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Abstract: This study investigates the effects of sand particle shape, in terms of roundness, sphericity 

and regularity, on the damping ratio of a dry sand material. Twelve different cyclic simple shear 

testing scenarios were considered and applied using vertical stresses of 50, 150 and 250 kPa and 

cyclic stress ratios (CSR) of 0.2, 0.3, 0.4 and 0.5 in both constant- and controlled-stress modes. Each 

testing scenario involved five tests, using the same sand that was reconstructed from its previous 

cyclic test. On completion of the cyclic tests, corresponding hysteresis loops were established to 

determine the damping ratio. The results indicated that the minimum and maximum damping ra-

tios for this sand material were 6.9 and 25.5, respectively. It was observed that the shape of the sand 

particles changed during cyclic loading, becoming progressively more rounded and spherical with 

an increasing number of loading cycles, thereby resulting in an increase in the damping ratio. The 

second part of this investigation involved the development of artificial intelligence models, namely 

an artificial neural network (ANN) and a support vector machine (SVM), to predict the effects of 

sand particle shape on the damping ratio. The proposed ANN and SVM models were found to be 

effective in predicting the damping ratio as a function of the particle shape descriptors (i.e., round-

ness, sphericity and regularity), vertical stress, CSR and number of loading cycles. Finally, a sensi-

tivity analysis was conducted to identify the importance of the input variables; the vertical stress 

and regularity were, respectively, ranked as first and second in terms of importance, while the CSR 

was found to be the least important parameter. 

Keywords: cyclic simple shear testing; damping ratio; sand particle shape; artificial neural network; 

support vector machine 

 

1. Introduction 

The damping ratio is a fundamental soil property that determines its response to 

various dynamic loading scenarios, including earthquakes, vibrations and machine oper-

ations [1–4]. The damping ratio is influenced by several factors, namely soil type, grain-

size distribution, soil particle shape and confining pressure. Many researchers are inter-

ested in the effects of particle shape on the damping ratio of sand [5–10]. 

Previous investigations have demonstrated that the damping ratio of sand tends to 

decrease with increasing strain amplitude [7,11,12]. As the amplitude of cyclic loading 

increases, the soil particles undergo more severe deformations, thereby rendering the en-

ergy dissipation through damping less effective. Accordingly, it is important to consider 

the effects of strain amplitude when evaluating the damping ratio of sand [7,11,12]. 
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Stress history can also influence the soil’s damping attributes [13,14]. For instance, 

cyclic loading can result in the development of excess pore pressure, which can affect the 

soil’s damping response [15]. The buildup of excess pore pressure can cause changes in 

the effective stress, which in turn alters the soil stiffness and damping behavior. Moreover, 

the magnitude and duration of cyclic loading can influence the stress history of the soil, 

thereby impacting the damping ratio [16]. 

The sand’s saturation degree can also affect its damping properties [17–20]. In gen-

eral, the damping ratio tends to increase with increasing saturation, as the presence of 

water within the soil matrix provides a pathway for energy dissipation through viscous 

damping. As the saturation degree increases, the viscous damping effect becomes more 

prominent, leading to a higher damping ratio. However, it should be noted that the effects 

of saturation on damping are not always consistent and depend on other factors, includ-

ing soil type and loading conditions [17–20]. 

The confining pressure is another parameter that influences the damping ratio of 

sands. Referring to Bayat et al. [21], the damping ratio of sands decreases as the confining 

pressure increases. Other reported variables that can influence the damping ratio of sands 

include moisture content and loading frequency; an increase in these parameters has been 

reported to, respectively, increase [22] and decrease [23] the damping ratio. The grain-size 

distribution, or uniformity coefficient, has also been investigated for its influence on the 

damping ratio of sands. Referring to Wichtmann et al. [24], the damping ratio of sands 

decreases as the gradational uniformity increases. In view of the above, it is evident that 

several interrelated variables can influence the damping ratio of sands, including grain-

size distribution, sand particle shape, confining pressure, moisture content (and satura-

tion) and loading frequency [25–31]. Hence, the complex relationship between these in-

terrelated parameters and the damping ratio (of sands) warrants further investigation. 

As of late, the application of artificial intelligence (AI) models, such as artificial neural 

networks (ANNs), has become increasingly popular (and accepted) in solving diverse en-

gineering problems due to their ability to learn and generalize complex nonlinear rela-

tionships between input and output variables [20]. Conventional neural networks have 

been successfully applied in various engineering fields, including (but not limited to) civil, 

geotechnical, mechanical and electrical engineering. The success of these conventional AI-

based models has led to the development of novel techniques and algorithms, such as 

deep learning, which have demonstrated even more promise in solving complex engi-

neering problems. The feasibility of neural networks in engineering highlights their po-

tential to provide insights and solutions to multifaceted problems that may not have been 

possible (in the past) using traditional analytical and statistical methods. 

