
Citation: Hsieh, K.; Lin, Y.-W.; Chu,

S.-I.; Chang, H.-C.; Cho, M.-Y. A

Simple Neural-Network-Based

Decoder for Short Binary Linear

Block Codes. Appl. Sci. 2023, 13, 4371.

https://doi.org/10.3390/

app13074371

Academic Editor: Krzysztof

Koszela

Received: 4 February 2023

Revised: 22 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Simple Neural-Network-Based Decoder for Short Binary
Linear Block Codes
Kunta Hsieh 1,* , Yan-Wei Lin 2, Shao-I Chu 2, Hsin-Chiu Chang 2 and Ming-Yuan Cho 1

1 Department Electrical Engineering, National Kaohsiung University of Science and Technology,
Kaohsiung 807618, Taiwan

2 Department Electronic Engineering, National Kaohsiung University of Science and Technology,
Kaohsiung 807618, Taiwan

* Correspondence: 1101404110@nkust.edu.tw; Tel.: +886-953313123

Abstract: The conventional soft decision decoding (SDD) methods require various hard decision
decoders (HDDs) based on different codes or re-manipulate the generator matrix by the complicated
Gaussian elimination technique according to the bit reliability. This paper presents a general multi-
class neural network (NN)-based decoder for the short linear block codes, where no HDD and
Gaussian elimination are required once the NN is constructed. This network architecture performs
multi-classification to select the messages with high occurrence probabilities and chooses the best
codeword on a maximum likelihood basis. Simulation results show that the developed approach
outperforms the existing deep neural network (DNN)-based decoders in terms of decoding time and
bit error rate (BER). The error-correcting performance is also superior to the conventional Chase-II
algorithm and is close to the ordered statistics decoding (OSD) in most cases. For Bose–Chaudhuri–
Hocquenghem (BCH) codes, the SNR is improved by 1dB to 4dB as the BER is 10−4. For the (23, 12)
quadratic residue (QR) code, the SNR is improved by 2dB when the BER is 10−3. The developed
NN-based decoder is quite general and applicable to various short linear block codes with good
BER performance.

Keywords: neural network; deep learning; binary linear block code; soft decision decoding

1. Introduction

The study of the application on neural networks to error correction codes has been
ongoing since the late 1980s [1–9]. However, at that time, hardware technology needed
to be more capable of efficiently training and implementing sizable neural network (NN)
models, which limited the number of network layers and performance. The training results
thus often did not reach the desired bit error rate. In recent years, advances in hardware
technology have made it possible to train and implement more extensive and complex
NN models, leading to significant progress in this field. The use of deep learning for error
correction codes has become more popular in recent years due to the rise of deep learning
(DL) and the availability of hardware acceleration. The NNs for decoding are typically
divided into two main categories: binary classification and noise elimination architectures.
The binary classification architecture is designed to classify the input data into two cat-
egories, such as “correct” and “incorrect,” while the noise elimination architecture aims
to remove noise from the input data to improve the decoding accuracy. Both approaches
have effectively improved the performance of error correction codes and are an active area
of research.

Several soft decision decoding (SDD) methods are commonly used in error correction
codes. These include the belief propagation (BP) algorithm [10], which uses an iterative
method to eliminate noise in the input signal, and the Chase-II algorithm [11], which
uses enumeration to select candidate codewords obtained by the hard decision decoder
(HDD). Another popular method is the ordered statistics decoding (OSD) method [12],

Appl. Sci. 2023, 13, 4371. https://doi.org/10.3390/app13074371 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074371
https://doi.org/10.3390/app13074371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5985-820X
https://doi.org/10.3390/app13074371
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074371?type=check_update&version=2

Appl. Sci. 2023, 13, 4371 2 of 13

which reconstructs the generator matrix of the code based on the bit reliability to produce
the possible candidate message. The candidate codewords are finally selected from the
perspective of the maximum likelihood. Traditional SDD decoding methods often require
significant time and computing resources, as they rely on iterative, enumerative, and
sorting processes.

In contrast to conventional SDD methods, the DL-based methods require only matrix
multiplication to obtain a solution as the NN or deep neural network (DNN) is trained. This
method greatly simplifies the calculation process, and hardware-accelerated technology
can be used to perform parallelized calculations, significantly reducing the time required
for error correction. In addition, the DL-based methods can learn and adapt to various
codes. These advantages make the DL-based method an attractive alternative to traditional
methods. The DNN-based decoder presented in [13] eliminated the problem of overfitting
to the training codeword set by using the syndrome and channel reliabilities as the input
of the network. This framework makes the NN focus on the noise estimation. In [14], a
novel DNN-based denoiser was presented, which directly learns the mapping from a noisy
codeword to its corresponding denoised one. Results showed that the effectiveness of the
denoiser is significant.

Authors in [5] proposed the DNN-based belief propagation flip (BPF) decoder for polar
codes. The idea is to deploy a DNN to decide which bits to flip. In [7], the convolutional
neural network (CNN) model is employed for decoding polar codes to reduce the delay
and efficiency. Lu et al. [8] introduced a simplified metric derived from the path metric
domain and designed a custom-tailored DNN to enhance its efficiency when the successive
cancelation list (SCL) decoder is adopted. Simulation results indicated that such a metric
incurs almost no performance loss but with lower computational complexity.

In [6], a model-driven DL decoder for irregular binary low-density parity-check
(LDPC) codes was invented by the alternating direction method of multipliers (ADMM)
technique. Authors in [9] analyzed the problem of the binary cross entropy during the
training epochs of the DL-based decoder and introduced the negative bit error rate loss
function to improve the decoding performance of the DNN-based decoder.

This paper aims to develop a generalized NN-based decoding architecture for short
linear block codes. The specific contributions of this paper are summarized as follows:

(1) Multi-class NN-based decoding framework is presented, where only the received
signal sequence acts as the input and one fully connected layer is required.

(2) The presented NN-based decoder outperforms the existing syndrome-based DNN
decoder and denoiser [13,14] in terms of decoding time and error performance.

(3) The decoding performance of the proposed decoder is close to the well-known SOD
algorithm [12], which requires plenty of candidate codewords for evaluation and is
involved in complicated Gaussian elimination.

(4) The presented multi-class NN-based decoder is general and applicable to different
short linear block codes with no additional HDD required as compared to the Chase-
type algorithm [11].

The remainder of this paper is organized as follows. Section 2 provides the preliminary
of traditional soft decision decoders. The existing syndrome-based DNN decoder and
the framework combined the HDD and DNN-based denoiser are discussed in Section 3.
Section 4 presents the multi-class NN-based decoder. Sections 5 and 6 describe the dataset
generation and simulation procedure. We make a conclusion in Section 7.

