99.80% 99.85%

Ramnit 98.60% 97.45% 98.15% 97.50%

Ranbyus_v1 99.55% 99.45% 99.55% 99.55%

Ranbyus_v2 99.80% 99.80% 99.75% 99.85%

Shiotob 99.05% 98.90% 98.65% 98.70%

Simda 94.80% 80.60% 96.15% 96.15%

Sisron 100.00% 100.00% 100.00% 100.00%

Symmi 100.00% 99.95% 100.00% 99.80%

Tempedreve 94.20% 90.75% 92.90% 92.75%

Tinba 99.80% 99.15% 99.20% 99.30%

Vawtrak_v1 96.10% 92.45% 94.40% 94.25%

Vawtrak_v2 99.65% 86.60% 98.15% 99.70%

Vawtrak_v3 99.80% 79.90% 99.00% 99.00%

Zeus-newgoz 100.00% 100.00% 100.00% 100.00%

From the comparison results, among the 50 families, our method achieved the highest
recall rates in 44 families; the recall rates of some families were slightly lower than other
methods, but the gap was relatively small. In addition, our method achieved relatively high
recall rates for most families, but the recall rates of some families were slightly lower, such
as the recall rates of two families of dictionary-based AGDs, Nymaim and Matsnu, which
were only 67.20% and 88.75%, respectively, but were still higher than the three comparison
methods. Overall, the recall rates of character-based AGDs were higher than those of
dictionary-based AGDs. In addition, the average recall rate of 11 character-based DGA
families was only 93.15%, demonstrating that after the character-based AGDs were added
to the dataset, the recall rates of dictionary-based AGDs decreased slightly.

(3) Comparison experiment for generalization recall
In this experiment, we compared the detection performance of our final model and

the 3 comparison methods on other datasets to measure the detection performance in
real-world detection. We used the three generalization testing datasets constructed from
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DGArchive and Netlab 360 to compare the recall rates of the final models trained on the
full dataset. The experimental results are shown in Table 5.

Table 5. Comparison of generalization abilities.

Dataset Total Samples
Recall

Ours Koh ATT-CNN-
BiLSTM LSTM.MI

DGArchive
in UMUDGA 146,648 92.99% 90.98% 91.24% 89.78%

DGArchive not
in UMUDGA 137,457 84.46% 82.11% 80.94% 79.35%

Netlab 360 20,950 92.27% 90.87% 89.50% 88.89%

Based on the comparison results, we found that our method achieved the best recall
rates on the three generalization datasets, which were slightly higher than those of the
other three comparison methods, demonstrating that our method has the ability to detect
AGDs in real traffic and the ability to detect latest AGD samples.

(4) Comparison experiment for adversarial DGA families
In recent years, many researchers use adversarial methods to construct AGDs, which

makes the detection even harder [40–45]. In order to test the detection ability of our method
against such DGA families, we constructed a dataset for the experiment. We separately
selected 10,000 AGDs generated by adversarial methods named deception and deception2
proposed by Spooren et al. [42], and randomly selected 50,000 AGDs and 70,000 benign
domain names from the full dataset. Finally, a dataset containing 140,000 domain names
was constructed and split into training, validation, and testing sets. The experimental
results are shown in Table 6.

Table 6. Comparison of adversarial DGA families.

Indicators Ours Koh ATT-CNN-
BiLSTM LSTM.MI

Accuracy 89.13% 87.10% 84.33% 84.30%

Precision 89.32% 86.90% 86.21% 86.43%

Recall 88.87% 87.37% 81.73% 81.37%

F1 89.10% 87.13% 83.91% 83.83%

Recall of Deception 74.42% 72.63% 61.24% 59.31%

Recall of Deception2 72.24% 66.50% 50.73% 49.97%

The results in Table 6 show that our method achieved the best detection performance,
and the recall rates of the two adversarial DGA families are more than 70%, which proves
that our method also has detection ability for Adversarial DGA samples.
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4.3.2. Ablation Experiments

(1) Effectiveness experiment for word distribution features
For the detection of dictionary-based AGDs, we first performed meaningful word

segmentation and calculated the context-sensitive word embedding features. Then, we
calculated the standard deviation (Std) of each dimension of word features to measure the
correlation between words based on the Koh method. The mean of each dimension (Mean)
was calculated to represent the distribution of word features. The word segmentation meth-
ods we considered were WordSegment and Wordninja. We assessed the performance of six
settings: WordSegment (Mean), WordSegment (Std), WordSegment (Mean+Std), Wordninja
(Mean), Wordninja (Std), and Wordninja (Mean+Std). For each setting of the experiments,
two fully-connected layers were used for classification after the word distribution features
were obtained. The experimental results are shown in Table 7.