The available literature on the application of AI-based models to investigate the com-

plex relationship between various governing variables and the damping ratio of sands is 

still fairly limited [32–36]. Cabalar and Cevik [32] presented neural network models for 

predicting the damping ratio and shear modulus of sand–mica mixtures based on stress, 

mica content and strain. The reported models were established using experimental data 

from consolidated torsional resonant column tests on various mixtures of mica and Leigh-

ton Buzzard sand. The predictive performance of their models was found to be high, with 

R2 = 0.97 and 0.99 for the damping ratio and shear modulus parameters, respectively. 

Keshavarz and Mehramiri [33] proposed models based on gene expression programming 

(GEP) to predict the normalized shear modulus and the damping ratio of sands as a func-

tion of the mean effective confining pressure, void ratio and shear strain percentage; their 

proposed models were validated using published experimental data from the literature. 

Their GEP-based models demonstrated acceptable accuracy, with relative error margins 

lower than ±6% and ±2% for the normalized shear modulus and damping ratio parame-

ters, respectively. In another study performed by Akbulut et al. [34], a neuro-fuzzy net-

work was developed to model the dynamic behaviors of sand–rubber mixtures under var-

ying conditions. Three predictive systems were trained and tested, using experimental 

data, to predict the shear modulus and damping ratio parameters. The study found that 
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the adaptive neuro-fuzzy inference system (ANFIS) was the most effective method for 

predicting the dynamic behaviors of the composite materials, and further investigations 

of this paradigm were encouraged. 

The present study contributes significantly to the research literature by being the first 

of its kind to systematically investigate the effects of sand particle shape on the damping 

ratio of dry sand where the minerals are identical and the only variable is the shape and 

size of the sand particles. The study’s unique approach involves the application of cyclic 

loading tests to examine the effects of cyclic stress ratio (CSR) loading on the relationship 

between particle shape and the damping ratio. This type of cyclic loading is particularly 

useful as it can simulate the impacts of earthquakes, which are important in geotechnical 

engineering practice. The first objective was to experimentally investigate the effects of 

particle shape on the damping ratio of dry sands. To this end, a series of sand samples 

with different particle shapes were tested in a cyclic simple shear apparatus in both con-

stant-stress and controlled-stress modes to determine the damping ratio under different 

scenarios. The analysis of the test results was then incorporated into different correlations 

in the form of curves. 

The second objective of this study involved performing a pioneering investigation 

into the use of AI-based models for predicting the damping ratio as a function of sand 

particle shape, vertical stress, CSR and the number of loading cycles. Although AI-based 

methods have been successfully employed in different areas of geotechnical engineering 

[37–44], this study marks the first time they were applied to the aforementioned problem. 

This study represents an important step toward expanding the application of AI-based 

models in geotechnical engineering. Finally, in developing the AI-based models, the study 

focuses on analyzing the importance of the input parameters to gain a better understand-

ing of how they impact damping ratio predictions. 

2. Materials and Methods 

2.1. Test Sand 

The grain-size distribution curve of the test sand, obtained through the conventional 

sieve analysis test performed, is provided in Figure 1. The particle diameters correspond-

ing to 10%, 30%, 50% and 60% finer were obtained as D10 = 0.19 mm, D30 = 0.245 mm, D50 

= 0.265 mm and D60 = 0.275 mm. In view of these values, the uniformity (i.e., Cu = D60/D10) 

and curvature (i.e., Cc = D302/(D10D60)) coefficients were calculated as 1.447 and 1.149, re-

spectively; these values indicate that the test sand is poorly graded (i.e., SP) based on the 

Unified Soil Classification System (USCS) [45]. 

Other physical attributes of the test sand included a specific gravity of Gs = 2.65 

(measured as per ASTM D854 [45]), along with maximum and minimum void ratios 

(measured as per ASTM D4253 [46] and ASTM D4254 [47]) of emax = 1.07 and emin = 0.76, 

respectively. In view of the emax and emin values, the test sand can be characterized as hav-

ing relatively poor compactability. It should be mentioned that the mineralogical compo-

sition of the examined sand was dominated primarily by silica, along with traces of 2.3% 

magnesium silicate and 1.2% ferric oxide. 
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Figure 1. Grain-size distribution curve of the test sand. 

2.2. Dynamic Simple Shear Apparatus and Testing Plan 

A two-dimensional simple shear test scheme was employed to assess the dynamic 

properties of the test sand under cyclic loading conditions. The test involved applying 

forces in two directions: a vertical force along the sample’s axis and a shear force parallel 

to its horizontal surface. The cyclic shear stress was applied to the samples sinusoidally 

using the dynamic simple shear apparatus, and the frequency of the device was 0.5 Hz. 

The samples, measuring 70 mm in diameter and 20 mm in height, were prepared using 

dry sand following the wet tamping method with a moisture content of 7%, as per Ladd 

[48]. 

Figure 2 provides a schematic illustration of the described dynamic simple shear test. 

This testing scheme is useful in determining the shear strength, deformation characteris-

tics, and stress–strain response of sand samples [49]. The data obtained from such testing 

regimes are crucial in understanding the response of sandy materials to cyclic loading, 

which is relevant to various geoengineering applications, including the design of founda-

tions, retaining walls and embankments. 