2. Preliminaries of Conventional Soft Decision Decoder
2.1. Message Encoding Process

A message m is represented as m = [m0, m1, . . . , mk−1], where m ∈ {0, 1}k and k is the
number of bits in the message. The polynomial form is expressed as (1):

m(x) = mk−1xk−1 + · · ·+ m1x + m0 (1)

Appl. Sci. 2023, 13, 4371 3 of 13

The generator polynomial of the code C is

g(x) = xn−k + gn−k−1xn−k−1 + · · ·+ g1x + g0, gi ∈ {0, 1} (2)

The corresponding generator matrix G is

G = [Ik|P] (3)

where Ik is the identity matrix of dimension k and P is the parity sub-matrix (p. 7, [15]).
By (3), the message m is encoded as the codeword

c = mG (4)

in a systematic form, where c = [c0, c1, . . . , cn−1] and ci ∈ {0, 1}. Here, n is the codeword
length. The codeword c can be expressed as (4) in a polynomial form.

c(x) = m(x)xn−k + m(x)xn−kmod g(x) (5)

The codeword c must satisfy
cHT = 0 (6)

where H is the parity check matrix, which is defined as follows:

H =
[
PT
∣∣∣In−k

]
(7)

Here In−k is the identity matrix of dimension n − k.
Consider the (n, k, d) binary linear block code, where d is the minimum Hamming

distance. The error-correcting capability t is thus

t =
⌊

d− 1
2

⌋
(8)

2.2. Data Transmission over Channels

It is assumed that the data is transmitted over all additive white Gaussian noise
(AWGN) channels, and the binary phase-shift keying (BPSK) modulation is used for
transmission.

The codeword c is transmitted by the BPSK modulation as shown in Figure 1. For the
bit ci in the codeword c, the received signal yi by BPSK over the AWGN channel is

yi = (1− 2ci) + ei, i = 0, 1, · · · , n− 1 (9)

where ei represents the white Gaussian noise with variance N0/2.

Appl. Sci. 2023, 13, 4371 3 of 14

𝑚(𝑥) = 𝑚 𝑥 + ⋯ + 𝑚 𝑥 + 𝑚 (1)

The generator polynomial of the code C is 𝑔(𝑥) = 𝑥 + 𝑔 𝑥 + ⋯ + 𝑔 𝑥 + 𝑔 , 𝑔 ∈ {0,1} (2)

The corresponding generator matrix G is 𝐆 = [𝐈 |𝐏] (3)

where 𝐼 is the identity matrix of dimension k and P is the parity sub-matrix (p. 7, [15]).
By (3), the message m is encoded as the codeword 𝑐 = 𝐦𝐆 (4)

in a systematic form, where c = [c0, c1, ..., cn−1] and ci ∈ {0, 1}. Here, n is the codeword length.
The codeword c can be expressed as (4) in a polynomial form. 𝑐(𝑥) = 𝑚(𝑥)𝑥 + 𝑚(𝑥)𝑥 mod 𝑔(𝑥) (5)

The codeword c must satisfy 𝑐𝐇 = 𝟎 (6)

where H is the parity check matrix, which is defined as follows: 𝐇 = [𝐏𝑻|I] (7)

Here I is the identity matrix of dimension n − k.
Consider the (n, k, d) binary linear block code, where d is the minimum Hamming

distance. The error-correcting capability t is thus 𝑡 = 𝑑 − 12 (8)

2.2. Data Transmission over Channels
It is assumed that the data is transmitted over all additive white Gaussian noise

(AWGN) channels, and the binary phase-shift keying (BPSK) modulation is used for trans-
mission.

The codeword c is transmitted by the BPSK modulation as shown in Figure 1. For the
bit ci in the codeword c, the received signal yi by BPSK over the AWGN channel is 𝑦 = (1 − 2𝑐) + 𝑒 , 𝑖 = 0,1, ⋯ , 𝑛 − 1 (9)

where ei represents the white Gaussian noise with variance N0/2.

Figure 1. Signal Constellation of Binary Phase-shift Keying (BPSK).

Figure 1. Signal Constellation of Binary Phase-shift Keying (BPSK).

Appl. Sci. 2023, 13, 4371 4 of 13

Let y = [y0, y1, . . . , yn−1] is the received signal sequence and r = [r0, r1, . . . , rn−1] be
the received word. Because of BPSK signaling, the received word can be determined by

ri =

{
1, yi ≤ 0
0, yi > 0

, i = 0, 1, . . . , n− 1. (10)

The absolute log-likelihood ratio for ri is derived as

|L(ri)| =
∣∣∣∣log

p(yi|ci = 0)
p(yi|ci = 1)

∣∣∣∣ = 4|yi|
N0

(11)

The bit reliability is thus defined as |yi| for i = 0, 1, . . . , n−1.
As the received word r is given, its corresponding syndrome s is calculated as

s = rHT (12)

If s = 0, it is a codeword by (6). Otherwise, it indicates that the errors happen.

2.3. Chase-II Decoding Algorithm

The Chase-II algorithm [11] generates the test error patterns based on bit reliability
|yi| and the error-correcting capability t, and then utilizes the HDD to obtain the candidate
codewords. Finally, the best codeword is selected on a maximum likelihood basis. Figure 2
illustrates the procedure of the Chase-II algorithm. The detailed steps are described as
follows:

Appl. Sci. 2023, 13, 4371 4 of 14

Let y = [y0, y1, ..., yn−1] is the received signal sequence and r = [r0, r1, ..., rn−1] be the
received word. Because of BPSK signaling, the received word can be determined by 𝑟 = 1, 𝑦 ≤ 00, 𝑦 > 0 , 𝑖 = 0,1, … , 𝑛 − 1. (10)

The absolute log-likelihood ratio for ri is derived as |𝐿(𝑟)| = log 𝑝(𝑦 |𝑐 = 0)𝑝(𝑦 |𝑐 = 1) = 4|𝑦 |𝑁 (11)

The bit reliability is thus defined as |𝑦 | for i = 0, 1, …, n−1.
As the received word r is given, its corresponding syndrome s is calculated as 𝑠 = 𝑟𝐇 (12)

If s = 0, it is a codeword by (6). Otherwise, it indicates that the errors happen.

2.3. Chase-II Decoding Algorithm
The Chase-II algorithm [11] generates the test error patterns based on bit reliability |𝑦 | and the error-correcting capability t, and then utilizes the HDD to obtain the candi-

date codewords. Finally, the best codeword is selected on a maximum likelihood basis.
Figure 2 illustrates the procedure of the Chase-II algorithm. The detailed steps are de-
scribed as follows:

Figure 2. Chase-II Algorithm.

• Step 1: Obtain the received signal sequence y and demodulate it as the received word
r.

• Step 2: Find the t least reliable bits and generate 2t test error patterns.
• Step 3: Decode 2t words and check their syndromes. The decoded word with zero

syndrome will be viewed as the candidate codeword dr.
• Step 4: Evaluate 𝐷 (𝑑𝑟) = {𝑖|𝑟 = 𝑑𝑟 , 0 ≤ 𝑖 ≤ 𝑛 − 1} and compute the maximum like-

lihood metric ∑ |𝑦 |∈ () of the codeword dr.

Figure 2. Chase-II Algorithm.

• Step 1: Obtain the received signal sequence y and demodulate it as the received
word r.

• Step 2: Find the t least reliable bits and generate 2t test error patterns.
• Step 3: Decode 2t words and check their syndromes. The decoded word with zero

syndrome will be viewed as the candidate codeword dr.

Appl. Sci. 2023, 13, 4371 5 of 13

• Step 4: Evaluate D1(dr) = {i|ri = dri, 0 ≤ i ≤ n− 1} and compute the maximum
likelihood metric ∑i∈D1(dr)|yi| of the codeword dr.

• Step 5: Output the best codeword as dc with the minimum value of ∑i∈D1(dr)|yi|.

