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Abstract: Of fundamental importance in biochemical and biomedical research is understanding
a molecule’s biological properties—its structure, its function(s), and its activity(ies). To this end,
computational methods in Artificial Intelligence, in particular Deep Learning (DL), have been ap-
plied to further biomolecular understanding—from analysis and prediction of protein–protein and
protein–ligand interactions to drug discovery and design. While choosing the most appropriate DL
architecture is vitally important to accurately model the task at hand, equally important is choosing
the features used as input to represent molecular properties in these DL models. Through hypothesis
testing, bioinformaticians have created thousands of engineered features for biomolecules such as
proteins and their ligands. Herein we present an organizational taxonomy for biomolecular features
extracted from 808 articles from across the scientific literature. This objective view of biomolecu-
lar features can reduce various forms of experimental and/or investigator bias and additionally
facilitate feature selection in biomolecular analysis and design tasks. The resulting dataset contains
1360 nondeduplicated features, and a sample of these features were classified by their properties,
clustered, and used to suggest new features. The complete feature dataset (the Public Repository
of Engineered Features for Molecular Deep Learning, PREFMoDeL) is released for collaborative
sourcing on the web.

Keywords: feature; machine learning; deep learning; feature selection; feature engineering; drug
discovery; protein structure prediction; receptor–drug interactions; representation; prediction of drug
response

1. Introduction

Modern experimental advances have enabled scientists to analyze molecular proper-
ties, and to design completely new molecules with beneficial functions [1–4]. For example,
the antibiotic penicillin was first discovered as a natural product in the mold Penicillium
rubens, but subsequent drug design produced the stronger, faster-acting, and broader-
spectrum antibiotic amoxicillin [5]. Furthermore, not limited to only small molecules,
protein design for therapeutic applications has recently grown by leaps and bounds with
the introduction of deep neural networks for structure prediction [6,7] and sequence de-
sign [8]. SkyCovione [9], the first computationally designed nanoparticle vaccine developed
for COVID-19, elicits a superior immune response than existing mRNA vaccines, and has
been approved for use in South Korea to fight COVID-19. Drugs such as amoxicillin
and SkyCovione could not save lives today were it not for careful characterization of
experimental data.

From large datasets, analytical measurements (“observables”) are refined into more
concise “features”—specific subsets that capture relevant properties of the sample. For ex-
ample, features describing amoxicillin might include its solubility, its bioavailability, the set
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of endogenous proteins it is known to bind to (so-called “promiscuous” drugs can bind to
multiple receptors [10], see below), and the crystal structures of these bound complexes.
Similarly, the SkyCovione nanoparticle may be described by its elicited antibody titer, its
retention volume distribution by size-exclusion chromatography, or the kinetic associa-
tion constant between its domains and the SARS-CoV-2 spike. These data are most often
generated from various experimental assays and screening protocols, and reliable data
gathering requires the skills necessary to prepare the sample and operate the instrument.
Designing features based on the resulting data is often challenging as the high level of
expertise required to accurately interpret the experimental results is often exclusive to the
expertise required for feature design. Cursory instrument operation, incomplete knowledge
of experimental protocols, and improper analysis can lead to erroneous features because
each step can introduce a distinct form of error. These errors are discussed in Section 2.3.3.

Promiscuity refers to the behavior of a given ligand or receptor to bind to multiple
receptors or ligands, respectively, each with a high affinity (distinguished by whether the
kinetic dissociation constant of the protein–ligand complex is less than 10 µM). Promis-
cuous drugs are usually small and hydrophobic (which reduces the required specificity
of interaction imposed by binding site electrostatics and hydrogen bonding, while retain-
ing interaction strength) and promiscuous binding sites are able to accommodate diverse
ligands through complementary hydrophobicity and dynamics [11]. Promiscuity may be
a desired function of a designed drug or protein in some applications, but it may also
manifest as undesired side effects; therefore, the careful accounting of promiscuity effects is
encouraged. Recent work has investigated the structure–function relationship of promiscu-
ity [12–14], and a comprehensive toolkit to analyze and optimize promiscuity effects would
be immensely helpful, but one has not, to our knowledge, been published .

Many experimental assays will yield nonuseful or redundant information for the
study of interest, so scientists routinely judge whether the features they design and refine
contribute meaningfully to analysis—indeed, this process is analogous to the scientific
method itself (Figure 1). Often new features (as well as new hypotheses) are needed to
model a biochemical phenotype, so they are developed through feature engineering. In the
machine learning field where the choice of input data is important [15], successful network
training is inextricably linked to feature choice.

Figure 1. The process of feature engineering is analogous to the scientific method.