 

Figure 2. Illustration of the employed dynamic simple shear test scheme. 

Before investigating the dynamic properties of the test sand through cyclic testing, a 

series of monotonic tests were also performed, which indicated a dilative behavior for the 

investigated sand, as also noted by Baghbani et al. [27]. The cyclic tests were carried out 

on samples prepared with a relative density of approximately 45%; vertical stresses of 50, 

150 and 250 kPa were applied, with each test conducted using different cyclic stress ratios 

of 0.2, 0.3, 0.4 and 0.5. The cyclic loading involved applying a vertical load at a rate of 5 

N/sec, followed by sinusoidal shear loading. Constant-stress and stress-control modes 
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were employed during cyclic testing, with the same sample being utilized for five repeti-

tions under identical conditions. CSR loading is commonly used to evaluate the resistance 

of soils to cyclic loading and their ability to withstand repeated cycles of stress and strain. 

This method directly applies cyclic stress to the test soil, and its response is measured in 

terms of strain. CSR loading is particularly useful in simulating the loading conditions 

experienced by soils during an earthquake, particularly for soils with low plasticity index 

values. 

To quantify the shape characteristics of the sand grains, the empirical chart proposed 

by Krumbein and Sloss [50] was employed. This chart uses an optical microscope to ex-

press grain shape in various ways; roundness R, sphericity S and regularity ρ were the 

three shape descriptors quantified in this study using Equations (1)–(3), respectively. Note 

that Figures 3 and 4, adapted from Krumbein and Sloss [50] and Cho et al. [51], define the 

various parameters used in these equations. 

� =
∑ ��

�
���

�������
 (1) 

� =
�������

��������
 (2) 

� =
� + �

2
 (3) 

where r = radius of the sand particle corners; Rmax–in = largest inner radius of the sand 

particle corners; Rmin–out = smallest outer radius of the sand particle; i = index of summation; 

and N = number of inscribed spheres. 

 

Figure 3. Particle shape parameters used in defining roundness [50,51]. 
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Figure 4. Particle shape characterization chart [50,51]. 

This study conducted a comprehensive investigation into the effects of particle shape 

changes on the damping ratio. To this end, 25 sand particles were randomly selected at 

three stages, namely, before testing, prior to the second test, and before the fifth test. The 

three shape descriptors (Equations (1)–(3)) were quantified for each selected particle, and 

their averages for the 25 particles were considered the R, S and ρ parameters for each 

stage. This approach was employed to isolate the effects of particle shape changes on the 

damping ratio as other physical variables remained nearly constant. 

It should be mentioned that a test group was first conducted to determine the opti-

mum number of grains. Initially, ten particles were selected; however, after conducting 

the investigation, it was found that the standard deviation of the three shape parameters 

R, S and ρ was insufficient (for ten particles), with values of 0.014, 0.010 and 0.013, respec-

tively. To address this, the study proceeded to the second step and analyzed twenty par-

ticles. The results showed that the standard deviations for the three parameters R, S and 

ρ were acceptable at 0.0033, 0.0024 and 0.0028, respectively. However, to ensure sufficient 

accuracy, 25 particles were selected. The particles were removed in five layers during the 

particle selection procedure (see Figure 5), with five particles randomly selected from each 

layer. This ensured that 25 grains were selected almost perfectly with a uniform distribu-

tion in height and horizontal surface. 
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Figure 5. Illustration of the selection process for the 25 sand particles for each sample (not to 

scale). 

2.3. Artificial Neural Network (ANN) 

ANNs have a rich and fascinating history that spans several decades. The roots of 

ANNs can be traced back to the late 1940s and the work of Warren McCulloch and Walter 

Pitts, who proposed a mathematical model of a neuron known as the McCulloch–Pitts 

neuron [52]. They suggested that neurons in the brain could be modeled as binary on–off 

switches, which laid the foundation for ANNs. In the 1950s and 1960s, several researchers 

began to develop neural network models, including the ‘perceptron’ proposed by Frank 

Rosenblatt in 1958 [53]. The perceptron is a single-layer neural network that can learn to 

classify patterns by adjusting its weights. In the 1970s and 1980s, the development of the 

backpropagation algorithm by Paul Werbos and others revolutionized the field of ANNs 

[54]. This algorithm allowed for the training of multi-layer neural networks, which could 

learn to perform more complex tasks compared to single-layer perceptrons. 

ANNs can be used for various tasks, including classification, regression analyses and 

time-series prediction [55]. They have been successfully applied in different fields, such 

as finance, healthcare and image recognition. However, the accuracy of ANN models re-

lies heavily on the quality and quantity of the training data [56]. The models may also 

suffer from the problem of vanishing gradients, where the gradients become too small to 

update the weights during backpropagation [57]. 