2.4. Ordered Statistics Decoding (OSD)

The ordered statistics decoding algorithm [12] first sorts the received signal sequence
based on the bit reliability in a descending order and obtains a permutation. By such a
permutation, the new systematic generator matrix will be derived via the sorted generator
matrix. The associated received signal sequence and word are obtained. The test error
patterns are then generated to produce the possible codewords. Finally, the best codeword is
selected on a maximum likelihood basis. Figure 3 illustrates the steps in the OSD approach.
Details of OSD(w) are described as follows:

• Step 1: Obtain the signal sequence y and obtain the ordered index set of reliability idx.
idx = {η0, η1, . . . , ηn−1} where

∣∣rηk

∣∣ ≥ ∣∣rηl

∣∣, for k > l.
• Step 2: Permute G according to idx and perform Gaussian elimination as a systematic

form G’ =

[
Ik

∣∣∣∣∼P]. If the form is unavailable, reorder idx based on the reliability.

• Step 3: Permute y and r as y’ and r’ according idx. Let m’ be the first k bits of r’.
• Step 4: Generate the test error patterns ep =

[
ep0, ep1, . . . , epk−1

]
for m’, where the

Hamming weight of ep is less than or equal to w. As a result, there are possible

∑w
i=0

(
k
i

)
candidate messages. The candidate codewords dr will be obtained by G’.

• Step 5: Evaluate D1(dr) = {i|ri = dri, 0 ≤ i ≤ n− 1} and compute the maximum
likelihood metric ∑i∈D1(dr)|yi| of the codeword dr

• Step 6: Output the best codeword as dc with the minimum value of ∑i∈D1(dr)|yi|.

Appl. Sci. 2023, 13, 4371 5 of 14

• Step 5: Output the best codeword as dc with the minimum value of ∑ |𝑦 |∈ () .

2.4. Ordered Statistics Decoding (OSD)
The ordered statistics decoding algorithm [12] first sorts the received signal sequence

based on the bit reliability in a descending order and obtains a permutation. By such a
permutation, the new systematic generator matrix will be derived via the sorted generator
matrix. The associated received signal sequence and word are obtained. The test error
patterns are then generated to produce the possible codewords. Finally, the best codeword
is selected on a maximum likelihood basis. Figure 3 illustrates the steps in the OSD ap-
proach. Details of OSD(w) are described as follows:

Figure 3. The OSD(w) Decoding Algorithm.

• Step 1: Obtain the signal sequence y and obtain the ordered index set of reliability idx. 𝑖𝑑𝑥 = {𝜂 , 𝜂 , … , 𝜂 }, where 𝑟 𝑟 , for 𝑘 > 𝑙.
• Step 2: Permute G according to idx and perform Gaussian elimination as a systematic

form 𝐆′ = [𝐈 |𝐏]. If the form is unavailable, reorder idx based on the reliability.
• Step 3: Permute y and r as y’ and r’ according idx. Let m’ be the first k bits of r’.
• Step 4: Generate the test error patterns 𝑒𝑝 = [𝑒𝑝 , 𝑒𝑝 , … , 𝑒𝑝] for m’, where the

Hamming weight of ep is less than or equal to w. As a result, there are possible ∑ 𝑘𝑖 candidate messages. The candidate codewords dr will be obtained by G’.
• Step 5: Evaluate 𝐷 (𝑑𝑟) = {𝑖|𝑟 = 𝑑𝑟 , 0 ≤ 𝑖 ≤ 𝑛 − 1} and compute the maximum like-

lihood metric ∑ |𝑦 |∈ () of the codeword dr
• Step 6: Output the best codeword as dc with the minimum value of ∑ |𝑦 |∈ () .

The Chase-II decoding algorithm is constructed on the HDD, which is invented based
on the specific code itself. The plenty of test error patterns will be fed into the HDD itera-
tively. It also leads to longer decoding time. The OSD method is involved in the huge
computation on the Gaussian elimination based on the received signal sequence. As a new
signal sequence is received, the OSD decoder will re-sort the bit reliability and perform
the Gaussian elimination again. Such an approach is computationally intensive.

3. Deep Learning-Based Decoder

Figure 3. The OSD(w) Decoding Algorithm.

The Chase-II decoding algorithm is constructed on the HDD, which is invented based
on the specific code itself. The plenty of test error patterns will be fed into the HDD
iteratively. It also leads to longer decoding time. The OSD method is involved in the huge
computation on the Gaussian elimination based on the received signal sequence. As a new
signal sequence is received, the OSD decoder will re-sort the bit reliability and perform the
Gaussian elimination again. Such an approach is computationally intensive.

Appl. Sci. 2023, 13, 4371 6 of 13

3. Deep Learning-Based Decoder

Deep learning-based decoders have recently presented in [13,14,16–18]. The key
approaches focused on the frameworks of binary classification [13,16–18] and denoiser [14].
The approach of binary classification utilizes the DNN to recognize 0 or 1 for each received
bit, where the soft information (reliability) is applied. The second one adopts the NN to
remove the noise from the received signal, thereby improving the accuracy of the error-
correcting process. This framework is a cascade of a denoiser and the conventional HDD.

3.1. Soft Decision Decoding Based on DNN-Based Binary Classification

Bennatan and Choukroun [13] developed the binary classification framework for
decoding as shown in Figure 4. The main concept of this framework is to use the syndrome
and the reliability of the received word as the inputs to train a DNN. The output of the DNN
is the possible error pattern. One advantage of this framework is that it takes into account
both the syndrome value s and the reliability of the received word |y|, so as to improve the
decoding performance. The output is the n-bit error pattern e* =

[
e∗0 , e∗1 , . . . , e∗n−1

]
, where

e∗i ∈ {0, 1}, 0 ≤ i ≤ n− 1. Each bit e∗i is determined by the binary classification of the
DNN. As e* is obtained, the decoded codeword is dc = r

⊕
e∗, where

⊕
is exclusive OR

(XOR) operation.

Appl. Sci. 2023, 13, 4371 6 of 14

Deep learning-based decoders have recently presented in [13,14,16–18]. The key ap-
proaches focused on the frameworks of binary classification [13,16–18] and denoiser [14].
The approach of binary classification utilizes the DNN to recognize 0 or 1 for each received
bit, where the soft information (reliability) is applied. The second one adopts the NN to
remove the noise from the received signal, thereby improving the accuracy of the error-
correcting process. This framework is a cascade of a denoiser and the conventional HDD.

3.1. Soft Decision Decoding Based on DNN-Based Binary Classification
Bennatan and Choukroun [13] developed the binary classification framework for de-

coding as shown in Figure 4. The main concept of this framework is to use the syndrome
and the reliability of the received word as the inputs to train a DNN. The output of the
DNN is the possible error pattern. One advantage of this framework is that it takes into
account both the syndrome value s and the reliability of the received word |y|, so as to
improve the decoding performance. The output is the n-bit error pattern e∗ =[𝑒∗, 𝑒∗, … , 𝑒∗], where 𝑒∗ ∈ {0,1}, 0 ≤ 𝑖 ≤ 𝑛 − 1. Each bit 𝑒∗ is determined by the binary
classification of the DNN. As e∗ is obtained, the decoded codeword is 𝑑𝑐 = 𝑟⨁𝑒∗, where ⨁ is exclusive OR (XOR) operation.

The DNN architecture in [13] is illustrated in Figure 5 It consists of ten fully con-
nected layers and the number of nodes in each layer is determined by the codeword length
n. The activation function used in each layer is the rectified linear unit (ReLU) function,
except for the output layer, where the sigmoid function is used.