Table 7. Performance of different word distribution features.

Datasets Indicators WordSegment
(Mean)

WordSegment
(Std)

WordSegment
(Mean+Std)

Wordninja
(Mean)

Wordninja
(Std)

Wordninja
(Mean+Std)

Dictionary
-based
dataset

Accuracy 93.09% 93.80% 94.73% 93.52% 94.90% 95.00%

Precision 93.47% 94.63% 94.93% 93.56% 94.69% 94.90%

Recall 93.27% 93.41% 94.97% 94.06% 95.60% 95.56%

F1 93.37% 94.02% 94.95% 93.81% 95.14% 95.23%

Character
-based
dataset

Accuracy 95.16% 89.71% 95.99% 96.47% 97.22% 97.41%

Precision 94.92% 84.19% 95.32% 96.53% 97.47% 97.57%

Recall 95.29% 97.45% 96.62% 96.30% 96.89% 97.18%

F1 95.10% 90.34% 95.97% 96.42% 97.18% 97.37%

Full
dataset

Accuracy 93.19% 87.82% 94.13% 94.38% 95.20% 95.46%

Precision 93.47% 82.96% 94.23% 94.95% 96.04% 95.48%

Recall 92.86% 95.17% 94.01% 93.74% 94.28% 95.44%

F1 93.16% 88.64% 94.12% 94.34% 95.15% 95.46%

Based on the results, the performance of Wordninja was significantly better than that
of WordSegment. In addition, for both Wordninja and WordSegment, the fusion of the
Mean and Std features effectively improved the detection effect of the model compared
to using only Std or Mean as features. Therefore, Wordninja (Mean+Std) was selected as
the final feature in this experiment. In addition, Wordninja (Mean) was similar to the Koh
method, and the Wordninja (Mean) method had two more fully-connected layers than the
Koh method. In contrast, the performance of Wordninja (Mean) was slightly worse than
that of the Koh method. Based on our analysis, we believe that it affects the detection
ability after increasing the complexity of the model when only the mean values are used as
features. However, after fusing the mean and Std features, the detection performance was
significantly better than that of the Koh method, which demonstrated the effectiveness of
the fusion of the two kinds of features.
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(2) Effectiveness experiment for n-gram sequence
Common n-gram sequence methods mainly include 1-gram, 2-gram and 3-gram

methods. We used the three n-gram algorithms to obtain n-gram sequences and used the
LSTM model for sequence feature extraction and classification. Here, we compared the
detection effect of each single n-gram sequence and the detection effects of two feature
fusion schemes using 1+3-grams and 1+2+3-grams to select the n-gram sequence features.
The experimental results are shown in Table 8.

Table 8. Performance of different n-gram sequence features.

Datasets Indicators 1-Gram 2-Gram 3-Gram 1, 3-Gram 1, 2, 3-Gram

Dictionary
-based
dataset

Accuracy 94.56% 94.72% 95.19% 95.24% 95.26%

Precision 94.48% 94.30% 95.26% 95.33% 94.94%

Recall 95.14% 95.67% 95.53% 95.56% 96.03%

F1 94.81% 94.98% 95.40% 95.45% 95.48%

Character
-based
dataset

Accuracy 98.45% 98.37% 98.01% 98.50% 98.51%

Precision 98.48% 98.43% 98.28% 98.50% 98.75%

Recall 98.38% 98.27% 97.68% 98.47% 98.22%

F1 98.43% 98.35% 97.98% 98.48% 98.48%

Full dataset

Accuracy 96.43% 96.39% 96.45% 96.62% 96.63%

Precision 96.62% 97.08% 96.75% 96.64% 97.10%

Recall 96.22% 95.65% 96.13% 96.60% 96.12%

F1 96.42% 96.36% 96.44% 96.62% 96.61%

Based on the results, the 1-gram method performed better on the character-based
dataset, while the 3-gram method performed better on the dictionary-based dataset. We
believe that when the value of n in the n-gram increases, the detection performance of
dictionary-based AGDs increases, while the performance of character-based AGDs de-
creases. Therefore, we achieved good detection performance for the two kinds of AGDs at
the same time by fusing multiple kinds of n-grams.

Comparing the results of 1+3-gram and 1+2+3-gram, we found that 1+3-gram effec-
tively detected both kinds of AGDs. After adding 2 grams, the accuracy and F1 value were
only slightly improved, which did not significantly improve the overall performance of the
model but greatly increased the complexity of the model. Therefore, in the final model, we
gave priority to fusing 3-grams and 1-grams and finally considered 2-grams.

