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Abstract: The analysis of variance-projected difference resolution (ANOVA-PDR) was proposed 

and compared with multivariate classification for its potential in detecting possible food adultera-

tion in extra virgin olive oils (EVOOs) by UV-Vis spectra. Three factors including origin, adultera-

tion level, and adulteration type were systematically examined by the ANOVA-derived methods. 

The ANOVA-PDR quantitatively presented the separation of the internal classes according to the 

three main factors. Specifically, the average ANOVA-derived PDRs of the EVOO origination and 

adulteration level, respectively, is 4.01 and 1.78, while the conventional PDRs of the three factors 

are all less than 1.5. Furthermore, the partial least-squares-discriminant analysis (PLS-DA) and the 

PLS regression (PLSR) modeling with the selected sub-datasets from different origins were used to 

verify the results. The resulting models suggested that the three main factors and their interactions 

were all important sources of spectral variations. 

Keywords: ANOVA-PDR; extra virgin olive oil adulteration; UV-Vis spectroscopy; partial  

least-squares 

 

1. Introduction 

Olive oil is a widely used food ingredient around the world. According to the Inter-

national Olive Council, the global table olive production has more than tripled in the past 

three decades, reaching over three million tons in the 2020–2021 crop year [1,2], with a 

162% increase in consumption [1]. Despite its widespread acceptance, extra virgin olive 

oil (EVOO) produced in Europe, particularly in Mediterranean countries such as Spain 

and Italy, is considered to be of the highest quality and nutritional value. However, the 

table olive production of the European Union is limited, accounting for less than one-third 

of the world’s table olive production in 2020–2021 [2]. Furthermore, European EVOOs 

have a higher market value, making them vulnerable to adulteration with cheaper vege-

table oils such as sunflower, rapeseed, corn, or soybean oils. As a result, reliable quality 

assurance techniques are needed to protect consumers’ interests. 

According to previous studies, the UV-Vis spectroscopy combined with chemomet-

rics is one of the important techniques for the adulteration detection, authentication of the 

geographic location or the grade of a specific olive oil product. For instance, Torrecilla et 

al. quantified the level of adulteration in Spanish EVOO from their UV-Vis spectra [3,4]. 

The level of adulteration was quantified using linear and nonlinear modeling based on 17 

chaotic parameters calculated by UV-vis scans. Linear models with more independent 

variables showed better statistical results. A radial basis network model with one input 

node and one output neuron was used for nonlinear modeling. Jiang et al. established an 
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effective detection model of Italian EVOO-vegetable oil combined with principal compo-

nent analysis (PCA) and partial least-squares regression (PLSR) using UV-Vis [5]. Further-

more, subsequent studies also reported that UV-Vis spectroscopy was applied to establish 

EVOO adulteration models [6,7]. The UV-Vis spectroscopy has been used to determine 

the geographic origin of EVOO as well [8,9]. In these studies, UV-Vis spectroscopy and 

high-performance liquid chromatography with a diode array detector were used to quan-

tify main pigments in several EVOOs and compared the advantages and disadvantages 

of both techniques. The methods were applied to a selection of monovarietal EVOOs pro-

duced in different geographical areas in Mediterranean countries. The differences among 

EVOOs produced in different geographic areas were analyzed using principal component 

analysis (PCA) and independent component analysis to evaluate the correlation between 

pigments’ content such as chlorophylls and carotenoids in olive oils and experimental 

factors such as ripeness stage, geographic origin, and cultivars. For brevity, “experimental 

factor” is addressed as factors for all subsequent descriptions. Our previous research also 

demonstrated that the microtiter plate reader can be utilized as a high-throughput UV-

Vis spectrometer to establish an effective differentiation model for different EVOO man-

ufacturers [10]. The advantages of UV-Vis are two-fold: both the cost is significantly lower 

and the sample treatment is usually simpler compared with other methods such as chro-

matography, infrared, and Raman spectroscopy that require either relatively expensive 

instruments or complex experimental procedures. However, the UV-Vis spectroscopy 

also has the tradeoff of relatively low selectivity and sensitivity. Therefore, to establish an 

effective and robust EVOO adulteration detection model, an in-depth understanding of 

the characteristics of the spectroscopic fingerprints under different factors is necessary. 