Figure 4. Decoding Architecture based on DNN-based Binary Classification.

Figure 5. DNN Architecture in [13].

3.2. DNN-Based Denoiser for Soft Decision Decoding
Zhu and Cao [14] presented a new decoding architecture in Figure 6, which uses the

DNN as the denoiser. This approach was inspired by the noise removal of image pro-
cessing [19]. In this architecture, the denoised signal sequence dy is obtained by the DNN
and the received word r can be determined based on dy. Finally, the HDD produces the
codeword based on r. This architecture combines the DNN-based denoiser and the tradi-
tional HDD, resulting in better decoding performance as compared to the HDD only. The

Figure 4. Decoding Architecture based on DNN-based Binary Classification.

The DNN architecture in [13] is illustrated in Figure 5 It consists of ten fully connected
layers and the number of nodes in each layer is determined by the codeword length n. The
activation function used in each layer is the rectified linear unit (ReLU) function, except for
the output layer, where the sigmoid function is used.

Appl. Sci. 2023, 13, 4371 6 of 14

Deep learning-based decoders have recently presented in [13,14,16–18]. The key ap-
proaches focused on the frameworks of binary classification [13,16–18] and denoiser [14].
The approach of binary classification utilizes the DNN to recognize 0 or 1 for each received
bit, where the soft information (reliability) is applied. The second one adopts the NN to
remove the noise from the received signal, thereby improving the accuracy of the error-
correcting process. This framework is a cascade of a denoiser and the conventional HDD.

3.1. Soft Decision Decoding Based on DNN-Based Binary Classification
Bennatan and Choukroun [13] developed the binary classification framework for de-

coding as shown in Figure 4. The main concept of this framework is to use the syndrome
and the reliability of the received word as the inputs to train a DNN. The output of the
DNN is the possible error pattern. One advantage of this framework is that it takes into
account both the syndrome value s and the reliability of the received word |y|, so as to
improve the decoding performance. The output is the n-bit error pattern e∗ =[𝑒∗, 𝑒∗, … , 𝑒∗], where 𝑒∗ ∈ {0,1}, 0 ≤ 𝑖 ≤ 𝑛 − 1. Each bit 𝑒∗ is determined by the binary
classification of the DNN. As e∗ is obtained, the decoded codeword is 𝑑𝑐 = 𝑟⨁𝑒∗, where ⨁ is exclusive OR (XOR) operation.

The DNN architecture in [13] is illustrated in Figure 5 It consists of ten fully con-
nected layers and the number of nodes in each layer is determined by the codeword length
n. The activation function used in each layer is the rectified linear unit (ReLU) function,
except for the output layer, where the sigmoid function is used.

Figure 4. Decoding Architecture based on DNN-based Binary Classification.

Figure 5. DNN Architecture in [13].

3.2. DNN-Based Denoiser for Soft Decision Decoding
Zhu and Cao [14] presented a new decoding architecture in Figure 6, which uses the

DNN as the denoiser. This approach was inspired by the noise removal of image pro-
cessing [19]. In this architecture, the denoised signal sequence dy is obtained by the DNN
and the received word r can be determined based on dy. Finally, the HDD produces the
codeword based on r. This architecture combines the DNN-based denoiser and the tradi-
tional HDD, resulting in better decoding performance as compared to the HDD only. The

Figure 5. DNN Architecture in [13].

3.2. DNN-Based Denoiser for Soft Decision Decoding

Zhu and Cao [14] presented a new decoding architecture in Figure 6, which uses
the DNN as the denoiser. This approach was inspired by the noise removal of image
processing [19]. In this architecture, the denoised signal sequence dy is obtained by the
DNN and the received word r can be determined based on dy. Finally, the HDD produces
the codeword based on r. This architecture combines the DNN-based denoiser and the

Appl. Sci. 2023, 13, 4371 7 of 13

traditional HDD, resulting in better decoding performance as compared to the HDD only.
The DNN architecture [14] in Figure 7 consists of three fully connected layers. The total
numbers of nodes in these three layers are 256, 128 and 64, respectively. The activation
function used in each layer is the ReLU function.

Appl. Sci. 2023, 13, 4371 7 of 14

DNN architecture [14] in Figure 7 consists of three fully connected layers. The total num-
bers of nodes in these three layers are 256, 128 and 64, respectively. The activation function
used in each layer is the ReLU function.

Figure 6. Decoding Architecture based on DNN-based Denoiser.

Figure 7. DNN Architecture for Noise Removal.

4. Proposed Multi-Class Neural Network-Based Decoder
The proposed multi-class NN-based decoding architecture is depicted in Figure 8

The NN takes the received sequence y to estimate occurrence probabilities of all possible
message 𝐦 , called 𝛿 , where 𝑖 = 0,1, … . , 2 − 1 and k is the message length. Then, the
sorting operation is performed based on the occurrence probability 𝛿 . Let the ordered set
of the occurrence probability be Δ ≡ {𝜈 , 𝜈 , … … , 𝜈 }, where 𝛿 𝛿 , for 𝑙 𝜅. 𝐦()
is denoted as the message with the occurrence probability 𝛿 . The messages of l highest
occurrence probabilities, called 𝐦(), 𝐦(), … … , 𝐦() , are thus selected. These messages
are encoded as the codewords 𝐜 , 𝐜 , … . . , 𝐜 by the generator matrix G. We evaluate 𝐷 𝐜 = {𝑖|𝑟 = �̃� , , 0 ≤ 𝑖 ≤ 𝑛 − 1} and compute the maximum likelihood metric ∑ |𝑦 |∈ 𝐜 of the codeword 𝐜 . Finally, the best codeword is selected as dc with the min-
imum value of ∑ |𝑦 |,∈ 𝐜 𝑗 = 1,2, … , 𝑙.

The proposed NN is depicted in Figure 9, which includes only one fully connected
layer. The related parameters of NN are listed in Table 1. As compared to the framework
in [13], the input of the proposed NN architecture includes the received signal sequence
only. No syndrome values serve as the input. As the message length k increases, the total
numbers of nodes in the fully connected and output layers will exponentially increase
with respect to k. The sorting for 2 elements becomes time-consuming. The proposed
NN-based decoder is suitable for the short linear block codes because of message length
k.

Figure 6. Decoding Architecture based on DNN-based Denoiser.

Appl. Sci. 2023, 13, 4371 7 of 14

DNN architecture [14] in Figure 7 consists of three fully connected layers. The total num-
bers of nodes in these three layers are 256, 128 and 64, respectively. The activation function
used in each layer is the ReLU function.

Figure 6. Decoding Architecture based on DNN-based Denoiser.

Figure 7. DNN Architecture for Noise Removal.

4. Proposed Multi-Class Neural Network-Based Decoder
The proposed multi-class NN-based decoding architecture is depicted in Figure 8

The NN takes the received sequence y to estimate occurrence probabilities of all possible
message 𝐦 , called 𝛿 , where 𝑖 = 0,1, … . , 2 − 1 and k is the message length. Then, the
sorting operation is performed based on the occurrence probability 𝛿 . Let the ordered set
of the occurrence probability be Δ ≡ {𝜈 , 𝜈 , … … , 𝜈 }, where 𝛿 𝛿 , for 𝑙 𝜅. 𝐦()
is denoted as the message with the occurrence probability 𝛿 . The messages of l highest
occurrence probabilities, called 𝐦(), 𝐦(), … … , 𝐦() , are thus selected. These messages
are encoded as the codewords 𝐜 , 𝐜 , … . . , 𝐜 by the generator matrix G. We evaluate 𝐷 𝐜 = {𝑖|𝑟 = �̃� , , 0 ≤ 𝑖 ≤ 𝑛 − 1} and compute the maximum likelihood metric ∑ |𝑦 |∈ 𝐜 of the codeword 𝐜 . Finally, the best codeword is selected as dc with the min-
imum value of ∑ |𝑦 |,∈ 𝐜 𝑗 = 1,2, … , 𝑙.

