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Abstract: Knowledge graph (KG) technology is a newly emerged knowledge representation method 

in the field of artificial intelligence. Knowledge graphs can form logical mappings from clu�ered 

data and establish triadic relationships between entities. Accurate derivation and reasoning of 

knowledge graphs play an important role in guiding power equipment operation and decision-

making. Due to the complex and weak relations from multi-source heterogeneous data, the use of 

KGs has become popular in research to represent potential information in power knowledge rea-

soning. In this review, we first summarize the key technologies of knowledge graph representation 

and learning. Then, based on the complexity and real-time changes of power system operation and 

maintenance, we present multiple data processing, knowledge representation learning, and the 

graph construction process. In three typical power operation and fault decision application scenar-

ios, we investigate current algorithms in power KG acquisition, representation embedding, and 

knowledge completion to illustrate accurate and exhaustive recommendations. Thus, using KGs to 

provide reference solutions and decision guidance has a significant role in improving the efficiency 

of power system operations. Finally, we summarize the achievements and difficulties of current 

research and give an outlook for future, promising roles of KG in power systems. 

Keywords: knowledge graph; power system; artificial intelligence; graph technology;  

decision making 

 

1. Introduction 

With the increasing demand for load at the customer end, the electric power system 

is transformed into a smart grid [1]. In the era of the Internet of Things (IoT), the “Internet 

of Everything” is an inevitable trend for future development [2]. In the graph structure, 

the study of the relationship between individuals in a mega-scale system has extraordi-

nary significance for the overall control of the system and the adjustment among individ-

uals. The graph structure can logically integrate the massive data of the power system into 

one, which facilitates the management of complicated information [3]. In addition, if the 

data are extracted and refined to become common knowledge in the field of electric 

power, they can also provide guidance and suggestions for practical engineering. For ex-

ample, Ref. [4] analyzed a distributed knowledge graph framework for fault detection in 

power systems. Multiple devices train partial models for fault detection with the assis-

tance of a central server and then interact with each other through distributed devices in 

the KG framework. The combination of data and knowledge greatly improves fault de-

tection performance. The fuzzy Petri net (FPN) technique is effectively applied for fault 

segment estimation [5]. By constructing a fault region identification criterion for smart 
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distribution networks, the accuracy of fault region identification in smart distribution net-

works can be improved, and the fault segment identification time can be shortened. Ref. 

[6] proposed an algorithm to evaluate the state of power systems using graph neural net-

works (GNN). The algorithm is trained using a randomly sampled synthetic dataset and 

proves the rapidity and accuracy of GNN predictions in various power system test sce-

narios. 

As a new project of AI in power systems, KG is expected to become the core technol-

ogy of next-generation power systems by shifting the vision from data-centered to 

knowledge-centered. KG takes the triadic form of entity, relationship, and entity as the 

basic constituent unit and integrates multi-source heterogeneous data into a logical graph 

through a series of extraction and fusion techniques. At present, the applications of KG 

are broadly divided into two categories: general knowledge graph (KG) applications and 

domain knowledge graph (DKG) applications. For the generic domain aspect, the more 

common research is semantic search [7]. Semantic search has not only significantly im-

proved the accuracy and predictability of search engines such as Google and Baidu but 

also injected new vitality into industries such as cloud resource scheduling [8]. For do-

main-specific aspects, the application of KG in many fields is still not perfect. KG has only 

been established in a relatively small number of fields, and the more representative ones 

are medicine [9,10], finance [11,12], and computer technology [13,14]. Although the appli-

cation of KG in specific industry fields has only just started, it can be found that the intro-

duction of KG technology has brought great convenience and practicality to the develop-

ment of various industries, and has overcome many technical difficulties that could not 

be resolved before. 

So, why should KG be applied to electric power systems? Referring to examples of 

successful applications in other fields, we analyze four main characteristics of power sys-

tems. ① Complexity. As a complex nonlinear operating system, the model of a super-

scale power system is complex. ② Multiplicity. Due to the coupling relationship between 

the power system and multiple domains, the massive data in the power grid have complex 

sources and different types. ③ Real-time. The power system needs to change in real-time 

to meet the increasing load demand on the customer side. ④ Security. Unlike other fields, 

the power industry requires a very high level of risk control. In more cases, expert expe-

rience is often more reliable than AI algorithms. 

Based on the above characteristics of the power system, KG technologies are inte-

grated into the power system. The form of the KG graph structure fits with the topology 

of the power system and can visualize the complex models in the power grid. Knowledge 

extraction and fusion technology can effectively integrate the massive data in the power 

IoT center and make full use of data resources. The whole power system is correlated by 

KG to synchronize the control and adjustment of multiple subsystems. The time-series 

dynamic KG [15] can realize the simultaneous update of KG and real-time change system 

to cope with the real-time change in power flow. In addition, the graph structure helps 

the diagnosis and analysis of events. Its reasoning process is traceable throughout, which 

makes up for the shortcomings of the uninterpretable neural network model. 

In this paper, we provide a systematic review of current research on KG in power 

systems. We will pose the following research questions. 

① What are the key technologies and necessary processes to build a KG? How to 

construct a KG in the power domain? 

② Compared with other fields, what are the technical difficulties of KG in power 

systems? How are they solved? 

③ What is the progress of current research on KG, and in which areas are KGs more 

used in power systems? Which areas are less used?  

④ What is the future direction of research on KG in the field of electric power? 

To answer these questions, the rest of the paper is organized as follows: Section 2 

outlines the key technologies and necessary processes for building a KG. Section 3 dis-

cusses the application of KG in power systems. Among them, Section 3.1 introduces the 
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construction method of DKG based on the characteristics of the power system. Section 3.2 

describes the current popular research scenarios as well as their technical difficulties. Sec-

tion 3.3 outlines the current lesser research areas and study ideas. Section 4 highlights the 

future directions of research on DKG for the power system, which provides a useful ref-

erence for its further in-depth application. 

2. Knowledge Graph Key Technologies 

KG is a structured semantic knowledge base that represents entities in the objective 

world and their interrelationships in the form of a graph [16]. We can also think of it as an 

inferable database consisting of triadic datasets. In the KG, the a�ribute characteristics of 

entities are represented by “a�ribute-value” pairs, and the basic unit of inter-entity rela-

tionships is the “entity-relationship-entity” triad [17,18]. 