Multi-factors can significantly impact the chemical analysis procedure, such as accu-

racy, sensitivity, and reproducibility. In the case of EVOO adulteration detection, factors 

such as origin, adulteration level, and type of the adulterant can affect the robustness of 

the model. Analyzing the relationships between these factors can guide the establishment 

of subsequent detection models and evaluate their significance. Techniques to analyze the 

influence of multiple factors are highly desirable for accurate analysis of EVOOs from 

different manufacturers. 

The multivariate extensions of the analysis of variance (ANOVA), ANOVA-principal 

component analysis (PCA) was proposed by Harrington et al. to separate the variation of 

the experimental hypothesis from other sources of variation [11]. The ANOVA-PCA ef-

fectively treats the factor impacts and interactions between factors. It has been applied in 

determining the sources of variances in milk powder [12,13], as well as in agricultural 

products such as lettuce, broccoli, and dry bean, evaluating the impact of cultivar and 

growth conditions [12,14,15]. Additionally, the pooled-ANOVA can test the difference be-

tween two or more vectors by means of comparing the pooled variance of the variables 

[14,16]. The pooled-ANOVA provides a conservative test for the differences between the 

level averages of each factor, extending the ability of ANOVA to the multivariate domain 

[13]. 

Despite the previous successes of the various applications of ANOVA-PCA, there is 

no simple metric of comparing the effect of class separation under the multivariate con-

text. The projected difference resolution (PDR) is a straightforward tool for the resolutions 

between groups of multivariate data objects [17]. The PDR is a single figure similar to the 

chromatographic resolution, so it is easy to interpret [18]. This method has been success-

fully applied in the authentication of cannabis [19,20], identification of rice varieties [21], 

etc. Analogous to ANOVA-PCA, the PDR can also be incorporated into ANOVA using 

the factor matrix decomposed by ANOVA. The derived methods, referred to as ANOVA-

PDR, may provide useful supplemental information besides ANOVA-PCA and pooled-

ANOVA. 

The aim of this study was to propose a novel method, analysis of variance-projected 

difference resolution (ANOVA-PDR), for detecting EVOO adulteration while considering 

multiple influencing factors, including origin, adulteration level, and adulteration type. 
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The UV-Vis spectra of adulterated EVOOs were comprehensively analyzed using 

ANOVA-PDR techniques, and the results were validated using PLS-DA and PLSR to 

build both quantitative and qualitative adulteration models. ANOVA-PDR can evaluate 

modeling performance in relation to the multiple sampling factors of the EVOO adulter-

ation detection model. 

2. Materials and Methods 

2.1. Sample Pretreament 

Ten commercial EVOO samples produced from five countries including Spain (S1–

S4), Italy (I1–I3), Greece (G1), Portugal (P1), and Australia (A1) were purchased from local 

grocery stores in China. Each sample was 300–500 mL, stored in their respective original 

glass containers at ambient temperature, and kept sealed until analysis. Because Spain 

and Italy are the main producers of olive oil, the corresponding sample sets consist of four 

and three different manufactures, respectively. The other three EVOO origins were from 

the other countries to compare the possible differences between geographic location. 

Three commercial vegetable oils including corn, soybean, and sunflower oil were selected 

as possible adulterants and were purchased from local groceries. 

To simulate the adulteration of EVOOs, a series of binary blended oils were prepared 

by adding either corn oil, soybean oil or sunflower oil into EVOOs at percentages ranging 

from 10% to 50% at a 10% interval (v/v). The samples were then vortexed for 1 min until 

forming a homogenous suspension. The pure and the adulterated EVOOs were directly 

transferred to a microtiter plate without further pretreatment. The sample volume was 

200 µL for each sample. All samples were prepared in triplicates. 

2.2. Microtiter Plate Reader Assay 

All samples were placed in a Nunc MicroWell transparent 96-well plates (Thermo 

Fisher Scientific, Waltham, MA, USA) and analyzed at room temperature using an Infinite 

M1000 PRO microtiter plate reader (Tecan Group Ltd., Männedorf, Switzerland). In our 

previous study, it has been demonstrated that a microtiter plate reader can be a high-

throughput alternative to achieve comparable performance of the benchtop counterparts 

[10]. The microtiter plate reader was equipped with a Quad4 monochromator and a xenon 

lamp. The wavelength was set to 366–1000 nm with a 2 nm resolution, and the number of 

flashes was 25. Each sample was prepared and tested in triplicates, resulting totally nine 

parallel datasets obtained for each oil sample. The final spectral dataset comprised a 1440 

× 350 matrix, where rows and columns represent samples and variables, respectively. 