To implement the ANN methodology, first, the data are divided into training and 

testing sets. The ANN model is then trained on the training set using a backpropagation 

algorithm to minimize the error between the predicted and actual outputs. The number 

of hidden layers and the number of neurons in each layer are determined using a trial-

and-error procedure (or by a validation set). The performance of the ANN model is eval-

uated on the testing set using various statistical metrics, such as mean squared error (MSE) 

and mean absolute error (MAE). The hyperparameters of the ANN model, such as learning 

rate and momentum, are optimized using techniques such as grid search or randomized 

search. 
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Moreover, before training the ANN model, the input data need to be preprocessed 

by normalizing the data to ensure that all features have equal importance. The activation 

function for each neuron is selected based on the problem being addressed (e.g., sigmoid, 

hyperbolic tangent (tanh), or rectified linear unit (ReLU)). Regularization techniques, such 

as dropout or weight decay, may also be applied to prevent overfitting during the training 

process. 

2.4. Support Vector Machine (SVM) 

An SVM is a supervised learning algorithm used for classification and regression 

analyses. It was first proposed by Vapnik and colleagues in the 1990s and has since been 

widely employed in various fields, such as finance, biology and image recognition [58–

60]. The idea behind SVMs is to find a hyperplane that separates the data into different 

classes in the highest possible margin. The margin is the distance between the hyperplane 

and the closest data points from each class. The SVM algorithm then attempts to maximize 

this margin by finding the optimal hyperplane. 

Initially, the SVM was developed for linearly separable data only, where a single hy-

perplane could separate the data perfectly. Later, it was extended to non-linearly separa-

ble data using kernel functions to map the data to a higher dimensional space, where they 

could be linearly separated [60]. 

An SVM has several advantages over other classification algorithms, including its 

ability to handle high-dimensional data and its robustness to manage outliers. Its perfor-

mance, however, can be affected by choices made for the kernel function and hyperpa-

rameters. Over the years, several variants of SVMs have been proposed, such as support 

vector regression (SVR) for regression analysis and multiple kernel learning (MKL) for 

combining multiple kernel functions. SVMs remain an active area of research, with ongo-

ing efforts to improve their performance and scalability for large datasets [61]. 

To implement the SVM methodology, first, the data are divided into training and 

testing sets. The SVM model is then trained on the training set using a kernel function, 

such as a linear, polynomial, or radial basis function (RBF). The optimal values of the hy-

perparameters, such as C (penalty parameter) and Gamma (kernel coefficient), are deter-

mined using grid search or randomized search techniques. The performance of the SVM 

model is evaluated on the testing set by various metrics, including accuracy, precision, 

recall and F1-score. The SVM model can also be used for regression tasks by modifying 

the objective function and using the epsilon-insensitive loss function. The performance of 

the SVM regression model can be evaluated using metrics such as the MSE and MAE pa-

rameters [60–62]. 

3. Results 

After conducting the simple shear tests (as described in Section 2), the collected data 

comprised displacements and forces. These raw data were then transformed into horizon-

tal and vertical stress–strain values employing displacement–strain and stress–force rela-

tionships. The damping ratio parameter D was then calculated by Equations (4) and (5) 

and Figure 6. 

� =
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Figure 6. Hysteresis loop in cyclic tests. 

3.1. Results of Cyclic Tests 

The results of the experiments demonstrate the effects of particle shape changes on 

the damping ratio of sand. The hysteresis loops of shear stress–strain were plotted after 

each cyclic test, and the damping ratio was estimated using Equation (4). Figure 7 illus-

trates a typical example of the results obtained during cyclic tests, where the CSR and 

vertical stresses were 0.3 and 150 kPa, respectively. The results demonstrate that the vol-

umetric strain exhibits a negative trend with an increasing number of cycles. This indi-

cates that the sample experienced settlement and, hence, its density increased after cy-

cling; the constant vertical pressure loading in the cyclic tests is the primary reason for 

this phenomenon. 

  

Figure 7. Results of the cyclic tests for CSR = 0.3 and vertical stress = 150 kPa: (a) shear stress–strain 

hysteresis loops; and (b) volumetric strain by number of cycles. 

The impact of the number of cycles on the damping ratio under different CSR condi-

tions and vertical stresses is demonstrated in Figures 8–10 for the reconstruction of the 

first, second and fifth samples, respectively. As shown in these figures, the damping ratio 

decreased with an increasing number of cycles in all tests. 
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Figure 8. Effects of increasing number of loading cycles on the damping ratio for different CSR con-

ditions and vertical stresses of (a) 50 kPa, (b) 150 kPa and (c) 250 kPa for the first reconstruction. 

   

Figure 9. Effects of increasing number of loading cycles on the damping ratio for different CSR con-

ditions and vertical stresses of (a) 50 kPa, (b) 150 kPa and (c) 250 kPa for the second reconstruction. 

   

Figure 10. Effects of increasing number of loading cycles on the damping ratio for different CSR 

conditions and vertical stresses of (a) 50 kPa, (b) 150 kPa and (c) 250 kPa for the fifth reconstruction. 

To find the worst-case scenario in this study, it is evident from the results in Section 

3.1 that the behavior of dry sand grains is greatly influenced by three parameters: the CSR, 

number of cycles and vertical stress. The damping ratio decreases with an increase in the 

cyclic shear ratio (CSR) and the number of cycles. For the studied sand, the worst-case 
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stress is 250 kPa. In this vertical pressure and CSR, particles showed the most change in 

their shapes and damping ratios. 