The proposed NN is depicted in Figure 9, which includes only one fully connected
layer. The related parameters of NN are listed in Table 1. As compared to the framework
in [13], the input of the proposed NN architecture includes the received signal sequence
only. No syndrome values serve as the input. As the message length k increases, the total
numbers of nodes in the fully connected and output layers will exponentially increase
with respect to k. The sorting for 2 elements becomes time-consuming. The proposed
NN-based decoder is suitable for the short linear block codes because of message length
k.

Figure 7. DNN Architecture for Noise Removal.

4. Proposed Multi-Class Neural Network-Based Decoder

The proposed multi-class NN-based decoding architecture is depicted in Figure 8
The NN takes the received sequence y to estimate occurrence probabilities of all possible
message mi, called δi, where i = 0, 1,, 2k − 1 and k is the message length. Then, the
sorting operation is performed based on the occurrence probability δi. Let the ordered
set of the occurrence probability be ∆ ≡

{
ν0, ν1, . . . , ν2k−1

}
, where δνl ≥ δνκ , for l ≥ κ.

m(i) is denoted as the message with the occurrence probability δνi . The messages of
l highest occurrence probabilities, called m(1), m(2), . . . , m(l), are thus selected. These

messages are encoded as the codewords
∼
c1,
∼
c2, . . . ,

∼
c l by the generator matrix G. We

evaluate D1

(∼
c j

)
=
{

i
∣∣∣ri =

∼
c j,i, 0 ≤ i ≤ n− 1

}
and compute the maximum likelihood

metric ∑i∈D1(
∼
c j)
|yi| of the codeword

∼
c j. Finally, the best codeword is selected as dc with

the minimum value of ∑i∈D1(
∼
c j)
|yi|,j = 1, 2, . . . , l.

Appl. Sci. 2023, 13, 4371 8 of 14

Figure 8. Multi-class NN-based Decoder.

Figure 9. Proposed NN.

Table 1. Parameters for Proposed NN.

 Numbers of Nodes Activation Function
Input layer n

Fully connected layer 2k ReLU
Output layer 2k Softmax

5. Dataset Generation and Neural Network Training
Given a specific signal-to-noise ratio defined in (14), the dataset over the AWGN

channel is generated as follows:
1. Randomly generate a message m.
2. Encode m to produce the codeword c.
3. Use BPSK modulation and AWGN to generate the received signal sequence y.
4. Repeat steps 1–4 one million times to produce the dataset.
5. Divide the dataset into the training and validation sets with a ratio of 9:1.

This data generation method for training NN or DNN-based decoding framework is
commonly used in [13,14]. However, the total numbers of generated error patterns with
different Hamming weights are unbalanced. The error patterns with lower Hamming
weight occur more frequently than those with high Hamming weight. Such an uneven
distribution of error patterns may lead to a bias in the training of the NN, thereby poten-
tially reducing its performance.

The probability of the weight-j error pattern can be calculated via binomial distribu-
tion. 𝑃(𝑗) = 𝐶 × 𝑃 × (1 − 𝑃) , 0 ≤ 𝑗 ≤ 𝑛 (13)

Figure 8. Multi-class NN-based Decoder.

Appl. Sci. 2023, 13, 4371 8 of 13

The proposed NN is depicted in Figure 9, which includes only one fully connected
layer. The related parameters of NN are listed in Table 1. As compared to the framework
in [13], the input of the proposed NN architecture includes the received signal sequence
only. No syndrome values serve as the input. As the message length k increases, the total
numbers of nodes in the fully connected and output layers will exponentially increase with
respect to k. The sorting for 2k elements becomes time-consuming. The proposed NN-based
decoder is suitable for the short linear block codes because of message length k.

Appl. Sci. 2023, 13, 4371 8 of 14

Figure 8. Multi-class NN-based Decoder.

Figure 9. Proposed NN.

Table 1. Parameters for Proposed NN.

 Numbers of Nodes Activation Function
Input layer n

Fully connected layer 2k ReLU
Output layer 2k Softmax

5. Dataset Generation and Neural Network Training
Given a specific signal-to-noise ratio defined in (14), the dataset over the AWGN

channel is generated as follows:
1. Randomly generate a message m.
2. Encode m to produce the codeword c.
3. Use BPSK modulation and AWGN to generate the received signal sequence y.
4. Repeat steps 1–4 one million times to produce the dataset.
5. Divide the dataset into the training and validation sets with a ratio of 9:1.

This data generation method for training NN or DNN-based decoding framework is
commonly used in [13,14]. However, the total numbers of generated error patterns with
different Hamming weights are unbalanced. The error patterns with lower Hamming
weight occur more frequently than those with high Hamming weight. Such an uneven
distribution of error patterns may lead to a bias in the training of the NN, thereby poten-
tially reducing its performance.

The probability of the weight-j error pattern can be calculated via binomial distribu-
tion. 𝑃(𝑗) = 𝐶 × 𝑃 × (1 − 𝑃) , 0 ≤ 𝑗 ≤ 𝑛 (13)

Figure 9. Proposed NN.

Table 1. Parameters for Proposed NN.

Numbers of Nodes Activation Function

Input layer n
Fully connected layer 2k ReLU

Output layer 2k Softmax

5. Dataset Generation and Neural Network Training

Given a specific signal-to-noise ratio defined in (14), the dataset over the AWGN
channel is generated as follows:

1. Randomly generate a message m.
2. Encode m to produce the codeword c.
3. Use BPSK modulation and AWGN to generate the received signal sequence y.
4. Repeat steps 1–4 one million times to produce the dataset.
5. Divide the dataset into the training and validation sets with a ratio of 9:1.

This data generation method for training NN or DNN-based decoding framework is
commonly used in [13,14]. However, the total numbers of generated error patterns with
different Hamming weights are unbalanced. The error patterns with lower Hamming
weight occur more frequently than those with high Hamming weight. Such an uneven
distribution of error patterns may lead to a bias in the training of the NN, thereby potentially
reducing its performance.

The probability of the weight-j error pattern can be calculated via binomial distribution.

P(j) = Cn
j × Pj

e × (1− Pe)
n−j, 0 ≤ j ≤ n (13)

where Cn
j is the number of combinations of n items taken j at a time, Pe is the bit error

probability, which depends on the SNR. Assume that the bit error probability and codeword
length are Pe = 0.07 and n = 15, respectively. The error probabilities for j = 0, 1, 2, 3, 4 can
be calculated as follows:

P(0) = C15
0 × 0.070 × (1− 0.07)15 = 0.33

P(1) = C15
1 × 0.071 × (1− 0.07)14 = 0.38

P(2) = C15
2 × 0.072 × (1− 0.07)13 = 0.2

P(3) = C15
3 × 0.073 × (1− 0.07)12 = 0.065

P(4) = C15
4 × 0.074 × (1− 0.07)11 = 0.014

Appl. Sci. 2023, 13, 4371 9 of 13

As observed, the generated codewords with no errors account for 33% of the dataset,
those with one error account for 38%, those with two errors account for 20%, and those
with more than two errors account for 9%. Although this method is simple, it results in an
uneven dataset. Therefore, how to produce a balanced dataset becomes an interesting issue
in the future.