The KG is essentially a kind of semantic network [19,20]. Additionally, its develop-

ment history can be traced back to the “mapping knowledge domain” [21] and semantic 

network [22] proposed in the 1950s. With the advent of the era of big data, traditional one-

sided technologies such as data processing, knowledge representation, and natural lan-

guage processing can no longer meet the needs of scientific research and applications. At 

the same time, various fields are currently showing an urgent need for new and effective 

methods of massive data processing. The KG, which integrates the genes of various tech-

nologies, provides the possibility of moving from “data intelligence” to “knowledge in-

telligence” and has become a hot topic of a�ention. 

The key techniques for building KGs can be broadly classified into five categories: 

knowledge extraction, knowledge representation learning, knowledge mining, 

knowledge fusion, and knowledge reasoning. The key techniques for building KGs are 

described in detail in the following comprehensive related research literature. 

2.1. Knowledge Extraction 

Knowledge extraction plays a decisive role in the process of building KGs. The qual-

ity of data extracted from various domains and different sources directly affects the qual-

ity of KG construction. 

The knowledge extraction process already has well-established standards and ma-

ture tools for structured and semi-structured data. For example, the conversion from a 

relational database to RDF graph data can be achieved by direct mapping. The R2RML 

mapping [23] allows users to flexibly customize the view on relational data, while the 

extraction of semi-structured data on web pages is generally completed by wrappers and 

reduced to complete structured data [24]. 

The extraction of unstructured data is the difficult part of knowledge extraction. In 

general, the extraction of free text includes three types: entity extraction, relationship ex-

traction, and event extraction [25]. 

2.1.1. Entity Extraction 

Entity extraction is the first step of knowledge extraction and refers to the extraction 

of entity information elements from unstructured data. 

Traditional knowledge extraction methods utilize a fully or partially labeled corpus 

for training statistical models, such as hidden Markov models, conditional Markov mod-

els, maximum entropy models, and conditional random field models. Currently, neural 

network learning based on named entity recognition (NER) has shown excellent perfor-

mance in entity extraction, mainly for convolutional neural networks (CNN) [26], recur-

rent neural networks (RNN) [27], and neural networks that introduce a�ention mecha-

nisms [28]. Among them, the LSTM-CRF model connects the words in a sentence into 

word vectors for output [29]. The long short term memory-convolutional neural net-

works-conditional random field (LSTM-CNNs-CRF) model [30] adds a CNN model in the 

embedding layer that can fully extract semantic features in combination with the context. 
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The CNN model obtains the character-level vectors of each word connected with the word 

vectors and then obtains the annotation results through the LSTM and CRF layers [31]. 

The a�ention mechanism-based neural network model proposes a combination method 

of word vectors and character-level vectors. Such a combination enables the model to dy-

namically determine the importance of word vectors and character-level vectors of each 

word in the final features, again improving recognition accuracy [28]. 

2.1.2. Relationship Extraction 

Relationship extraction refers to the extraction of possible relationships from two or 

more entities and is the subsequent step of entity extraction. 

Supervised learning-based relationship extraction is essentially a manual annotation 

of data and classification of relationships [32,33]. In this case, a vector representation of 

words and positions in the input sentence based on the deep learning method is used to 

optimize the entities and relations in the same model using a joint extraction method 

[34,35]. This joint extraction can avoid the final extraction performance degradation 

caused by the accumulation and propagation of errors in each sub-stage of the pipeline 

method extraction [36,37]. 

Figure 1 below shows the joint model of entity extraction and relationship extraction 

[38]. The model consists of three layers: a word embedding layer, a word sequence-based 

LSTM-RNN layer, and a dependent subtree-based LSTM-RNN layer. Entity recognition 

is performed at the sequence layer, and relationship classification is implemented at the 

dependency layer. The embedding and sequence layers are shared by the entity recogni-

tion and relationship classification tasks. In addition, the shared parameters are jointly 

influenced by both entity and relationship labels. 

 

Figure 1. A joint model of entity extraction and relationship extraction [38]. 

Weakly supervised learning extraction methods can use a small corpus for model 

learning, mainly including the APCNs model [39], GHE-LPC [40], and CNN-RL model 

[41] for remotely supervised methods. However, all of these methods encounter the prob-

lem of semantic drift due to noise. 
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2.1.3. Entity Event Extraction 

Event extraction refers to extracting event information from natural language text 

and presenting it in a structured form, which is in line with the idea of relational extrac-

tion. The extraction methods are also divided into two categories: pipeline extraction 

methods and joint extraction methods. Among them, pipeline extraction applies different 

classifiers of machine learning algorithms at different stages, while joint extraction [42] 

unites the original sub-task functions into an objective function for optimization and uni-

fies the overall results of time extraction for each sub-task. 

2.2. Knowledge Representation 

Knowledge must be represented as a database that can be understood and processed 

by the computer [43,44]. With the emergence of massive data, traditional frameworks for 

knowledge representation based on discrete symbols, such as RDF triples [45] and OWL 

languages [46], suffer from low computational efficiency and severe data sparsity. Con-

tinuous vector-based knowledge representation learning has the advantages of signifi-

cantly improving computational efficiency, effectively alleviating data sparsity, and 

achieving heterogeneous information fusion. Thus, the research on KG embedding mod-

els is gradually intensifying. 

Continuous vector-based knowledge representations can be directly docked to neu-

ral networks. The knowledge representation embedding projects the entities and relations 

of the KG into a low-dimensional continuous vector space. Each entity and relation can 

obtain a low-dimensional vector representation. In the vector space, the vectors discover 

new entities, new relationships, and implicit potential knowledge by numerical computa-

tion. 

Classical KG embedding methods with distance transfer models [47] (such as TransE, 

TransH, TransR, and TransD) can solve one-to-one, one-to-many, many-to-one, and 

many-to-many relationships. In essence, it is a ma�er of transforming the vectorized tri-

plet into a distance between the head and tail entities. For each triad  , ,h r t , a suitable 

,h t  is found for the vectorized representation of the head entity and the tail entity. Ad-

ditionally, the relation r  is a translation from the head entity vector h to the tail entity 

vector t so that the vectors corresponding to the triad eventually satisfy 

h t r   (1)  

In addition to the transfer distance model, knowledge graph embedding can also em-

ploy the semantic matching model, which focuses on mining the underlying semantics 

between entities and relationships. As the main model in this direction, the RESCAL 

model [48] encodes KG as a three-dimensional tensor, and then decomposes the tensor 

into a core tensor corresponding to the relationships and a factor matrix corresponding to 

the entities. The probability of triad formation for different combinations of entities and 

relations is calculated based on the scoring function. Moreover, the DistMul model [49] 

restricts the factor matrix to a diagonal matrix. Although the model is simplified, it can 

only deal with symmetric relations. 