In Figures 11 and 12, three-dimensional images, two-dimensional cross-sectional ar-

eas and circles used to determine the values of three shape parameters, S, R and ρ, are 

displayed for two different particles. The first particle was examined before cyclic testing, 

while the second particle was examined after undergoing four cyclic tests, each consisting 

of 30 loading cycles with CSR = 0.2 and vertical stress = 150 kPa. It is evident from the 

figures that the average radius of the inner circles in Figure 11 is smaller than in Figure 

12, implying an increase in S, R and ρ. 

  

Figure 11. (a) Three-dimensional image, (b) two-dimensional cross-sectional area and (c) calculation 

of the three shape parameters S, R and ρ for one particle before cyclic testing. 

  

Figure 12. (a) Three-dimensional image, (b) two-dimensional cross-sectional area and (c) calculation 

of the three shape parameters S, R and ρ for one particle after four cyclic tests. 

Tables 1–3 and Figure 13 present the results of various tests conducted on samples 

before cycling (Table 1), after 30 cycles (Table 2) and after 120 cycles (Table 3). The tables 

report the minimum, maximum, mean and standard deviation (SD) values for the three 

shape descriptors, namely sphericity S, roundness R and regularity ρ, as well as the damp-

ing ratio D. Comparing the values between these tables allows one to draw some conclu-

sions on how these shape descriptors and the damping ratio are affected by cycling. 

Referring to Table 1, it can be seen that the mean values for S, R, ρ and D before 

cycling were 0.713, 0.518, 0.616 and 16.050, respectively. The SDs for S, R and ρ were rel-

atively small (i.e., 0.014, 0.011 and 0.011, respectively), indicating that the samples were 
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fairly consistent in terms of particle shape characteristics/variations. For D, however, the 

SD was found to be 5.903, suggesting greater variability in the damping ratio. 

Considering Table 2, it can be seen that after 30 cycles, the mean values for S, R, ρ 

and D were 0.760, 0.557, 0.658 and 13.392, respectively. The mean values for the three 

shape descriptors were higher compared to those reported in Table 1 (before cycling), 

suggesting that the particles became more spherical, rounder and more regular (in shape) 

after 30 cycles. Furthermore, the damping ratio decreased compared to its pre-cycling 

value, indicating that the samples became less stiff and more flexible over the course of 

cycling. 

Finally, after 120 cycles, it can be seen that the mean values for S, R, ρ and D were 

0.774, 0.570, 0.672 and 12.425, respectively (see Table 3). The mean values for the three 

shape descriptors continued to increase (when compared to Table 2), suggesting that the 

particles became even more spherical, rounder and more regular after 120 cycles. The 

damping ratio also continued to fall, implying an even lesser stiffness (more flexibility) 

for the samples with additional cycling (from 30 to 120 cycles). 

Table 1. Shape descriptors and damping ratio before cycling. 

Variable Minimum Maximum Mean SD 

S (–) 0.690 0.743 0.713 0.014 

R (–) 0.498 0.534 0.518 0.011 

ρ (–) 0.594 0.638 0.616 0.011 

D (%) 8.500 25.500 16.050 5.903 

Table 2. Shape descriptors and damping ratio after 30 cyclic tests. 

Variable Minimum Maximum Mean SD 

S (–) 0.733 0.793 0.760 0.017 

R (–) 0.529 0.572 0.557 0.014 

ρ (–) 0.631 0.683 0.658 0.014 

D (%) 7.200 21.400 13.392 4.784 

Table 3. Shape descriptors and damping ratio after 120 cyclic tests. 

Variable Minimum Maximum Mean SD 

S (–) 0.741 0.807 0.774 0.020 

R (–) 0.537 0.592 0.570 0.018 

ρ (–) 0.640 0.695 0.672 0.018 

D (%) 6.900 20.200 12.425 4.536 

    

Figure 13. Variations of the three shape descriptors (a) before cycling, (b) after 30 cycles and (c) after 

120 cycles. Note: S, R and ρ denote sphericity, roundness and regularity, respectively. 
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This section investigates the effects of loading cycles on the three particle shape de-

scriptors and the damping ratio. The experimental results are presented in Figures 14 and 

15, where the circle diameters represent the magnitude of the damping ratio. It was ob-

served that an increase in the number of loading cycles led to an increase in the shape 

descriptors S, R and ρ, indicating that the particles became more spherical, rounder and 

more regular. Moreover, an increase in the number of cycles (i.e., an increase in S, R and 

ρ) resulted in a decrease in the circle diameters and subsequently the damping ratio. These 

findings, which demonstrate the relationships between the number of loading cycles, par-

ticle shape and damping ratio, highlight the importance of considering these factors in the 

design and optimization of granular materials for various geoengineering applications. 

  

 

Figure 14. Effects of number of loading cycles, along with (a) R, (b) S and (c) ρ, on the damping 

ratio. 