2.3. Theory and Implementation of ANOVA-PDR 

The calculation procedure of the ANOVA in a multivariate scenario is demonstrated 

in Figure 1. Briefly, before the ANOVA, the obtained spectral data matrix was mean-cen-

tered for each measured variable to acquire the grand means matrix. Afterwards, the orig-

inal matrix was subtracted by the grand means matrix to obtain the grand residuals matrix 

[12]. The grand residuals matrix was then used to construct multiple sub-matrixes, i.e., 

the means and residuals matrix of each factor. Specifically, the factors of this EVOO adul-

teration study included origin, adulteration level, and adulteration type. The sub-matrices 

allowed calculation of the percentage of total variance for each factor, the significance 

level of the variance, and the variance associated with factor interactions. 
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Figure 1. Schematic diagram for analysis of variance-projected difference resolution (ANOVA-

PDR). The matrix decomposition process was repeated for the other experimental factors and the 

factor interactions. 

The PDR is a straightforward multivariate metric for rapidly quantifying the degree 

of separation from multivariate data objects for a pair of classes [17]. The PDR performs 

multivariate resolution by generating a set of projections onto the difference vectors of 

two class averages between pairs of means divided by 2 times the summed standard de-

viations, given by 
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from which ( , )s a bR  is the PDR of class a and b, aP  and bP  are obtained by project-

ing the objects in the corresponding category onto the difference vector between the mean 

of two classes, given by 

( ) T
i a b iX X XP    (2)

for which X is the two-way matrix for each target class of the UV-Vis dataset; thus, ���  is 

the transposed two-way matrix for each target class, where i stands for class a or b. The 

projection of an object i on the difference vector is calculated by a bX X . From these pro-

jections, the averages aP  and bP , and their corresponding standard deviations Sa and 

Sb are calculated, and, finally, the resolution between class a and class b is obtained by 

Equation (1). A PDR greater than 1.5 indicates that the two classes are well-resolved. The 

larger the PDR, the greater the resolution between the two classes. The PDRs of a dataset 

that contains three or more classes can be sorted in the order of an upper or lower trian-

gular matrix with a size equal to the number of classes, where the PDR of classes a and b 

was given in the columns a and rows b, respectively. The geometric mean of all PDRs was 

used as the average PDR of all classes in the dataset. 

By combing the ANOVA and PDR, a straightforward metric for class separation un-

der the influence of multiple factors can be achieved. For each individual factor, the same 

mean submatrix constructed for ANOVA-PCA were also resolved through PDR accord-

ing to their respective internal classes. For the main influencing factors, ANOVA-PDR 
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analyzes each class in the corresponding effect matrix in pairs, and expresses it as a trian-

gular matrix to measure the class separation of the data object [19]. To better visualize the 

separations of various factors between classes, these PDR matrices are plotted in grayscale 

in this work. The PDRs from small to large corresponds to the color in the color bar from 

dark to light, so the lighter background color indicates larger PDR that represents a better 

separation between different classes, and vice versa. The average PDR of each effect ma-

trix was also given to evaluate the factor matrix resolution. The ANOVA-PDR calculation 

was performed with an in-house script written in MATLAB R2021b (The MathWorks, Na-

tick, MA, USA). 

2.4. Validation by PLS-DA and PLSR 

The PLS-DA and PLSR combined with the bootstrapped Latin partition (BLP) [22] 

were used to validate quantitative classification and regression models. The dataset is di-

vided into 80% and 20% portions for training and validation using BLP. Nine replicates 

of adulterated samples were averaged and then used to construct the PLS-DA model, 

while the pure samples remained unchanged. In PLSR, all 9 repetitions of a same sample 

were averaged and then used for modeling. In the establishment of classification and re-

gression models, the choice of the number of latent variables is particularly important. In 

this study, the BLP procedure with 10 bootstraps and 5-fold Latin partitions was used to 

select the optimal number of latent variables. The PLS-DA and PLSR validations were 

calculated by MATLAB in-house scripts (The MathWorks). 

3. Results 

3.1. Characteristics of UV-Vis Spectra 

Figure 2A–C shows the UV-Vis spectra of the olive oil dataset. Specifically, Figure 2A 

represents EVOO spectra according to origin; Figure 2B represents spectra according to 

different levels of adulteration; Figure 2C represents spectra according to different adul-

teration types. All spectra at the same level to each factor were averaged for presentation 

purposes. The olive oil samples have multiple absorption peaks in the visible light region. 