The embedding of KGs can be applied to link prediction [50–52] by implementing 

three KGs      ?, , , ,?, , , ,?r t h t h r  of the complementation. When the embedding learn-

ing of the KG is completed, for the  , ,?h r  that need to be linked to the prediction, each 

entity of the KG can be placed on the tail entity position. The scoring function of the RES-

CAL model is used to calculate the score of different entities put into the tail entity, and 

the highest-scoring entity is the result of link prediction. 
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2.3. Knowledge Mining  

Knowledge mining refers to mining new knowledge from existing entities and rela-

tionships to supplement information [53], which is an essential technical tool in the pro-

cess of large-scale KG construction. It mainly includes entity linking and rule mining. 

2.3.1. Entity Linking 

Entity linking is the process of linking entity names of text to target entities in the 

knowledge base. First, the entity names in the text are identified by named entity recog-

nition techniques of knowledge extraction. Then possible candidate entities are identified 

by employing search engines, etc. Finally, the entity referred to by the entity name is iden-

tified from the candidate entities, and entity disambiguation is completed. 

Candidate entity disambiguation [54] can be considered a ranking problem, where a 

given entity refers to the corresponding candidate entities in the order of connection prob-

ability. It can be implemented in the form of graphs and deep learning. Among them, 

graph-based approaches [55] represent entity mentions, entities, and the relationships 

among them in the form of graphs, and then perform collaborative reasoning on the rela-

tionships on the graphs. The deep learning-based approach [56] computes the semantic 

relevance of entity mentions and entities through neural networks to achieve link match-

ing. 

2.3.2. Rule Mining 

Rule mining [57] focuses on discovering the associative relationships between two 

entities for inferential prediction. There are two common approaches to relational infer-

ence. Rule-based approaches mainly use machine learning-related techniques such as 

Horn clauses or inductive logic (FOIL) [58] to reason about the potential relationships be-

tween entities. Probabilistic graph-based approaches tend to efficiently classify entities 

and relations in a knowledge base to form Markov logic networks [59] from which poten-

tial relations between entities are inferred. 

The path ranking algorithm (PRA) [60–62] is a KG link prediction algorithm. It uses 

relational paths as features to predict possible feature relationships between entities by 

discovering a set of relational paths that connect two entities. Since the obtained relational 

paths are a kind of Horn clause, they can convert the computed features into logical rules 

and facilitate the discovery of hidden knowledge in the graph [63]. 

2.4. Knowledge Fusion 

Knowledge fusion [64] plays an important role in managing multiple KGs, perform-

ing KG merging, reusing knowledge, and achieving semantic interoperability among het-

erogeneous data sources. Knowledge interoperability and integration through ontology 

mapping [65] and instance matching [66] is an effective way to solve the KG heterogeneity 

problem. Various current fusion techniques include natural language processing-based 

term comparison, structure-based matching, and instance-based machine learning tech-

niques. Among them, a model-based semi-supervised learning framework can automati-

cally find instance matching rules by iterating [67] to gradually improve the quality of the 

rule set. The model uses continuously updated rules to find high-quality matching pairs, 

which can achieve effective matching of large amounts of instance data. 

2.5. Knowledge Reasoning 

Knowledge reasoning [68,69] is the most central step in KG construction and is actu-

ally used to achieve real-time updates of the KG. Among them, inference is an important 

goal of knowledge representation, which can be divided into deductive-based knowledge 

inference and inductive-based knowledge inference. In the future, the two approaches 

will be further integrated to take advantage of their respective strengths and accomplish 

the reasoning task together. 
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2.5.1. Deductive-Based Knowledge Reasoning 

Deductive-based knowledge reasoning includes ontology reasoning and logic pro-

gramming-based per-rule reasoning methods. Ontology reasoning only supports reason-

ing over predefined ontology axioms. Rule-based reasoning starts with the Prolog lan-

guage [70], and a series of Datalog languages [71] are developed later, which can custom-

ize rules according to specific scenarios to implement user-defined reasoning processes. 

2.5.2. Inductive-Based Knowledge Reasoning 

Inductive-based knowledge inference no longer requires explicit inference steps but 

is mainly the learning and summarization of existing data. In addition to the observation 

of large amounts of data, it also includes rule constraints on a priori knowledge to achieve 

precise inference. 

The embedding model for knowledge representation learning allows the algorithm 

to automatically capture and reason about the required features in the process of learning 

vector representations to accomplish the task of link prediction of multiple relationships. 

The classical TransE model [72] is designed to train to obtain the representation learning 

results of KG using a loss function with a maximum interval between positive and nega-

tive samples. The loss function L  is 

   
   

  ' ' '
, ,

' ' '

, , , ,

, , , ,
h r t

h r t S h r t S

L f h r t f h r t


 

       
(2)

where S  denotes the set of positive samples in KG; 'S  denotes the negative samples of 

 , ,h r t  , obtained by replacing either the head entity h   or the tail entity t   on-the-fly 

during training.  x


 denotes  max 0, x .   denotes the interval in the loss function L

, a super parameter greater than zero that needs to be set.  , ,f h r t  takes either the 1L  

or 2L  norm to represent the score function of the TransE model, designed as 

 
1 2/

, , L Lf h r t h r t   
 

(3)

where the degree of approximation between h r   and t   is measured by vector. To 

achieve the training objective of the TransE model to make the loss function L  as small 

as possible, f  for positive sample triples should be as small as possible, and f  for neg-

ative sample triples should be as large as possible. We train the function using a gradient-

based optimization algorithm until convergence. 

TransE is a simple and efficient method of KG representations but suffers from a lack 

of expressive power and can only capture one-to-one relationships. In fact, there is not 

only one-to-one correspondence between entities, but also one-to-many, many-to-one, 

and many-to-many relationships. To express more complex relationships, TransH [73], 

TransR [74], and TransD [75] distance transfer models are developed to enhance the ex-

pressiveness of the TransE using multiple spaces to perform triad score calculation by 

projection. The vector space assumptions for the above four distance transfer models are 

plo�ed in Table 1. 
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Table 1. Distance Transfer Model Vector Graphs and Score Functions [73–75]. 