Figure 15a and 15b illustrate the variations in vertical stress and the CSR against the 

number of applied loading cycles, respectively; in these figures, the size of the circle di-

ameters represents the magnitude of the damping ratio. The findings indicate that the 

damping ratio increases with increasing vertical stress levels, as evidenced by the in-

creases observed in the circle diameters. These results provide insight into the influence 

of loading stresses on the damping behavior of sand, which has significant implications 

for the design and construction of various geotechnical structures. 
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Figure 15. Effects of number of loading cycles, along with (a) vertical stress and (b) CSR, on the 

damping ratio. 

3.2. Artificial Neural Network (ANN) Performance 

Equations (6)–(11) provide definitions for the various parameters that can be em-

ployed to evaluate an ANN’s performance. These parameters include mean absolute error 

(MAE), mean squared error (MSE), root mean squared error (RMSE), mean squared logarithmic 

error (MSLE), root mean squared logarithmic error (RMSLE) and coefficient of determination 

(R2). 
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where N = number of datasets; Xm and Xp = actual and predicted values, respectively; and 

Xm
���� and Xp

���� = average of the actual and predicted values, respectively. Note: Ideally, the 

model should have R2 = 1 and MAE, MSE, RMSE, MSLE and RMSLE values of 0. 

To implement data-driven models, two types of datasets are necessary, namely train-

ing and testing datasets. In this study, 80% of the main database was assigned to training 

and the remaining 20% to testing. Tables 4 and 5 present descriptive statistics for the train-

ing and testing datasets, respectively. As is evident from these tables, the statistical de-

scriptors for these two datasets are quite close, which can improve the accuracy of AI-

based models. In addition, Table 6 displays the linear correlation matrix for both input 
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and output parameters. Based on the findings, it can be concluded that there is no signif-

icant linear correlation observed among any of the parameters. 

Table 4. Descriptive statistics for the training dataset. 

Variable Observations Minimum Maximum Mean SD 

Damping Ratio, D (%) 29 6.900 25.500 13.355 5.370 

Number of Cycles (–) 29 0.000 120.000 56.897 51.555 

Sphericity, S (–) 29 0.702 0.807 0.753 0.028 

Roundness, R (–) 29 0.502 0.592 0.552 0.025 

Regularity, ρ (–) 29 0.612 0.695 0.653 0.025 

Vertical Stress (kPa) 29 50.000 250.000 143.103 84.223 

CSR (%) 29 0.200 0.500 0.348 0.112 

Table 5. Descriptive statistics for the testing dataset. 

Variable Observations Minimum Maximum Mean SD 

Damping Ratio, D (%) 7 11.000 22.000 16.443 3.756 

Number of Cycles (–) 7 0.000 120.000 21.429 44.881 

Sphericity, S (–) 7 0.690 0.788 0.730 0.038 

Roundness, R (–) 7 0.498 0.575 0.533 0.029 

Regularity, ρ (–) 7 0.594 0.682 0.631 0.033 

Vertical Stress (kPa) 7 50.000 250.000 178.571 75.593 

CSR (%) 7 0.200 0.500 0.357 0.127 

Table 6. Correlation matrix for the input and output variables. 

Variable Number of Cycles S R ρ Vertical Stress CSR D 

Number of Cycles 1 0.705 0.715 0.727 0.000 0.000 −0.256 

Sphericity, S 0.705 — 0.705 0.780 0.193 0.227 −0.044 

Roundness, R 0.715 0.705 — 0.771 0.193 0.206 −0.040 

Regularity, ρ 0.727 0.780 0.771 — 0.198 0.223 −0.043 

Vertical Stress 0.000 0.193 0.193 0.198 — 0.324 0.798 

CSR 0.000 0.227 0.206 0.223 0.324 — 0.277 

Damping Ratio, D −0.256 −0.044 −0.040 −0.043 0.798 0.277 — 

Several parameters, including the number of hidden layers and neurons, can impact 

the accuracy of ANN models. To obtain the optimal and most accurate ANN model, mul-

tiple models were generated and assessed to determine the best one. The performance of 

the selected model was evaluated by comparing the predicted damping ratio values 

against those of the testing dataset, as illustrated in Figure 16. The results demonstrate the 

high accuracy of the ANN model in predicting the damping ratio of sand. 
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Figure 16. Performance of the best ANN model to predict the damping ratio for (a) training and (b) 

testing datasets. 

To elaborate further on the results of the ANN model, it should be noted that the 

model had one hidden layer, and the number of neurons in the input layer was five, cor-

responding to the five independent variables employed, namely the three particle shape 

parameters (i.e., S, R and ρ), vertical stress, the number of loading cycles and the CSR. The 

number of neurons in the hidden layer was initially set to 50, but through an iterative 

process of trial and error, the optimum number of neurons was determined to be 28. This 

process is essential for optimizing the model’s performance and ensuring that it is not 

overfitting the training data. 