(3) Effectiveness experiment for feature fusion
In this experiment, we compared the detection performance of different feature fusion

methods. The features we chose included word distribution features, statistical features,
and n-gram features. Based on the results in experiments (1) and (2), we first used Wordninja
(Std+Mean), which was the best word distribution feature, as the basic method, and then
we sequentially added statistical features, 3-gram sequence features, 1-gram sequence
features, and 2-gram sequence features. We compared the performance before and after
each feature was added, and then the optimal feature fusion method was selected. The
experimental results are shown in Table 9.
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The results indicated that after adding statistical features to the word distribution
features based on Wordninja, the indicators on the three datasets were improved, demon-
strating that the statistical features can effectively improve the detection effect. Then, after
adding 3-gram sequence features, the detection ability for the two kinds of AGDs improved,
demonstrating the effectiveness of 3-gram sequence features. After that, we continued
adding 1-gram sequence features, and the detection performance on the three datasets
also significantly improved, so we also retained the 1-gram sequence features. Finally,
after adding the 2-gram sequence features on this basis, the overall detection performance
decreased due to the increase in the complexity of the model. The introduction of 2-grams
led to a decrease in the effect of the model, so we did not consider the 2-gram sequence
features in the final model. That is, Wordninja (Std + Mean) + 1,3-gram + statistical features
were finally selected as our detection method.

Table 9. Performance of different feature fusion methods.

Datasets Indicators Wordninja Wordninja
+ Statistics

Wordninja
+ 3-Gram

+ Statistics

Wordninja
+ 1, 3-Gram
+ Statistics

Wordninja
+ 1, 2, 3-Gram

+ Statistics

Dictionary-based
dataset

Accuracy 95.00% 95.17% 96.17% 96.33% 96.19%

Precision 94.90% 95.20% 96.12% 96.34% 96.32%

Recall 95.56% 95.56% 96.55% 96.64% 96.38%

F1 95.23% 95.38% 96.34% 96.49% 96.35%

Character-based
dataset

Accuracy 97.41% 97.55% 98.36% 98.64% 98.57%

Precision 97.57% 97.60% 98.27% 98.68% 98.74%

Recall 97.18% 97.44% 98.42% 98.56% 98.36%

F1 97.37% 97.52% 98.34% 98.62% 98.55%

Full dataset

Accuracy 95.46% 95.43% 96.89% 97.24% 97.10%

Precision 95.48% 96.10% 96.85% 97.22% 97.45%

Recall 95.44% 94.68% 96.92% 97.25% 96.72%

F1 95.46% 95.39% 96.89% 97.23% 97.08%

4.3.3. Comparison Experiment with Detection Engines

VirusTotal [55] can determine whether a domain name is an AGD or not; in addition,
it also integrates detection results of many independent detection engines which determine
whether a domain name is malicious. We obtained the recall rates of each detection engines
in VirusTotal and our method on the Netlab 360 generalization testing sets. The detection
effects are shown in Table 10. For the detection engines in VirusTotal, the recall rate
represents the proportion of domain names predicted as malicious; and for VirusTotal itself,
the recall rate represents the proportion of domain names predicted as “DGA”. We only
present engines with the recall rates over 30%.

Table 10. Recall rates of different open access detection engines.

Indicator Ours VirusTotal Heimdal Security Antiy-AVL Seclookup

Recall 92.27% 85.75% 83.91% 43.40% 31.23%
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The results in Table 10 show that, our method achieved higher recall rate than the
detection engines in VirusTotal.

5. Conclusions

In this paper, we proposed an AGD detection method based on the fusion of mean-
ingful word segmentation and n-gram sequence features. We used meaningful word
segmentation to describe the composition of dictionary-based AGDs and used the mean
and standard deviation to describe the word distribution of the domain name. We con-
structed additional 11-dimensional statistical features based on the word segmentation
results. In addition, we used 3-gram and 1-gram sequences to characterize the sequence fea-
tures of dictionary-based AGDs and character-based AGDs, respectively. Finally, we fused
these four kinds of features to realize an end-to-end detection of AGDs, which significantly
improved the detection effect of dictionary-based AGDs and accounted for the detection
performance of character-based AGDs. We conducted experiments on three datasets, which
separately contained only dictionary-based AGDs, only character-based AGDs, and both
character-based and dictionary-based AGDs. The testing results demonstrated that our
method achieved the highest accuracy on each of the three datasets and reached an accuracy
of 97.25% on the full dataset, which was higher than that of the state-of-the-art methods.

The recall rate of some dictionary-based DGA families was relatively low on the full
dataset. We will further analyze these families to improve the detection performance, and
then we will deploy them in the real-world network to detect the AGDs.
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