In the language of features, a hypothesis is a falsifiable statement about an outcome
of a proposed experiment given sufficient enumerated premises and whose falsification is
contingent on the interpretation of measured features. Hypotheses are closely related to
features [16], although key differences exist. While hypotheses are conceptual and designed
to directly connect a phenomenon to an experimental outcome, the meaning of a feature
(often in equation form or as a function in a computer program) is less directly interpretable.
Separability is yet another factor: features may contribute supporting or falsifying infor-
mation towards one or more hypotheses just as scientific hypotheses may be written in
a way that requires the measurement and analysis of one or more features. A feature (or
features) may be well selected to reflect the encoded hypothesis (or hypotheses), or not.
A well-written feature would be as close as possible to representing the encoding of a
single hypothesis, and achieves the following parameters: it is both human- and computer-
interpretable; there is a one-to-one relationship between the hypothesis written and the
feature computed; and the feature directly addresses the hypothesis. In short, a feature
should be a hypothesis, but in a computationally accessible form such as an equation or in
a programming language.
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The extent to which existing feature–hypothesis pairs satisfy these conditions has not,
to our knowledge, been investigated in the literature in part because a comprehensive
enumeration of all features in the literature has not been put forth and because multiple
orthogonal features can be used to evaluate a given hypothesis. Because a single hypothesis
is often supported by multiple features, features in the scientific literature are likely at least
as numerous as scientific hypotheses.

For these reasons, a comprehensive analysis of all features reported in the literature
is a nearly impossible task, but is nonetheless a valuable endeavor that may be achieved
through an open-source community-based effort. To start this process, the focus of this
work is to describe a systematic review and the resulting development of a taxonomy of an
initial representative sample of engineered molecular features based on their properties (in
this study, “properties” refers to qualities that distinguish between two or more distinct
groups of features—in other words, properties are “meta-features”). As an example of how
this feature database (the Public Repository of Engineered Features for Molecular Deep
Learning, PREFMoDeL) can be used, we have analyzed—without the detailed knowledge
of how specific feature selections impact performance in various deep learning tasks—
correlations between feature properties and visualized feature space using t-distributed
stochastic neighborhood embedding (t-SNE).

The source PREFMoDeL table is presented in a community-editable repository (https:
//github.com/picodase/PREFMoDeL, accessd on 19 February 2023) which gives re-
searchers an overarching view of the state of the art of biomolecular feature engineering,
and to determine whether certain features are potentially useful or not. Additionally, we
encourage researchers to perform their own analyses (including using other methods apart
from t-SNE), to assess the appropriateness of a given feature selection to their own specific
deep learning task(s). An additional benefit of our presented analysis and taxonomy is
that gaps and underrepresentation of feature types in the literature are easily noticeable
and therefore, addressable. We provide several examples of underrepresented feature taxa
in our discussion below.

While particular attention is paid to the properties of biomolecular features, many of
these properties are universal as they can describe broader categories of molecules. Addi-
tionally, the set of enumerated properties constituting the taxonomy is logically extensible,
and adding features that are specific to other classes of molecules is easily accomplished.

2. Background
2.1. Vocabulary

Before discussing molecular analysis and design, features, and feature engineering, it
is helpful to define several key terms. This initial work is focused on the class of biological
molecules (biomolecules), more specifically proteins and ligands. The word protein denotes
an amino acid polymer whether structured, fibrous, or intrinsically disordered. The word
ligand indicates a molecule from the enormous class of compounds that bind to proteins and
thus modulate their function. Ligands can include small organic molecules, carbohydrates,
lipids, nucleic acids, inorganic compounds, clathrates, and organometallic compounds.
As biological activity can be described reductively as a prescribed set of protein–ligand
interactions, our study has broad utility for biomolecular analysis and design.

2.2. Parts of a Machine Learning Model

Features are used as input for a machine learning (ML) model to learn a transformation
through parameter optimization. ML models learn the transformation F(input) = output by
iteration over a training dataset. A ML model is composed of four parts: the model architec-
ture, the loss function, the learned parameters mapping input to output, and the features.