 
TransE 

 
1 2/

, , L Lf h r t h r t   
 

 
TransH 

 
1 2/

, , L Lf h r t h r t      

 
Entity representation spaces     Relationship representation spaces 

TransR 

 
1 2/

, , r r L Lf h r t h r t     

 
Entity representation spaces    Relationship representation spaces 

TransD 

 
1 2/

, , L Lf h r t h r t      

Due to the inaccuracy and difficulties of the classical model of TransE, scholars have 

improved it in the same model framework and proposed new modeling approaches such 

as TransG [76], TransS [77], and TransAE [78]. 

In addition to these, knowledge inference methods based on graph structure can uti-

lize graph neural networks [79,80] to accomplish knowledge base complementation, link 

prediction, and entity discovery, which effectively improves reasoning efficiency and 

greatly reduces computer processing costs. 

2.5.3. Automatic Updates for Reasoning 

To meet the need for automatic KG updates, they are usually achieved by adding 

algorithms such as machine learning to the KG. For example, models based on a semi-

supervised learning framework [67] can automatically find station matching rules and 

continuously train themselves. Table 2 lists the concrete information of common large-

scale KBs. Automatic updating of knowledge is possible in most of the currently available 

large-scale knowledge bases. 
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Table 2. Some common large-scale knowledge bases. 

Name Start Date Main Knowledge Source 
Scale (Entity/Concept/Rela-

tion/Fact) 

WordNet [81] 1985 Expert Knowledge 155,287/117,659/18/- 

YAGO [82] 2007 WordNet + Wikipedia 4,595,906/488,469/77/- ≈ 40 M 

Dbpedia [83] 2007 
Wikipedia + Expert 

Knowledge 
17,315,785/754/2843/79,030,098 

Freebase [84] 2008 

Wikipedia + Domain 

Knowledge + Swarm Intelli-

gence 

58,726,427/2209/39,151/3,197,653,8

41 

NELL [85] 2010 
WordNet + Wikipedia(Multi-

lingual) 
9,671,518/6,117,108/1,307,706,673/- 

Wikidata [86] 2012 Freebase + Swarm Intelligence 45,766,755/-/-/- 

In terms of automatic updating, the NELL [85] system has data from the internet and 

implements self-correction and automatic updating functions during the database con-

struction process. The YAGO 4 [82] system proposes a reasonable knowledge base com-

bining Wikidata [86] and schema.org that can also automatically update the current state. 

It can be observed that all of these KBs have high-quality information and cover a wide 

range of fields and can be used by a wide range of industries. 

3. Applications of Knowledge Graphs in the Power System Operation 

At present, KGs are roughly divided into two categories: the general knowledge 

graph and the domain knowledge graph (DKG). As a specific domain of KG research, the 

power DKG undertakes the mission of shifting from “data-driven power automation” to 

a “knowledge-driven smart grid”, which has important theoretical value and engineering 

significance for the power industry. 

In the following, we will introduce the power DKG from several perspectives: the 

overall construction process of power DKGs, the typical application scenarios of KGs, and 

the application of KGs in other aspects. 

3.1. The Overall Construction Process of KG in the Power System Field 

Based on the characteristics of the power system introduced in Section 1, the KGs are 

applied to the power field to provide convenience for grid operation. Based on the con-

struction methods of KGs in Section 2, this subsection proposes an overall construction 

model for the power domain KG [87]. The construction of a DKG is roughly divided into 

three parts: data collection, graph construction, and knowledge calculation. Figure 2 be-

low shows the general process of a power KG construction. 

 

Figure 2. The overall construction process of KG in the power field. 
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3.1.1. Data Acquisition 

As the first step to building the mapping, the collected data directly determines the 

quality of KG. The data in the power domain comes from a wide variety of sources and 

types. The structured data stored in the knowledge engineering and expert experience 

knowledge base in the power domain can directly participate in the top-down ontology 

construction of KG without processing. However, it is the massive data generated in the 

actual operation and the experience of experts that are the main data sources in the power 

domain. These data have the characteristics of high noise and sparse data density [16]. 

Therefore, noise filtering and data sample expansion need to be completed before 

knowledge processing to improve the quality of the acquired data. These processed semi-

structured or unstructured data contain a large amount of potential knowledge that needs 

to be transformed into structured knowledge information through a series of operations 

[88] and then involved in the construction of the KG. 

3.1.2. Graph Construction 

For the characteristics of strong professionalism, complicated data, and high accu-

racy in the field of electric power, graph construction generally adopts a combination of 

top-down and bo�om-up construction processes [89]. The ontology layer is defined first, 

and then the knowledge is extracted from the data layer to update the ontology layer. This 

construction method adds newly extracted knowledge using existing data to construct 

KG, which can meet the dynamic characteristics of real-time updates of the power system. 

The quality of the extracted knowledge affects the quality of the final KG. As de-

scribed in Section 2.1, the joint model of entity extraction and relationship extraction in 

knowledge extraction [90] has more accurate extraction results compared to pipeline ex-

traction. This model avoids the degradation of extraction performance due to error accu-

mulation and propagation. Moreover, considering that the extracted entities, concepts, 

relationships, a�ributes, and other power system information come from different grids 

and power devices, the existence of multiple representations of the same entity can lead 

to duplication of knowledge. We can use the knowledge fusion technique mentioned in 

Section 2.4 [88] to eliminate the redundancy of data from different sources and achieve 

interoperability of individual isolated power system knowledge. The integrated 

knowledge is mapped into the KG ontology to realize the bo�om-up construction process 

of KG. 

3.1.3. Knowledge Reasoning 

Through ontology construction and knowledge extraction and fusion, we can obtain 

the overall framework of the power system KG. By processing complex KG for knowledge 

reasoning, we can discover more potential knowledge based on existing knowledge sets. 

Section 2.5 introduces several knowledge reasoning methods applicable to specific situa-

tions in the field of power systems. Through the application of knowledge reasoning tech-

nology, KG can gradually improve and provide service functions such as recommenda-

tion, Q&A, and decision-making. 