5.1. Generation of Received Signal by BPSK over AWGN Channel

Algorithm 1 shows the data generation method for the BPSK-modulated signal over
the AWGN channel as the signal-to-noise ratio (SNR) is given. The SNR is defined as

γ ≡ 10 log10
Eb
N0

(14)

where Eb is the energy per bit. When generating the dataset at the various SNR γ, one
could set Eb as 1 and change the noise variance N0. That is,

N0 =

√
10
−γ
10

2
(15)

How to generate the dataset is described in Algorithm 1.

Algorithm 1 Generative Algorithm of Additive White Gaussian Noise

Input: codeword c, SNR γ

Output: received signal sequence y
1: Compute N0 by (14)
2: for i = 0, 1, . . . , n−1 do
3: Generate Gaussian noise ei N(0, N0/2)
4: if ci = 1 then
5: yi = −1 + ei
6: else
7: yi = 1 + ei
8: end if
9: end for
10: return y

5.2. Training of Neural Network

Python 3.8 and TensorFlow 2.5 are used to train the neural network in our simulations.
The dataset of 1,000,000 records is divided into a training set of 900,000 and a validation
set of 100,000 records, with a ratio of 9:1. During training, the entire training set is trained
repeatedly 10 times (epochs = 10), with the weight values being updated once in each batch
of 128 data points (batch size = 128). The optimizer used is ADAM [20] with a learning rate
of 10−3. The loss function is determined based on the output of the NN. Since the expected
output of each node in the output layer is either 0 or 1, the binary cross entropy (BCE) loss
function is utilized as shown in (16):

BCE = − 1
Nb

∑Nb
i=1 θilog θ̂i + (1− θi)log

(
1− θ̂i

)
(16)

where Nb is the batch size, θi is the expected output value, and θ̂i is the output value of NN.

6. Experimental Results of Decoding by Proposed Multi-class NN-Based Decoder
6.1. Simulation Environment and Procedure

Simulations are conducted on the computer with Intel i9-10900 processor and RTX
3080 graphics card. The traditional soft decision decoding methods, including BP, Chase-
II, OSD [11,12], and the recent DNN-based decoding approaches [13,14] are evaluated.
The BCH and QR codes act as examples for investigation. The simulation procedure

Appl. Sci. 2023, 13, 4371 10 of 13

for a random message is shown in Figure 10. For each SNR value, 1,000,000 messages
are simulated. We consider the decoding performance when the SNR is from 0 to 7 dB.
The codeword error rate (CER) and bit error rate (BER) for various decoding methods
are assessed.

Appl. Sci. 2023, 13, 4371 10 of 14

where 𝑁 is the batch size, 𝜃 is the expected output value, and 𝜃 is the output value
of NN.

6. Experimental Results of Decoding by Proposed Multi-class NN-Based Decoder
6.1. Simulation Environment and Procedure

Simulations are conducted on the computer with Intel i9-10900 processor and RTX
3080 graphics card. The traditional soft decision decoding methods, including BP, Chase-
II, OSD [11,12], and the recent DNN-based decoding approaches [13,14] are evaluated.
The BCH and QR codes act as examples for investigation. The simulation procedure for a
random message is shown in Figure 10. For each SNR value, 1,000,000 messages are sim-
ulated. We consider the decoding performance when the SNR is from 0 to 7 dB. The code-
word error rate (CER) and bit error rate (BER) for various decoding methods are assessed.

Figure 10. Simulation Procedure.

6.2. Experimental Results
6.2.1. Results for BCH (15, 7) Code

The code length of BCH (15, 7) is n = 15, the message length is k = 7, the error-correct-
ing capability is t = 2 and the code rate is 7/15 = 0.46. As shown in Figure 11a,b, the BER of
the proposed decoding framework with l = 2 is better than that of the Chase-II algorithm
and approaches that of OSD (w = 2). The numbers of candidate codewords for the pro-
posed method, Chase-II and OSD algorithms are 2, 21 and 121, respectively. Figure 11a,b
also reveals that the proposed decoder also outperforms the DNN-based or assisted de-
coder in [13,14].

Figure 10. Simulation Procedure.

6.2. Experimental Results
6.2.1. Results for BCH (15, 7) Code

The code length of BCH (15, 7) is n = 15, the message length is k = 7, the error-correcting
capability is t = 2 and the code rate is 7/15 = 0.46. As shown in Figure 11a,b, the BER of the
proposed decoding framework with l = 2 is better than that of the Chase-II algorithm and
approaches that of OSD (w = 2). The numbers of candidate codewords for the proposed
method, Chase-II and OSD algorithms are 2, 21 and 121, respectively. Figure 11a,b also
reveals that the proposed decoder also outperforms the DNN-based or assisted decoder
in [13,14].

Appl. Sci. 2023, 13, 4371 11 of 14

(a) (b)

Figure 11. (a) BER for BCH (15, 7), (b) CER for BCH (15, 7) Code.

6.2.2. Results for BCH (15, 5)
The code length of BCH (15, 5) code is n = 15, the message length is k = 5, the error

correcting capability is t = 3, and its code rate is 5/15 = 0.33. Figure 12a,b shows that the
proposed multi-class NN-based approach has almost the same BER and CER performance
as the OSD method. For evaluating the maximum likelihood metric, the proposed method,
Chase-II and OSD algorithms require 4, 21 and 121 candidate codewords, respectively.
The decoding complexity is thus reduced over the conventional methods. It is also ob-
served that the presented NN-based decoder is superior to DNN-based decoder [13] and
denoiser [14] in terms of CER and BER.

(a) (b)

Figure 12. (a) BER for BCH (15, 5) Code, (b) CER for BCH (15, 5) Code.

6.2.3. Results for QR (23, 12) Code
The code length of QR (23, 12) code is n = 23, the message length is k = 12, the error

correcting capability is t = 3, and the code rate is 12/23 = 0.52. In Figure 13a,b, the perfor-
mance of the OSD method is slightly better than that of the proposed NN-based approach.
The proposed method still outperforms other decoding algorithms. The DNN-based de-
coder [14] is inferior to HDD both in CER and BER performance. The DNN-based denoiser
[13] combined with the HDD obtains no decoding benefits as compared to the HDD itself.
When the code length increases, the advantage of the proposed method becomes insignif-
icant.

Figure 11. (a) BER for BCH (15, 7), (b) CER for BCH (15, 7) Code.

6.2.2. Results for BCH (15, 5)

The code length of BCH (15, 5) code is n = 15, the message length is k = 5, the error
correcting capability is t = 3, and its code rate is 5/15 = 0.33. Figure 12a,b shows that the
proposed multi-class NN-based approach has almost the same BER and CER performance
as the OSD method. For evaluating the maximum likelihood metric, the proposed method,
Chase-II and OSD algorithms require 4, 21 and 121 candidate codewords, respectively. The
decoding complexity is thus reduced over the conventional methods. It is also observed that

Appl. Sci. 2023, 13, 4371 11 of 13

the presented NN-based decoder is superior to DNN-based decoder [13] and denoiser [14]
in terms of CER and BER.