The model architecture is the structure which defines how data are processed, where
data often flow through multiple layers of composed functions. Architectures might vary
from one another by the number of layers in a neural network, the number of nodes,
layer dimensionality, layer arrangement, layer connectivity, and the model composition
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(modularity). Architectures tend to fall into two general classes based on the input data
they can accept. A convolutional neural network (CNN) takes dimensional feature vectors—
those that can be measured along an n-dimensional (ND) space—as input, and uses them to
learn geometric information in that space based on locality [17]. Alternately, a graph neural
network (GNN) operates on network features (or graphs)—those that can be represented as
nodes connected by edges—so they learn topological information about input graphs [18].
Both of these networks are formed from layers that can be evaluated in a feed-forward
manner (passed forward linearly from one layer to the next, e.g., from layer A→ B→ C) or
through a feedback manner (passed to a previous layer, e.g., taking a path from A→ B→
C → A). Note that the feedback architecture, which defines how features flow through the
model, is distinct from the backpropagation algorithm, which updates the gradients of the
model parameters between adjacent layers with respect to these features and is a common
mechanism for all modern neural networks. These basic components may be composed in
sequential layers and arranged to form more complex architectures such as autoencoders
and transformers [19], and finally applied to biological problems [20,21].

The loss function is the part of the architecture which measures the “correctness” of
model predictions [22,23]. It is typically composed of several terms that together teach the
model to be “less incorrect” in specific, measurable ways through training. For example,
a common loss function term for continuous features is the L2 norm or through-space
distance. The categorical cross entropy (CCE) is a popular loss term for discrete features.

The parameters of the model are variables during training and are updated iteratively
in order to minimize the loss function with respect to the architecture and features. After in-
put features are passed through the layers of the network, the loss function is evaluated
and used to compute the gradient of the loss with respect to each input. Backpropagation
of these gradients [24,25] through the network informs the change in each parameter,
with the guidance of an optimization algorithm [26] such as stochastic gradient descent
(SGD). Over epochs of training, the parameters are fine-tuned to better compute F .

Lastly, features are as explained above: mathematical representations of relevant data.
In other words, features are the evidence that the model observes to draw conclusions about
the dataset using the hypothesis specified by the model structure. While all components of a
neural network encode induced hypotheses about the system of study, the design of features
that behave well in machine learning models, and of models that efficiently process input
features, are active areas of discussion [27]. Features can be used to predict the target fea-
tures of validation data sets that were not used for training the network (a task termed “su-
pervised learning”, i.e., predicting a target feature fpred = F( finput,1, ..., finput,N)), to cluster
the data and determine their underlying structure (“unsupervised learning”, i.e., calculating
all pairwise relationships between feature fi and f j), or to impute incomplete input feature
columns and/or target features given other feature columns (“semi-supervised learning”,
i.e., predicting features fpred, fmissing,1, ... fmissing,M = F( finput,1, ... finput,N)). The choice of
features is highly critical to successful modeling and frequently requires expert insight, and
it will dictate the speed of learning, the speed of prediction, prediction accuracy, and the
complexity of the function F.

2.3. Features and Feature Engineering as Analogues to the Scientific Method

A feature is a number or collection of numerical values that describes some direct or
processed experimental observable. Any form of data can be converted into a feature if it
can be assigned a numerical value. For example, the crystal structure of a protein consists of
a set of datapoints (atoms) with several attributes: Cartesian position (x, y, z) , element (N,
C, O, H), atom type (Calpha, C=O), B-factor, and more. Each of these attributes is a feature
of that molecule and the experimental conditions under which the data were collected.
At first glance, attributes such as element and atom type are categorical non-numeric values,
but they can be converted into numbers using several strategies. These strategies might
include using the isotopically averaged mass of the atom (14.007, 12.011, 15.999, and 1.008
au for each element, respectively) or using one-hot encoding (for example, 1000, 0100, 0010,
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0001 for each element, respectively). While the strategy one chooses to encode their data
is often subjective, algorithmically the results based on the encoding chosen is objective,
and thus one must think carefully about how their data can best be represented.

Generic features can describe all types of objects, but only a subset of documented
mathematical features have analogues in biomolecular representations. Furthermore,
biomolecules have some features that other objects lack. For example, for an iris classi-
fication task, a certain flower might have the sepal length of 5.1 cm. Other objects, such
as people, trees, or buildings, also have associated lengths. However, consider a particu-
lar protein–ligand pair that has the kinetic dissociation constant of Kd = 0.14 millimolar
(Figure 2). Flowers, people, trees, and buildings do not have well-defined notions of ki-
netic dissociation constants because they are not molecules and cannot be characterized in
this manner.

Figure 2. Schematic depiction of feature observation for an iris side-by-side with a protein–ligand
pair. The iris might be given three features: species, sepal length (in cm), and sepal width (in cm).
The protein–ligand pair might be given two features: combined molecular weight MW and kinetic
inhibitory constant Ki. Iris images: left: Tiia Monto (CC-BA-SA), right: Danielle Langlois (CC-BA-SA).
Protein images generated using PyMOL.