The absorption observed in this spectral region may be dominated by the oil pigments 

[23]. Specifically, there were three obvious absorption peaks in the 420–480 nm region that 

correspond to the absorption of blue light by olive oil, which may be mainly related to the 

carotenoids and chlorophyll contained in olive oil [24]. The peak appearing around 670 

nm was also consistent with the absorption of chlorophyll [24]. Therefore, it is interesting 

to discover whether the pigment compositions can affect the UV-Vis fingerprints by in-

fluences of various factors. 
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Figure 2. Mean UV-Vis spectral profile (A–C) and conventional PCA score plots (D–F) of adulter-

ated olive oil according to different factors. (A,D) EVOO Origin; (B,E) Adulteration Level; (C,F) 

Adulteration Type. EVOO Origin included Spain, S1–S4; Italy, I1–I3; Greece, G1; Portugal, P1; and 

Australia, A1. In (A–C), all spectra at the same level were averaged for presentation purposes. 

A preliminary study was carried out first by directly observing the original spectra 

to explore the influence of the three factors of EVOO origin, adulteration level, and adul-

terated type on the spectra. The spectra were plotted according to these three factors, with 

different colors designated in each class. Figure 2A shows the UV-Vis average spectrum 

drawn according to different EVOO origins. There are great differences between different 

EVOO originations and the biggest difference between A1 (Australia) and other origins. 

Figure 2B shows an average spectrum according to different adulteration levels. The color 

in the figure from lighter to darker indicates the increasing degree of adulteration. As the 

degree of adulteration increases, the absorption peaks of the average spectrum obtained 

gradually decrease accordingly. Figure 2C shows an average spectrum drawn according 

to different adulteration types. The difference between pure EVOO and adulterated 

EVOO is significant, while the differences between different types of adulteration are 

small. Since the preliminary observation implied the influences of all factors, it is difficult 

to obtain individual influences directly. The subsequent chemometric methods will be 

used to further analyze the three factors. 

3.2. Direct PCA and PDR 

Conventional PCA and PDR were applied to evaluate overall class separations with-

out considering any confounding factors. Figure 2D–F shows the first two largest scores 

of the UV-Vis spectra using conventional PCA. The score plots are marked by EVOO 

origin, adulteration level, and adulteration type, so that the impact of these three factors 

on adulteration spectrum can be easily observed. Figure 3 shows the PDR mapping ob-

tained through conventional PDR processing. The overall degree of discrimination can 

also be estimated by the average PDRs. Generally, in PDR mapping, each block corre-

sponds to PDRs from any pair of classes, while these classes can be defined as any factors 

or outputs. The degrees of separations of the entire dataset can be observed in an intuitive 

way. As a result, the internal separation of the three factors of EVOO origin, adulteration 

level, and adulteration type are respectively displayed. 

As shown in Figure 2E, samples from different EVOO origins were observed to be 

significantly separated, indicating that the EVOO origin dominated the total variance in 
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the model. Due to the influence of the EVOO origin, there is no significant aggregation 

between any samples of the same adulteration level or adulteration type, indicating rela-

tively little influences on the UV-Vis spectra. It can be observed from Figure 3 that most 

PDRs of the three factors are less than 1.5, indicating a poor separation. To sum up, the 

differences between the producing origin of EVOO significantly affect the UV-Vis spectra. 

The differences between the adulteration level and the adulteration type remained unde-

tectable, possibly due to the dominating affect by the origin. The conventional PCA and 

PDR cannot distinguish each factor directly. Therefore, further data treatments by 

ANOVA to remove the cofounding effects arising from multiple factors are necessary. 

 

Figure 3. Projected difference resolution (PDR) mapping of conventional PDR results. (A) EVOO 

Origin; (B) Adulteration Level; (C) Adulterant Type. Rs, geometric average of all PDR scores. P, pure 

samples. 

3.3. ANOVA-PDR 

ANOVA-PDR is able to isolate the interferences between factors and to analyze the 

differences between various classes of interest by each factor. ANOVA-PDR delivered bet-

ter separation of EVOO origin, as well as adulteration level and adulteration type. The 

important variables, i.e., spectral peaks, can also be identified by the corresponding load-

ings. Meanwhile, ANOVA-PDR directly quantifies the distinction between factors within 

classes. Figure 4 shows the PDR mapping with detailed between-class separations. Com-

pared with the direct PDR in the initial UV-Vis spectrum, ANOVA-PDR resulted in a con-

siderably greater value, thus a clearer distinction between each factor class. 