Table 7 presents various performance metrics (i.e., MAE, MSE, RMSE, MSLE, RMSLE 

and R2) for the proposed ANN model, trained using a Levenberg–Marquardt (LM) algo-

rithm, to predict the damping ratio as a function of the sand particle shape, vertical stress, 

number of loading cycles and CSR. The results indicate that the ANN model performs 

well in predicting the damping ratio, as evidenced by the high R² value of 0.962 for both 

the training and testing datasets, indicating that 96.2% of the variations in the actual out-

put variable (i.e., the damping ratio) is captured and explained by the proposed ANN 

model. The MAE, MSE and RMSE values for the training dataset were found to be higher 

than those obtained for testing, indicating that the model performs better on the testing 

dataset. This could be due to overfitting, which occurs when the model fits the training 

data too closely, leading to relatively poorer performance on new (unseen) datasets. The 

MSLE and RMSLE values were low for both the training and testing datasets, implying 

that the predictions were associated with low forecast errors. In conclusion, the results 

suggest that the ANN model trained using the LM algorithm is a promising approach for 

predicting the damping ratio of sand based on the sand particle shape, vertical stress, 

number of loading cycles and CSR. However, further research is needed to validate the 

model’s performance on larger (and/or more diverse) datasets. 

Table 7. Overall performance of the best ANN model to predict the damping ratio for both training 

and testing datasets. 

Metric Training Dataset Testing Dataset 

MAE (%) 0.887 0.551 

MSE (%) 1.056 0.460 

RMSE (%) 1.027 0.679 

MSLE (%) 0.007 0.001 

RMSLE (%) 0.084 0.037 

R² (–) 0.962 0.962 
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3.3. Support Vector Machine (SVM) 

The accuracy of SVM models can be significantly impacted by various parameters, 

including the kernel function and the C and Gamma parameters. To obtain the optimal 

and most accurate SVM model, several models were trained and evaluated, and the best 

one was selected. The evaluation process was carried out by comparing the predicted 

damping ratio values against their actual counterparts from the testing dataset, as illus-

trated in Figure 17. The results indicate the high accuracy of the SVM model in predicting 

the damping ratio of sand. 

  

Figure 17. Correlation performance of the best SVM model to predict the damping ratio for (a) train-

ing and (b) testing datasets. 

The overall performance of the proposed SVM model to predict the damping ratio 

for both training and testing datasets is presented in Table 8. The SVM model achieved 

MAE values of 0.716 and 0.831 for the training and testing datasets, respectively. The cor-

responding MSE and RMSE values were 0.761 and 0.872 for training and 1.302 and 1.141 

for testing, respectively. Moreover, the model’s MSLE and RMSLE values were obtained 

as 0.006 and 0.079 for the training dataset and 0.003 and 0.057 for the testing dataset, re-

spectively. In terms of correlation, the SVM model produced R2 = 0.973 and 0.892 for the 

training and testing datasets, respectively. Like the proposed ANN model, these results 

suggest that the SVM model performs well in predicting the damping ratio of sand based 

on the selected input parameters (the sand particle shape, vertical stress, number of load-

ing cycles and CSR conditions). 

Table 8. Overall performance of the best SVM model to predict the damping ratio for both training 

and testing datasets. 

Metric Training Dataset Testing Dataset 

MAE (%) 0.716 0.831 

MSE (%) 0.761 1.302 

RMSE (%) 0.872 1.141 

MSLE (%) 0.006 0.003 

RMSLE (%) 0.079 0.057 

R² (–) 0.973 0.892 

4. Discussion 

4.1. Effects of Void Ratio Changes on Damping Ratio 

An investigation was also conducted to examine the effects of cyclic loading on the 

void ratio of the tested samples. The minimum and maximum void ratio (i.e., emin and emax) 
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in Figures 18, 19 and 20, respectively. Note that the circle diameters in these figures rep-

resent the magnitude of the void ratio parameter. The findings demonstrate that with an 

increase in the number of loading cycles, and thus a consequent rounding of the sand 

grains, the void ratio between the grains reduces. This can be attributed to the fact that 

more rounded and spherical particles possess a higher packing capability, which leads to 

a reduction in the volume of voids (and an increase in the contact levels achieved between 

the particles). This increase in inter-particle interaction leads to higher energy dissipation 

during cyclic loading, which is reflected in the higher damping ratio (with an increasing 

number of cycles). 

  

Figure 18. Effects of cycling loading on (a) emin and (b) emax based on the roundness R parameter. 

  

Figure 19. Effects of cycling loading on (a) emin and (b) emax based on the sphericity S parameter. 
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Figure 20. Effects of cycling loading on (a) emin and (b) emax based on the regularity ρ parameter. 

4.2. Importance of Input Parameters and Sensitivity Analysis 

A sensitivity analysis was conducted on the input parameters of the proposed ANN 

and SVM models to investigate their impacts on (the accuracy of) the output variable (or 

the damping ratio). For this purpose, each input parameter was increased and decreased 

individually by 100%, and the resulting error was measured to establish the sensitivity of 

the model to that parameter. The results of the sensitivity analysis are plotted in Figure 

21, which illustrates the mean increase in error as the input parameters were increased or 

decreased. The higher the error, the more sensitive the model is to the input parameter. 