Deductive and inductive reasoning, mentioned in Section 2.5.1 and Section 2.5.2, re-

spectively, apply to different research contexts in the field of power. (1) As one of the de-

ductive reasoning methods, the method based on generative rules strictly follows the pre-

scribed mechanism to execute the rules to achieve the corresponding objectives. Although 

the process of matching rules is highly interpretable, the method is less flexible and diffi-

cult to adapt to the complex and real-time emergent situations in the electric power do-

main. Therefore, the method is only applied in the definition of rules such as grid dis-

patching regulations and customer service business processes to provide users with a log-

ically rigorous knowledge search. (2) Common inductive reasoning methods in DKG are 

case-based reasoning and representation learning-based reasoning. ① Case-based rea-
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soning first requires the establishment of a historical case events base. The similarity be-

tween the current event and the base case is then calculated to recommend a high-match-

ing historical treatment solution for the operator as a recommendation function. ② The 

reasoning based on representation learning [91] automatically captures and infers the re-

quired features in the process of vector representation to complete the link prediction of 

multiple relationships. As a more used inference method in the power field, representa-

tion learning inference can achieve efficient inference in KG, and the score function of the 

triplet is highly interpretable. However, the drawback is that the inference process is lim-

ited to the form of a triad, which cannot combine other information at the same time, and 

the inference results may not be accurate enough on some occasions. ③ The latest re-

search on knowledge inference reads KG features by neural network models [92] and 

adopts the “massive data + self-learning” model to cope with the increasingly complex 

grid structure and increasingly unpredictable customer behavior. However, the black-box 

nature of neural network machines to read and generate prediction results automatically 

makes it difficult to interpret the inference results. 

3.1.4. Storage Options 

The two main approaches to storing KG are RDF tables and graph databases. As in-

troduced above, the traditional RDF format [45] stores data in the form of triples and uses 

table links to perform graph traversal. The common query language SPARQL is not de-

signed for complex graph analysis and will lead to obvious time consumption. The graph 

database represented by Neo4j [93] stores data in the form of graphs, which can signifi-

cantly improve the storage and processing efficiency of massive data in the power grid 

and provides an implementation solution for building a ubiquitous power IoT. Therefore, 

graph databases are widely used to store domain knowledge in the power domain KG. 

Ref. [94] investigated the Neo4j storage method based on the topology of the power 

grid itself and verified the feasibility of the graph database in four practical scenarios in 

the power sector, respectively. The method visualizes the association between grid de-

vices, provides easy equipment finding and management, and is a basic prerequisite for 

subsequent operations such as fault checking. Ref. [95] compared the performance of RDF 

tables and graph databases in a power equipment management KG. It was found that as 

the number of queries increased with the complexity of query content, the difference in 

query time between the two databases became apparent. Graph database queries were 2–

3 times faster than RDF. Moreover, due to the built-in parallelism, the graph database 

queries were 16–17 times faster than RDF for aggregate queries with multiple starter 

nodes. Further, graph databases store data with a�ribute information that is more relevant 

to applications in complex power situations. 

3.2. Power System Operation Application Scenarios for the KG 

The current research on KG in the electric power field has just started, and the current 

KGs in the electric power field are all from one of the angles. Referring to other DKGs, the 

research of experts and scholars first focuses on typical scenarios such as power equip-

ment operation and maintenance, customer service, and grid dispatch fault. As shown in 

Figure 3, with the help of KG functions such as knowledge search, knowledge Q&A, in-

telligent recommendation, and auxiliary decision-making, KG can achieve the engineer-

ing significance of reducing human and material costs and improving work efficiency. On 

this basis, future academic research on power KG will be extended to a more comprehen-

sive power system. 
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Figure 3. Power system operation application scenarios of the KG. 

3.2.1. Power Equipment Operation and Maintenance (O&M) 

Highly invested power equipment requires constant inspection and maintenance to 

enhance its service life and meet increasing load demands. Traditional O&M of power 

equipment uses standards based on expert experience and requires operators to make 

manual judgments about faults. However, it is not accurate to report abnormal situations 

in the power system. In the era of big data, considering the complexity and variability of 

power grids, a series of self-learning methods combined with algorithms and predictive 

models can flexibly develop O&M plans [96]. Especially, the representation of KG in 

equipment O&M has unique advantages and is still worth studying. Ref. [97] compared 

several representations of defective texts for electrical equipment. As shown in Table 3, 

compared to several other representation methods, the KG representation method had the 

best results for the three indicators of precision, recall, and F1-score. This also explains 

that it is necessary to represent the power equipment data with knowledge graphs. 

Table 3. Representation methods: comparison and evaluation. 

Representation Method Precision/% Recall/% F1-Score/% 

KG 93.62 92.77 93.19 

VSM with tf-idf 50.94 69.18 58.68 

LSI 44.81 63.68 52.60 

LDA 47.59 63.85 54.53 

Long-running power equipment accumulates a large amount of text information 

such as O&M logs and power inspection work orders. Based on the textual data in logs 

and sensor data, the knowledge data structure can organically relate the interacting de-

vices to the KG. Therefore, we could combine these unstructured data with industry-

standard documents and equipment online monitoring data to build a power equipment 

O&M decision KG. In this way, the KG can realize the data holographic perception of 

power IoT and carry out intelligent operation management and fault maintenance [98]. 
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The use of KG technology to assist in the O&M of power equipment can be summarized 

in four steps: ① Building a fault corpus and semantic model for text and complex scenar-

ios in power equipment. ② Developing data cleaning modules for error identification and 

quality improvement of texts. ③ Automatically constructing a large power equipment KG 

and a fault pa�ern KB. ④ Assisting with appropriate machine learning methods for spe-

cific problems. Using the case-based reasoning approach in Section 3.1.3, KG technology 

can provide fault-assisted decisions. For a new defect record, such as transformer oil leak, 

the case-based reasoning approach can look for similar paths in the KG. By applying the 

idea of the path ranking algorithm (PRA) to these paths for similarity ranking, KG can 

provide a new decision based on previous processing methods. This process enables rea-

soning and prediction of entities and their relationships, providing the user with answers 

and an intuitive analysis process. As shown in Figure 4, when an operator inputs a fault, 

KG first obtains the input entities and relationships through extraction techniques, then 

matches the extracted content with the fault information corpus and the expert experience 

KB by path matching, and finally selects the case with the highest path matching ranking 

to the operator as the matching maintenance plan. Therefore, the application of KG im-

proves the intelligence and efficiency of power equipment operation and management 

and is important for practical decisions on defect handling. 