Appl. Sci. 2023, 13, 4371 11 of 14

(a) (b)

Figure 11. (a) BER for BCH (15, 7), (b) CER for BCH (15, 7) Code.

6.2.2. Results for BCH (15, 5)
The code length of BCH (15, 5) code is n = 15, the message length is k = 5, the error

correcting capability is t = 3, and its code rate is 5/15 = 0.33. Figure 12a,b shows that the
proposed multi-class NN-based approach has almost the same BER and CER performance
as the OSD method. For evaluating the maximum likelihood metric, the proposed method,
Chase-II and OSD algorithms require 4, 21 and 121 candidate codewords, respectively.
The decoding complexity is thus reduced over the conventional methods. It is also ob-
served that the presented NN-based decoder is superior to DNN-based decoder [13] and
denoiser [14] in terms of CER and BER.

(a) (b)

Figure 12. (a) BER for BCH (15, 5) Code, (b) CER for BCH (15, 5) Code.

6.2.3. Results for QR (23, 12) Code
The code length of QR (23, 12) code is n = 23, the message length is k = 12, the error

correcting capability is t = 3, and the code rate is 12/23 = 0.52. In Figure 13a,b, the perfor-
mance of the OSD method is slightly better than that of the proposed NN-based approach.
The proposed method still outperforms other decoding algorithms. The DNN-based de-
coder [14] is inferior to HDD both in CER and BER performance. The DNN-based denoiser
[13] combined with the HDD obtains no decoding benefits as compared to the HDD itself.
When the code length increases, the advantage of the proposed method becomes insignif-
icant.

Figure 12. (a) BER for BCH (15, 5) Code, (b) CER for BCH (15, 5) Code.

6.2.3. Results for QR (23, 12) Code

The code length of QR (23, 12) code is n = 23, the message length is k = 12, the
error correcting capability is t = 3, and the code rate is 12/23 = 0.52. In Figure 13a,b, the
performance of the OSD method is slightly better than that of the proposed NN-based
approach. The proposed method still outperforms other decoding algorithms. The DNN-
based decoder [14] is inferior to HDD both in CER and BER performance. The DNN-based
denoiser [13] combined with the HDD obtains no decoding benefits as compared to the
HDD itself. When the code length increases, the advantage of the proposed method
becomes insignificant.

Appl. Sci. 2023, 13, 4371 12 of 14

(a) (b)

Figure 13. (a) BER for QR (23, 12) Code, (b) CER for QR (23, 12) Code.

6.2.4. Results for BCH (31, 11) Code
The code length of BCH (31, 11) is n = 31, the message length is k = 11, the error cor-

recting capability is t = 5, and the code rate is 11/31 = 0.35. Figure 14a,b reveals the similar
observations as the previous results. The BER and CER performance of the presented NN-
based decoder falls between the OSD and Chase II algorithms. Note that only four candi-
date codewords are evaluated in our method.

(a) (b)

Figure 14. (a) BER for BCH (31, 11) Code, (b) CER for BCH (31, 11) Code.

The decoding time for different decoding algorithms at the SNR of 0 dB is summa-
rized in Table 2, where the colors of red, green and blue mean the first, second and third
minimum decoding time. Here, the HDD utilizes the syndrome-weight decoder. The total
number of candidate codewords for BCH (15, 7), BCH (15, 5), BCH (31, 11) and QR (23, 12)
codes are 2, 4, 4 and 4, respectively. Results show that the proposed NN-based method is
competitive as compared to the other DNN-based frameworks.

Table 2. Average Decoding Time.

Code Chase-II OSD(2) [13] [14] Proposed (l)
BCH (15, 7) 123 µs 585 µs 7105 µs 3760 µs 780 µs
BCH (15, 5) 284 µs 2360 µs 6907 µs 4100 µs 761 µs
QR (23, 12) 2896 µs 14,340 µs 8820 µs 6300 µs 2069 µs

BCH (31, 11) 492,427 µs 15,500 µs 5470 µs 4000 µs 1398 µs

Figure 13. (a) BER for QR (23, 12) Code, (b) CER for QR (23, 12) Code.

6.2.4. Results for BCH (31, 11) Code

The code length of BCH (31, 11) is n = 31, the message length is k = 11, the error
correcting capability is t = 5, and the code rate is 11/31 = 0.35. Figure 14a,b reveals
the similar observations as the previous results. The BER and CER performance of the
presented NN-based decoder falls between the OSD and Chase II algorithms. Note that
only four candidate codewords are evaluated in our method.

Appl. Sci. 2023, 13, 4371 12 of 13

Appl. Sci. 2023, 13, 4371 12 of 14

(a) (b)

Figure 13. (a) BER for QR (23, 12) Code, (b) CER for QR (23, 12) Code.

6.2.4. Results for BCH (31, 11) Code
The code length of BCH (31, 11) is n = 31, the message length is k = 11, the error cor-

recting capability is t = 5, and the code rate is 11/31 = 0.35. Figure 14a,b reveals the similar
observations as the previous results. The BER and CER performance of the presented NN-
based decoder falls between the OSD and Chase II algorithms. Note that only four candi-
date codewords are evaluated in our method.

(a) (b)

Figure 14. (a) BER for BCH (31, 11) Code, (b) CER for BCH (31, 11) Code.

The decoding time for different decoding algorithms at the SNR of 0 dB is summa-
rized in Table 2, where the colors of red, green and blue mean the first, second and third
minimum decoding time. Here, the HDD utilizes the syndrome-weight decoder. The total
number of candidate codewords for BCH (15, 7), BCH (15, 5), BCH (31, 11) and QR (23, 12)
codes are 2, 4, 4 and 4, respectively. Results show that the proposed NN-based method is
competitive as compared to the other DNN-based frameworks.

Table 2. Average Decoding Time.

Code Chase-II OSD(2) [13] [14] Proposed (l)
BCH (15, 7) 123 µs 585 µs 7105 µs 3760 µs 780 µs
BCH (15, 5) 284 µs 2360 µs 6907 µs 4100 µs 761 µs
QR (23, 12) 2896 µs 14,340 µs 8820 µs 6300 µs 2069 µs

BCH (31, 11) 492,427 µs 15,500 µs 5470 µs 4000 µs 1398 µs

Figure 14. (a) BER for BCH (31, 11) Code, (b) CER for BCH (31, 11) Code.

The decoding time for different decoding algorithms at the SNR of 0 dB is summarized
in Table 2, where the colors of red, green and blue mean the first, second and third minimum
decoding time. Here, the HDD utilizes the syndrome-weight decoder. The total number of
candidate codewords for BCH (15, 7), BCH (15, 5), BCH (31, 11) and QR (23, 12) codes are 2,
4, 4 and 4, respectively. Results show that the proposed NN-based method is competitive
as compared to the other DNN-based frameworks.

Table 2. Average Decoding Time.