 

Figure 4. ANOVA-PDR mapping of the three main factors. (A) EVOO Origin; (B) Adulteration 

Level; (C) Adulteration Type. Rs, geometric average of all PDR scores. 
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Detailed relationships of classes and their corresponding influential components can 

be further analyzed from ANOVA-PDR. Figure 4A corresponds to the ANOVA-derived 

PDR mapping of the EVOO origin. In this plot, there are significant differences in the 

samples from different EVOO origins. Specifically, samples A1 produced in Australia 

were particularly further away from the counterparts produced in other locations, proba-

bly due the fact that they were the only olive oils produced in a non-Mediterranean coun-

try. Such difference may suggest the concentration of different pigments may be different 

with respect to originations. Due to the fact that the UV-Vis shows general disadvantages 

in characterization of compounds, the compositional variations of pigments is rather in-

dicative than exhaustive and complete. Further investigation is necessary. The PDRs be-

tween samples increased as the level of adulteration rises, as shown in Figure 4B. Alt-

hough part of the PDRs between two adjacent adulteration levels was less than 1.5, the 

average PDR between the concentrations is 1.78, a clear difference. The PDRs suggested 

that it is foreseeable to establish an effective adulteration detection model, provided that 

a proper treatment to exclude or reduce the influence from other factors such as EVOO 

origin is performed. Furthermore, the PDRs values between the various adulteration 

types in Figure 4C are all less than 1.5, as well as the average PDR of the adulteration types 

is also less than 1.5, indicating that different adulteration types are difficult to classify. 

Since all the oils that we used as adulterants were only from China, it may be possible that 

there are limited variances between oils. Therefore, different types of adulterants carry 

unnoticeable variances in the overall compositions compared to other factors. 

In summary, PDR mappings and average PDR can intuitively and quantitatively con-

clude that the differences between the classes from large to small are the origin of EVOO, 

the level of adulteration, and the type of adulteration, reflecting the degree of influence of 

factors on the adulterated samples. Compared to PCA, PDR is more effective in distin-

guishing between classes within these three factors. 

3.4. PLS-DA and PLSR Model Validation 

The classification and regression models (PLS-DA and PLSR) were established to fur-

ther validate class separation under multiple factors. Since the origin of EVOO is the most 

important source of difference in the UV-Vis spectra of adulterated samples, it may sig-

nificantly affect the accuracy of the adulteration detection model. Therefore, eight models 

were established to compare the differences in the sample under various situations. Spe-

cifically, the eight models consisted of four groups. The global models included all 10 

EVOO producers. The European model excluded the Australian sample, while the Span-

ish and Italian models only included samples originated from Spain and Italy, respec-

tively. For the three local models, the applicability of the external test set was applied to 

evaluate the performance of these local models, for which the external test set is defined 

as the independent test sets that were from the selected countries of origins only. 

From the prediction results of the local models in Table 1, it can be observed that the 

local models generally yielded good performance by using internal training and the test 

set. The prediction accuracies of the local models by PLS-DA on training and test sets were 

above 97%. The RMSEs of the PLSR local models on training and test sets were also less 

than 2.03%. However, these models have a poor predictive effect on the external test sets 

from other origins. The prediction accuracies of the three PLS-DA local models for these 

different external test sets dropped to 59.58–87.92%. Meanwhile, the RMSEs of PLSR mod-

els also raised significantly. Considering the results of ANOVA-PDR, among the EVOO 

origin, the difference between A1 and others is the largest. Its RMSE reached 31.39% in 

the PLSR model of the European model, and lack of quantitative prediction power. More-

over, compared to the external test set of other origins, when A1 is used as the external 

test set, the RSME of the PLSR model of the Spanish model and the Italian model both 

increased by more than 50%, and the worst prediction effect is obtained. A more intuitive 

presentation of the local PLSR model on the external test set from other origins can be 

observed in Figure 5. In the process of establishing the EVOO adulteration detection 
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model, the EVOO origin is an important influencing factor, but it was typically neglected. 

For instance, Jiang et al. established PLSR models of EVOO adulterated with corn oil, soy-

bean oil, and sunflower oil by UV-Vis, in which the RSMEs yielded as low as 0.001% [5]. 