 

Figure 4. The KG technology in power equipment O&M. 

The named entity recognition (NER) in the fault text is a major difficulty in the equip-

ment O&M KG construction. The subjectivity of the O&M logs, the inconsistency of the 

recording methods and text structure, and the deviation in the way to describe the same 

fault all cause trouble for knowledge extraction. Meanwhile, the same entity has multiple 

names. Additionally, some special characters may be accidentally lost in the text extrac-

tion. All of the above factors will affect the quality of extraction and the quality of the final 

KG. Nowadays, with the expansion of databases and the development of AI, LSTM-CRF 

[99], Bi-LSTM-CRF [100], LSTM-CNNs-CRF [101], and neural network models based on 

a�ention mechanisms [34] are widely used in the power domain. In equipment fault texts, 

the bi-directional LSTM model with CRF layer (Bi-LSTM-CRF) can fully extract semantic 

features in combination with the context: firstly, compared with neural network models, 

Bi-LSTM models can avoid the gradient explosion and gradient disappearance of RNNs; 

moreover, the CRF model can accomplish sequence labeling and avoid sequence drift. To 

compare the recognition effectiveness of the different models in power texts, Table 4 eval-

uates LSTM, Bi-LSTM, and Bi-LSTM-CRF in terms of three metrics: precision, recall, and 

the overall evaluation metric F1. It proves that the Bi-LSTM-CRF model can identify key-

words for business operations with high accuracy, fully extract the information features 

of text passages, and enhance the fast retrieval and recommendation capability of the grid. 

Ref. [102] showed the recognition results of CRF and Bi-LSTM models. Compared with 
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Bi-LSTM, the CRF model has an accuracy of 83% for entity extraction, which is more suit-

able for entity extraction in the power domain KG. Considering the influence of textual 

information around the numbers on the training of numerical vectors, Ref. [103] proposed 

an optimization model based on the Bi-LSTM-CRF. The new model can identify the infor-

mation of faulty text more accurately. Additionally, the F-value is improved by 5.6% com-

pared to the base model. 

Table 4. Model evaluation of LSTM, Bi-LSTM, Bi-LSTM-CRF. 

Model Precision/% Recall/% F1/% 

LSTM 70.8 69.1 70.0 

Bi-LSTM 71.3 74.1 72.7 

Bi-LSTM-CRF 74.2 76.3 75.2 

KG can also cooperate with a variety of technologies for power equipment O&M. In 

the error checking of defective texts, merging and sorting rules can be formulated for the 

difficult problem of word ambiguity to improve the accuracy of word separation. Intelli-

gent query systems for electrical equipment can incorporate Q&A sessions into the O&M 

of electrical equipment: first, a pure Bayesian classifier can segment and feature word clas-

sification of user questions; then, relevant knowledge is retrieved from the Neo4j database 

for Q&A matching based on the extracted features to provide solutions and preventive 

measures. Moreover, the combination of power IoT and KG technology is the solution to 

problems such as the continuous increase in real-time data and complex operating situa-

tions. The graph structure form of KG allows for the organic linking of interacting devices 

in a graph. We can use the KG technology to achieve holographic awareness of data for 

the power IoT and to perform intelligent operation management [104] and fault mainte-

nance [98] of power equipment: for example, [105] integrated multiple sources of data in 

power end devices in the power IoT to achieve holographic sensing of all power devices, 

allowing real-time knowledge of device conditions. 

3.2.2. Power Customer Service 

From manual consultation to the use of mobile customer service applications, cus-

tomer service in the power domain is undergoing a transition from manual to intelligent 

service. Customer service applications on mobile can overcome geographical barriers and 

provide standardized services to customers. However, for demands that are hard to iden-

tify, human customer service is still required online. Manual customer service has varying 

response efficiency and personal experience in practice, making it difficult to ensure cus-

tomer satisfaction. As an important part of power marketing, building a KG for the cus-

tomer service domain to provide back-end support for mobile applications is a break-

through in the field of intelligent customer service [106]. By extracting knowledge from 

dialogue business processes, voice information, and customer service experience and 

combining it with structured standard Q&A pairs in customer service KB, the power cus-

tomer service KG is built with both top-down and bo�om-up methods. The service pro-

cess combined with the neural network model provides users with business consultation, 

fault recovery, and user satisfaction surveys, and other functions accurately and effec-

tively locate their requests, realize efficient knowledge management [107], knowledge 

Q&A [108,109], and recommendation [110]. Therefore, intelligent customer service has be-

come a research hotspot in the electric power field. 

The understanding of customer intent is a difficult issue for power customer service 

KG. Unlike the above two scenarios, which can be handled directly by the KG, customers 

do not understand the expressions of terminology in the field of power. Without a clear 

problem description, it is difficult to query the corresponding solution. As a customer-

oriented service industry, power marketing inevitably involves understanding user intent 

in human–machine interaction. How to identify the user’s intent from the conversation 
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and represent the intent in a trivial form that can be understood by KG is the key to the 

successful application of customer service KG. The traditional method is similar to NER. 

For example, [111] segmented the business request text to obtain a spli�ing of the u�er-

ance text. The segmentation is performed with the constructed KG for entity designation 

recognition, candidate entity generation, and candidate entity disambiguation to deter-

mine whether it belongs to the business keyword. In a recent study, the Bert model [112] 

used unlabeled data to vector-code input u�erances, vectorize them, and then feed them 

into a feedforward neural network. The network can automatically determine user intent 

based on the intent probability distribution. Ref. [113] first pre-trained user input u�er-

ances and then achieved an intention recognition accuracy of 92.31% with the pre-training 

of the Bert model. In addition, the XLNet model [114] has a higher accuracy rate compared 

to the Bert model. The hybrid neural network rumor detection model based on XLNet 

[115] achieved an accuracy of 93.56%. The XLNet model is a hot research topic in the field 

of NPL and a tool that can be adopted in the power market. 

There are several application scenarios for KG in the field of power customer service. 

Ref. [113] established an intelligent Q&A architecture based on the knowledge corpus. 