  

Figure 21. The importance of input parameters on the MAE of the best (a) ANN and (b) SVM model. 
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total score obtained by each input parameter. From Table 9, it can be observed that the 

most important input parameter is vertical stress, with a total score of 2 and a ranking of 

1. The significance of vertical stress in regulating the contact forces between the particles, 

and thus the dissipation of energy during cyclic loading, is the main reason behind this 

phenomenon. The second most important input parameter is R, with a total score of 5 and 

a ranking of 2. This is followed by ρ, with a total score of 6 and a ranking of 3. The fourth 
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scores of 7 and 10 (rankings of 4 and 5), respectively. Finally, the CSR has the lowest total 

score of 12 and is ranked last in terms of importance. These rankings provide valuable 

insight into the relative importance of the input variables in predicting the damping ratio 

(for the models considered in this study). This information can be useful in optimizing the 

models and selecting the most important input variables for particular applications. 

It is necessary to mention that the best AI model can be applied to other dry sands 

with similar particle shape parameters and minerology. 

Table 9. Ranking results of variable importance for the proposed ANN and SVM models. 

Model 
Input Parameters 

Number of Cycles S R ρ Vertical Stress CSR 

ANN 3 5 2 4 1 6 

SVM 4 5 3 2 1 6 

Total Score 7 10 5 6 2 12 

Ranking 4 5 2 3 1 6 

4.3. Limitations and Scope for Future Works 

Although the present investigation provides significant progress towards under-

standing the effects of sand particle shape on the damping ratio of dry sand, with the 

proposed AI-based models being applicable to other dry sands with similar particle shape 

parameters and minerology, there still exist some limitations and hence scope for future 

investigations. Firstly, this study was conducted using only one type of sand, which may 

limit the generalizability of the findings to other soil types (in terms of, for instance, gra-

dation and mineralogy). Moreover, the present investigation only focused on three con-

ventional shape parameters to characterize sand particle shape and did not consider other 

factors, such as particle size, particle sorting and loading rate, which may also affect the 

damping ratio. In addition, a further suggestion for future research is to explore the com-

bined effects of moisture content and particle shape on the damping ratio of sands. That 

is, moisture content can have a significant impact on the mechanical properties of soils, 

including the damping ratio, as it affects inter-particle forces and particle arrangements. 

Therefore, mindful of the above points, further research is needed to validate and build 

on the experimental results and AI-based models presented in this study. It is also worth 

mentioning that the validity of any data-driven model, including the AI-based models 

proposed in this study, is dependent on the accuracy (correctness) of the data from which 

it is established. That is, successful predictions based on unreliable experimental data hold 

no practical significance. This highlights the importance of the data selection stage and 

the need to ensure data reliability before modeling applications. Note that the database 

employed in this study was compared against historical data [27] and also evaluated for 

reproducibility prior to application. Future research studies in the field of AI should ex-

ercise caution when selecting their database for model development. 

5. Summary and Conclusions 

This study employed a unique approach of cyclic loading (via simple shear testing) 

to evaluate the effects of particle shape (in terms of roundness, sphericity and regularity) 

on the damping ratio of dry sand, which has practical implications for geotechnical engi-

neering applications. Moreover, two AI-based models (ANN and SVM) were developed 

that can effectively predict the effects of sand particle shape on the damping ratio. Based 

on the experimental results and AI-based modeling results, the following conclusions can 

be drawn: 

 The shape of the sand particles changes during cyclic loading, becoming progres-

sively more rounded and spherical with an increasing number of loading cycles, re-

sulting in an increase in the damping ratio. 
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 The damping ratio was found to decrease as the number of loading cycles increased. 

This can be attributed to the fact that cyclic loading rearranges the sand particles, 

prompting an increase in the packing capability (and hence a decrease in the volume 

of voids) of the samples. This is followed by an increase in the number of contact 

points between the particles, thereby leading to higher energy dissipation during cy-

clic loading. 

 Compared to the SVM, the proposed ANN model, trained using LM algorithms, was 

found to produce more promising results in predicting the damping ratio of the dry 

sand as a function of the particle shape parameters, vertical stress, number of loading 

cycles and CSR. This was supported by the model’s high R² value of 0.962 for both 

the training and testing datasets. 

 Based on the sensitivity analysis results, vertical stress was found to be the most im-

portant parameter affecting the damping ratio, while the effects/importance of the 

CSR were relatively small. That is, increasing the vertical stress resulted in an in-

crease in the damping ratio, while the effects of increasing the CSR on the damping 

ratio were fairly small. This is because vertical stress plays a major role in controlling 

the contact forces between the sand particles (and hence the energy dissipation) dur-

ing cyclic loading. 

Further research is recommended to validate the results of the proposed AI-based 

model and to investigate the impacts of other factors on the damping ratio, such as particle 

size, particle sorting and loading rate. Moreover, the study could be expanded to include 

other soil types and to investigate the effects of particle shape on other relevant geotech-

nical properties, such as shear strength and compressibility. 
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