However, these models are based on only one EVOO, so that validation at a larger scale 

might still be needed. 

 

Figure 5. Local partial least-squares regression (PLSR) model predictions. (A) European. (B) Span-

ish. (C) Italian. The black line starts from the origin with a slope of 1, representing the ideal regres-

sion result. All predictions from the training, internal, and external test sets are plotted in colored 

markers in each subfigure for better comparison. 

Table 1. EVOO adulteration prediction by UV-Vis spectra according to geographical origins. 

Type Model N a LV b Training c Test c 
Test on Selected Origins c 

Australia Greece Portugal Italy Spain 

PLS-DA Global 240 18 99.95  98.12  N/A N/A N/A N/A N/A 
 European 216 15 99.77  98.60  87.92  N/A N/A N/A N/A 
 Spanish 96 10 99.61  97.37  62.50  62.50  67.50  85.97  N/A 
 Italian 72 7 99.48  97.14  59.58  62.50  64.17  N/A 82.47  

PLSR Global 160 24 0.62  1.77  N/A N/A N/A N/A N/A 
 European 144 19 0.84  2.03  31.39  N/A N/A N/A N/A 
 Spanish 64 13 0.50  1.44  76.86  6.81  13.40  24.59  N/A 
 Italian 48 12 0.32  0.64  67.39  17.77  10.08  N/A 14.28  

a: Number of samples in the dataset. b: Latent variables used to build the PLS-DA model. c: Results 

are shown as percent prediction accuracy for PLS-DA (rows 1–4), and root mean squared error 

(RMSE) for PLSR (rows 5–8). N/A, not available. 

The results of our attempt to establish EVOO adulteration detection models based on 

different EVOO origins indicated that it may be difficult to establish a universal model for 

EVOO adulteration detection using UV-Vis spectroscopy. Since multiple EVOO origins, 

adulteration types, and the interaction between factors are the sources of differences in 

the original data matrix, all influencing factors must be considered when trying to estab-

lish a general model. Otherwise, it is likely that adulteration in the external test set cannot 

be predicted. The previous studies did not include such variety of samples and the in-

volvement of different influencing factors. On the other hand, although the PLS-DA and 

PLSR models established by using all data have achieved adequate prediction results with 

prediction accuracy more than 99% and RSME less than 2%, there may still be issues re-



Appl. Sci. 2023, 13, 4360 10 of 11 
 

maining in the generalization ability of the model. Specifically, with external test sets com-

posed of other EVOO origins or adulterants that are outside the training set, the prediction 

remains problematic. Additionally, a model with too many latent variables may be prone 

to overfit, as the model is becoming too complicated. Therefore, it is recommended to 

build a chemometric model with controlled samples included in the training set for a more 

accurate prediction. 

4. Discussion 

This study demonstrated that the ANOVA-PDR could be a valuable tool for UV-Vis 

spectroscopy to identify the sources of variations in a complicated sample set from multi-

factorial-designed experiments. The ANOVA was combined with PDR for the first time 

and provided an exact and comprehensive comparison of the differences between classes 

and offered results with visual plots, which helps interpret the significance for the ar-

rangement and control of factors. The overall degrees of separation are evaluated by cal-

culating the geometric mean of the PDRs. The ANOVA-PDR was proved to be an effective 

supplement to multivariate modeling such as PLS-DA. 

With respect to the UV-Vis spectroscopy of olive oil adulteration, the study indicated 

that the EVOO origin and adulteration level are effective sources of variation in the spec-

tra, which may cause potential difficulties in the suitability of the EVOO adulteration de-

tection model. The subsequent PLS-DA and PLSR models for EVOO adulteration detec-

tion were also consistent with this conclusion. The results demonstrated that the EVOO 

adulteration detection model established by the UV-Vis spectroscopy combined with PLS 

may achieve unbiased results without the aid of a proper model transfer and validation 

routine. To overcome this problem, further research can also focus on a more sensitive 

and selective detection methods, as well as to devise a controlled approach to select train-

ing samples for the chemometrics model. Additionally, since all the adulterants in this 

study were collected from China only, the adulterant-type factor raised insignificant var-

iances. When analyzing possible impurities, it is better to examine both adulterant oils 

(corn, soy, sunflower) from local producers, as well as producers from the countries of 

origin of olive oil. In addition, other types of widely available oils, such as canola and 

peanut oils could be included in the model. In this manner, a robust and reliable model 

can be achieved. 
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