After recognizing a customer’s intention, the expertise is integrated into the dialogue 

through dialogue process configuration, natural language processing (NLP), and other 

modules to transform the user’s natural language into structured and findable language. 

Customers can follow the process guidance to complete the demanded business and enjoy 

intelligent Q&A services. Ref. [116] stored customer service history data in the Neo4j 

graph database. Knowledge extraction and knowledge management are performed in the 

built KB to build the KG platform application system. First, the Bi-LSTM model obtains 

the features of input questions and marquee a�ributes. Then, the a�ribute whose objective 

function is closest to the input question in KG is calculated. The a�ribute is linked to the 

answer to the query question. Ref. [111] studied power customer service robots. As an AI 

means in the back-end of intelligent robots, the KG is used to assist robots in providing 

consulting services to users through mobile applications in the form of text, voice, and 

video. In addition, KG technology can also be used in other business scenarios in the field 

of power marketing [117]. Taking electricity sales as an example, fluctuations in power 

sales are influenced by multiple factors such as business expansion, line losses, and power 

substitution. We can use the KG to show all of the factors affecting the change in electricity 

sales in a multi-dimensional way. Thus, the graph structure can quickly identify and lo-

cate abnormal fluctuations and provide corresponding solutions. When a power failure 

occurs, KG technology can contact the person in charge of the area according to the loca-

tion of the failure and notify the customer in time. It will also bring new vitality to power 

marketing in terms of electricity bill payment reminders, family identity recognition, and 

personalized recommendations. 

Unlike previous AI customer service, KG-driven online service keyword entity 

matching is not just shallow similarity matching. Instead, it statistically analyzes the most 

interesting problems of users through big data technology and excavates customers’ real 

needs through deep semantic understanding. For example, a special recommendation al-

gorithm based on users’ historical comments [118] combines with algorithmic models to 

provide users with the best solutions. The future customer service business of electric 

power systems will be dedicated to combining with various popular social media. Elec-

tricity customer service can interact with users in internet communities to determine their 

real needs and provide them with personalized and customized services [119]. 

3.2.3. Scheduling Fault Decisions 

As the power system has expanded and become more complex, the dispatch fault 

decision mechanism has undergone a series of changes. Initially, power dispatch faults 

required manual decisions by operators based on personal experience [120]. Then, grid 

companies used dispatch expert systems to determine fault problems [121]. However, 
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scheduling faults are never able to be detected precisely. At the same time, the past meth-

ods made it difficult to diagnose faults quickly and could not automatically provide ap-

propriate solutions. As a guarantee for the continuous and stable operation of the power 

system, the dispatching link needs new technologies to automatically diagnose faults. The 

powerful knowledge reasoning and graphical format of KG technology are capable of 

mining the latent relationships between entities and giving precise and targeted decision 

solutions for faults present in line transmission. 

The key steps to realize automatic decision-making on power dispatch faults are as 

follows. First, obtain a large amount of scheduling fault information, such as scheduling 

protocols, expert experience, and fault cases. Then, extract a large amount of dispatching 

terminology from the semantic text and combined it with the structured operation data of 

the power grid to build a corpus of terminology and faults. Eventually, a large number of 

dispatching rules in the semantic library are learned and reasoned [122] to build a KB 

exclusively for dispatching decisions. Once a fault occurs, KG technology can perform 

knowledge search and reasoning, mobilize the semantic and knowledge bases for the cor-

responding scenario, and automatically discover fault conditions such as overload, high-

power loss, and voltage deviation. Based on the fault content, the corresponding control 

objects and operating procedures are provided from the fault decision KB [123]. 

The introduction of KG provides new ideas for dispatch fault handling. The business 

logic KG constructed by combining bo�om-up and top-down approaches helps us per-

ceive the business relationships of the dispatching system and assists operators in per-

forming auxiliary fault analysis in the case of system faults. As the software part of a sys-

tem, KG technology can search for grid equipment KG according to grid regulation and 

control requirements and generate new dispatching decision solutions in a shorter time. 

Intelligent dispatching with KG-assisted decision-making can solve the problems of long 

dispatching time and low dispatching frequency of the current dispatching system. Based 

on the integrated ontology KB, a decision support system for emergency dispatch of 

power systems was developed in [124]. The system enables knowledge extraction for 

online control of power systems in emergencies and automates intelligent emergency dis-

patching. In addition to this, the combination of neural network models and various algo-

rithms enables a shift from traditional dispatching to smart grid dispatching. For example, 

GCN [125] can automatically learn any graphical feature. Ref. [126] used GCN to read 

features from the scheduling domain KG. The knowledge representation and inference of 

the read features provide decision support for risk management, load balancing, and sys-

tem optimization in scheduling with reduced scheduling errors. Although KG research in 

the field of power grid dispatching accounts for the majority of the KG in power systems, 

most of the current research is focused on dispatching fault decision-making [127]. In ad-

dition to fault diagnosis, many other aspects of power dispatch lend themselves to fast 

and accurate problem-solving in the form of graph structures. We need more in-depth and 

systematic research on real-time monitoring and warning, safety inspection, dispatch 

planning, and management [128]. 

Scheduling has many risks in practice and requires the integration of multi-domain 

knowledge to improve the safety of the grid and the accuracy of decisions. As shown in 

Figure 5, we can carry out multiple risk coupling analyses for complex power grids. 

Through the construction of each sub-domain KG, the different needs of each professional 

field are fully considered to reduce the risks of grid operation and provide the grassroots 

staff with more rapid and be�er auxiliary decision-making solutions. In addition, based 

on the KG technology, how to realize automatic fault location in the dispatch automation 

system and achieve fully automatic completion of intelligent fault diagnosis and location 

is a question of great significance in the dispatch decision-making field. 
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Figure 5. Multiple KG coupling in the dispatching domain. 

3.3. Other Applications of KG in Power Operation 

In the intelligent Q&A system for power grid knowledge [129], heterogeneous data 

can be fused to initially construct KG. Then, the paths are sorted based on the idea of a 

path ranking algorithm (PRA) in rule mining to realize the reasoning and prediction of 

keyword entities and their relationships, providing users with answers and an intuitive 

analysis process. For specialized terms in the electric power field that are difficult for users 

to grasp, multidimensional semantic search [130] and intelligent recommendation meth-

ods [131] are used to mine the user’s search intention and help users execute effective 

queries. 