Code Chase-II OSD(2) [13] [14] Proposed (l)

BCH (15, 7) 123 µs 585 µs 7105 µs 3760 µs 780 µs
BCH (15, 5) 284 µs 2360 µs 6907 µs 4100 µs 761 µs
QR (23, 12) 2896 µs 14,340 µs 8820 µs 6300 µs 2069 µs

BCH (31, 11) 492,427 µs 15,500 µs 5470 µs 4000 µs 1398 µs

7. Conclusions

This paper proposed a generalized multi-class NN-based decoding architecture. Simu-
lation results indicated that the proposed method is superior to other DNN-based decoders
reported in the literature [13,14]. For the short linear block codes, the BER and CER perfor-
mance of the developed method is close to the well-known OSD algorithm and slightly
better than the Chase-II algorithm. It also required much less decoding time than the OSD
scheme. Such an architecture is highly compatible and the training dataset is not affected
by the SNR. However, the total number of nodes in the proposed NN will exponentially
increase as the message length becomes longer. It becomes difficult for the current hardware
equipment to train such a network. It is expected to solve the problem as the technology of
quantum computing is well-developed.

Author Contributions: Conceptualization, S.-I.C., H.-C.C. and M.-Y.C.; Methodology, K.H.; Software,
K.H. and Y.-W.L.; Formal analysis, K.H.; Data curation, K.H.; Writing—original draft, Y.-W.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available from the corresponding author upon
reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 4371 13 of 13

References
1. Esposito, A.; Rampone, S.; Tagliaferri, R. A neural network for error correcting decoding of binary linear codes. Neural Netw.

1994, 7, 195–202. [CrossRef]
2. Tallini, L.G.; Cull, P. Neural nets for decoding error-correcting codes. In Proceedings of the IEEE Technical applications Conference

and Workshops Northcon/95 Conference Record, Portland, OR, USA, 10–12 October 1995; p. 89. [CrossRef]
3. Bruck, J.; Blaum, M. Neural networks, error-correcting codes, and polynomials over the binary n-cube. IEEE Trans. Inf. Theory

1989, 35, 976–987. [CrossRef]
4. Xu, C.; Van Luong, T.; Xiang, L.; Sugiura, S.; Maunder, R.G.; Yang, L.-L.; Hanzo, L. Turbo Detection Aided Autoencoder for

Multicarrier Wireless Systems: Integrating Deep Learning Into Channel Coded Systems. IEEE Trans. Cogn. Commun. Netw. 2022,
8, 600–614. [CrossRef]

5. Lee, Y.; Lee, U.; Fisseha, H.H.; Sunwoo, M.H. Deep Learning aided BP-Flip Decoding of Polar Codes. In Proceedings of the 2022
IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea, 13–15
June 2022; pp. 114–117. [CrossRef]

6. Guo, X.; Chang, T.-H.; Wang, Y. Model-Driven Deep Learning ADMM Decoder for Irregular Binary LDPC Codes. IEEE Commun.
Lett. 2022, 27, 571–575. [CrossRef]

7. Li, W.; Tian, Q.; Zhang, Y.; Tian, F.; Li, Z.; Zhang, Q.; Wang, Y. A rate-compatible punctured Polar code decoding scheme based on
deep learning. In Proceedings of the 2022 20th International Conference on Optical Communications and Networks (ICOCN),
Shenzhen, China, 12–15 August 2022; pp. 1–3. [CrossRef]

8. Lu, Y.; Zhao, M.; Lei, M.; Wang, C.; Zhao, M. Deep learning aided SCL decoding of polar codes with shifted-pruning. China
Commun. 2023, 20, 153–170. [CrossRef]

9. Dong, R.; Lu, F.; Dong, Y.; Yan, H. The Negative BER Loss Function for Deep Learning Decoders. IEEE Commun. Lett. 2022, 26,
1824–1828. [CrossRef]

10. Pearl, J. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In Probabilistic and Causal Inference: The
Works of Judea Pearl; Association for Computing Machinery: New York, NY, USA, 2022; pp. 129–138. [CrossRef]

11. Chase, D. Class of algorithms for decoding block codes with channel measurement information. IEEE Trans. Inf. Theory 1972, 18,
170–182. [CrossRef]

12. Fossorier, M.; Lin, S. Soft-decision decoding of linear block codes based on ordered statistics. IEEE Trans. Inf. Theory 1995, 41,
1379–1396. [CrossRef]

13. Bennatan, A.; Choukroun, Y.; Kisilev, P. Deep Learning for Decoding of Linear Codes—A Syndrome-Based Approach. In
Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018;
pp. 1595–1599. [CrossRef]

14. Zhu, H.; Cao, Z.; Zhao, Y.; Li, D. A Novel Neural Network Denoiser for BCH Codes. In Proceedings of the 2020 IEEE/CIC
International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020; pp. 272–276. [CrossRef]

15. Morelos-Zaragoza, R.H. The Art of Error Correcting Coding; John Wiley & Sons: Hoboken, NJ, USA, 2002.
16. Nachmani, E.; Marciano, E.; Lugosch, L.; Gross, W.J.; Burshtein, D.; Be'Ery, Y. Deep Learning Methods for Improved Decoding of

Linear Codes. IEEE J. Sel. Top. Signal Process. 2018, 12, 119–131. [CrossRef]
17. Kavvousanos, E.; Paliouras, V. Hardware Implementation Aspects of a Syndrome-based Neural Network Decoder for BCH Codes.

In Proceedings of the 2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium
of System-on-Chip (SoC), Helsinki, Finland, 29–30 October 2019. [CrossRef]

18. Benammar, M.; Piantanida, P. Optimal Training Channel Statistics for Neural-based Decoders. In Proceedings of the 2018 52nd
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 2157–2161. [CrossRef]

19. Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.-W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131,
251–275. [CrossRef] [PubMed]

20. Kingma, D.P.; Ba, J. ADAM: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0893-6080(94)90068-X
http://doi.org/10.1109/northc.1995.485019
http://doi.org/10.1109/18.42215
http://doi.org/10.1109/TCCN.2022.3168725
http://doi.org/10.1109/aicas54282.2022.9869917
http://doi.org/10.1109/LCOMM.2022.3223114
http://doi.org/10.1109/icocn55511.2022.9900977
http://doi.org/10.23919/JCC.2023.01.013
http://doi.org/10.1109/LCOMM.2022.3178959
http://doi.org/10.1145/3501714.3501727
http://doi.org/10.1109/TIT.1972.1054746
http://doi.org/10.1109/18.412683
http://doi.org/10.1109/isit.2018.8437530
http://doi.org/10.1109/iccc49849.2020.9238971
http://doi.org/10.1109/JSTSP.2017.2788405
http://doi.org/10.1109/norchip.2019.8906946
http://doi.org/10.1109/acssc.2018.8645128
http://doi.org/10.1016/j.neunet.2020.07.025
http://www.ncbi.nlm.nih.gov/pubmed/32829002

	Introduction
	Preliminaries of Conventional Soft Decision Decoder
	Message Encoding Process
	Data Transmission over Channels
	Chase-II Decoding Algorithm
	Ordered Statistics Decoding (OSD)

	Deep Learning-Based Decoder
	Soft Decision Decoding Based on DNN-Based Binary Classification
	DNN-Based Denoiser for Soft Decision Decoding

	Proposed Multi-Class Neural Network-Based Decoder
	Dataset Generation and Neural Network Training
	Generation of Received Signal by BPSK over AWGN Channel
	Training of Neural Network

	Experimental Results of Decoding by Proposed Multi-class NN-Based Decoder
	Simulation Environment and Procedure
	Experimental Results
	Results for BCH (15, 7) Code
	Results for BCH (15, 5)
	Results for QR (23, 12) Code
	Results for BCH (31, 11) Code

	Conclusions
	References