In terms of power monitoring information, KG extracts the cumbersome base station 

information based on the characteristics and laws of the grid, equipment, and monitoring 

work. After filtering redundancy, the real fault information can be stored in Neo4j [132]. 

In Figure 6, we constructed a grid incident behavior KG based on monitoring signals of a 

small substation. In the KG, we can explore an effective “event-based” monitoring method 

by linking the abnormal information and process disposal of events. This method can 

avoid misjudgments and omissions caused by a human error through knowledge reason-

ing, help staff to complete the processing and prediction of most daily monitoring work 

and improve the efficiency of incident handling. In the future, we can connect monitoring 

and alert information to major business platforms to provide a comprehensive analysis of 

the basic data to assist and enhance the dynamic alert and risk warning capabilities of 

power grid operation. 
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Figure 6. Power grid accident behavior knowledge graph. 

In the field of power metering, to construct KGs that unify terms across domains, it 

is necessary to fuse heterogeneous data from different sources and to fuzzify different 

descriptions of the same term. Ref. [133] used a Bert-based knowledge extraction model 

to extract triadic information from the corpus. Then, the power metering KG was con-

structed based on text matching. Past power meter inspection methods were excessively 

dependent on the operator’s skill. Recently, Ref. [134] constructed power verification KG 

based on the RDF storage format and performed knowledge inference using the TransE 

model. Although the database and the inference model are slightly outdated compared to 

current mapping techniques in other fields, the application has improved the accuracy 

and efficiency of power meter inspection and protected the interests of power companies 

and customers. 

In the area of electric power safety regulation, two major challenges are being faced 

at present: the lack of entity and relationship data for electric power safety regulations 

and the complexity of inter-textual relationships. The current research is still stagnant in 

entity identification [135] and accurate extraction of entity relationships [136] in power 

safety regulations. As a key link in the field of electric power systems that cannot be ig-

nored, a deeper study of power safety regulations KG will become the future research 

direction in the field of power safety. 

In addition to this, Ref. [137] proposed an optimal KG-based penetration path scheme 

for when the power system is under a�ack. To promote the process of power system au-

tomation and reduce manual operations, the KG-based human–computer interaction 

model [138] uses the TextRank algorithm [139] for entity extraction and extracts logical 

relationship entities based on semantic rules. Knowledge fusion imports the ternary data 

results into the Neo4j graph database to form a KG that can be queried and used. 
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4. Further Improvements for KG Technologies in the Power Field 

The application of KG in the electric power field is still in its initial stage, and the 

initial research mainly refers to the application of KG in other fields. Building KG in the 

electric power field still needs more adjustments and innovations in technology combined 

with actual scenarios. In the future development of AI, KG adapted to the field of large-

scale power systems should make improvements in the following areas. 

4.1. Data-Driven, Knowledge-Driven Integration 

In the era of big data, massive data volumes need to be analyzed by computer before 

they can be used. In the current AI field, some decisions are mainly based on the data-

driven model of “massive data + self-learning” to solve problems with algorithms. How-

ever, purely data-driven AI is not robust and is uncontrollable, and the black-box process 

of model computation is unexplainable. In general, the first-generation AI [140] is mainly 

knowledge-driven, relying on expert experience and industry standards to provide qual-

ity knowledge, which is highly demanding. The second-generation AI [141] is mainly 

data-driven, and the processing is fuzzy and unreliable. Both approaches are one-sided. 

The third-generation AI can incorporate knowledge into data-driven [142], which reduces 

the danger of data-driven while avoiding the subjectivity of knowledge itself. This way 

can enhance the interpretability of the process and achieve reliable and trustworthy AI. 

4.2. Multi-Source Data Fusion and Dynamic Updates 

The data in the field of power systems come from a wide range of sources and types, 

and different types of data are extracted using methods that match the characteristics of 

the data. For example, manually recorded subjective data such as power equipment O&M 

logs can be combined with neural network technology for NER [143], and for customer 

demands received by power customer service, deep semantic mining to understand the 

intent [113]. Only by extracting high-quality knowledge and providing a rich data source 

for subsequent knowledge calculation can high-quality recommendation and Q&A func-

tions be realized. 

The DKG needs to be updated dynamically in real-time to meet the actual situation 

of real-time changes in the electric power field. During the operation of the power system, 

the time-series dynamic KG is established according to the key technologies of the new-

generation KG to constrain the real-time changing tide, load, and other a�ributes. 

Through TTransE [144], CyGNet [145], and other time-series KG representation models, 

the KG is synchronized to flow with the power system. 

4.3. Power System Big KG Unification 

The development of power IoT technology breaks the isolation of each power grid 

and power equipment and realizes real-time data interconnection and sharing. These data 

have high research value and engineering significance. At present, the grid integration 

data collected by the data center have not been fully mined. The presentation of the KG 

graph structure meets the requirements for the expression of complex models in the elec-

tric power field. Therefore, we can use graph technology to extract and mine the data from 

the IoT center to represent the electric power IoT integration data in a graph structure [25]. 

In turn, the value of the data can be brought into play by reasoning the association be-

tween entities through knowledge calculation to guide scenarios such as fault mainte-

nance, equipment management, and customer demand in actual engineering. 

At present, the power IoT has not yet established a knowledge base corresponding to 

practical applications using its data. Therefore, we can first study the establishment of a 

small-scale KB and KG construction in a certain scenario. When the construction of KGs 

in each field is completed, the independent KGs in each part will be fused into a unified, 

large KG in the electric power field to realize the transformation from “data integration” 

to “knowledge integration”. 
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5. Conclusions 

In this paper, we presented a comprehensive review of current representative re-

search efforts and trends in knowledge graph-aware power systems. In general, this paper 

aimed to answer two questions: how to extract knowledge from a power operation system 

to construct KG, and how to apply KG reasoning technology to improve power system 

operation. Focusing on the knowledge graph, we analyzed the graph construction process 

in some typical application scenarios. Additionally, based on the current research, we fur-

ther discussed the future direction of graph technology development. The integration of 

knowledge-driven and data-driven, combined with artificial intelligence technology to 

build a dynamically updated KG, can meet the real-time change characteristics of power 

system data and improve operational efficiency. At present, the application of KGs in the 

power system has just started; these currently constructed KGs can only represent factual 

knowledge or entity-centered structured knowledge. Power system operation based on 

graph technology still needs to be further studied. 
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