However, just because a feature exists does not mean it is useful for a task of interest.
Indeed, scientists routinely evaluate what the features they derive from their data suggest
about the systems they study, which has led to the calculation of feature importance [28] and
guidance for feature selection [29,30]. Often new features (like new hypotheses) are needed
to explain a biochemical phenotype, so they are developed through feature engineering.
In this process, features are equivalent to hypotheses of relevance.

2.3.1. The Importance of Feature Relevance

Features must be relevant to the problem they are being used to solve [29–33]: although
the color of the iris (purple) would not help to distinguish between the three species in
the iris training dataset, the length of the sepal can meaningfully provide this distinction.
Furthermore, all relevant features must be represented at the time analysis or design
decisions are made. However, these are challenging conditions to guarantee because it is
impossible to measure the relevance of any feature before training a network. Instead, prior
knowledge from past experiments is used to inform feature selection.

2.3.2. Desirable Feature Characteristics

Features that allow convenient, efficient, and stable network training (so-called “ideal
features”) satisfy certain mathematical properties. To our knowledge, no biomolecular
features satisfy all of them, and most satisfy fewer than half. Ideally, a given feature f must
satisfy the following:

• Representativeness: f accurately represents the underlying phenomenon.
• Fixed dimension: f is of a fixed size, such as an appropriately shaped NumPy array.
• Continuity: f takes continuous values.
• Differentiability: f is differentiable.
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• Normalizability: f is normalized or normalizable to the interval (0,1) or the interval
(−1,1).

• Linearizability: If f is exponential or nonlinear, f can be linearized.
• Reversibility: f is generated by a lossless transform TR that can be inverted, such that

f = T−1
R TR f .

• Example uniqueness: f is unique for a given input i. Similar to the concept of one-to-
one in linear algebra.

• SE(3) invariance or SE(3) equivariance: A rotation or translation in space either does
not change (invariant) or evenly changes (equivariant) the values in f , respectively.

The significance and examples of applications of these ideal features are described in
Supplementary Table S1. These mathematical properties are known for classifying features
of all types of objects, but biomolecules have specific properties that other objects do not
have. In order to evaluate these biomolecule-specific properties, a literature survey was
conducted. Features were enumerated and classified according to a list of biomolecule-
specific properties which was developed during the investigation. The collection and
analysis process and the properties of this dataset are described in detail below.

2.3.3. Errors in Feature Engineering from Physical and Computational Sources

In the course of their experiments, scientists may inadvertently redesign existing
features, apply them in an inappropriate context, or accrue errors in feature selection that
impedes their network training or analysis of results. Several forms of errors arise when
features are measured (that is, in vivo or in vitro) and applied (that is, in silico). These errors
are generated because features are derived from measurements that are collected using
instruments with intrinsic error, because of uncertainties in measuring a sample of matter,
or because the feature engineer may not have the essential background information or expe-
rience to avoid unintentionally erroneous feature constructions. For molecules, the sample
itself is the exact arrangement, dynamics, and quantum uncertainties of all matter within a
particular collection. The sample itself is not measurable, but theoretically its exact compo-
sition and arrangement contains all possible information (excluding quantum-mechanical
uncertainty) about how an experiment on that sample would be consistent with prevailing
physical theory—that is, how the sample would behave. Quantum-mechanical uncertainty
is presently an irreducible form of error according to Heisenberg’s uncertainty principle,
but other errors may be reduced through appropriate mitigation strategies. Each such
strategy involves the systematic enumeration, measurement, and reduction of errors. This
process might inspire the selection of new experimental reagents, instruments, protocols,
algorithms, or analysis methods.

The set of all possible such behaviors are collectively the phenomena that the sample
can experience, and observables are produced when these phenomena are measured by
any means. First, the sample is collected from a larger population in nature and subjected
to controlled experimental conditions, where those phenomena and the values of their
observables are influenced by these conditions and the specific sample that was selected.
Here, the scientist collects certain measurements designed to capture data reflecting the ob-
servables of some material phenomena the scientist expects to measure, although data from
other phenomena may also be concomitantly captured. These data are then transformed
through the process of “featurization” into features in parallel with hypothesis generation,
and these features are subsequently tested by modeling the system of interest. Increasingly,
deep learning is the method of choice for such modeling.

However, it is important to remember that these experimentally derived features are
products of a sequence of transformations, each of which incurs a unique form of error:

1. When a sample is measured, the particular sample chosen may not be representative
of the population from which it is picked, incurring sampling error.

2. The phenomena and its associated observable(s) are necessarily incomplete, be-
cause not all observables can be measured, and those that can may not be measurable
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in isolation from others. Therefore, the selection of which observables to measure
incurs selection error.

3. The data may suffer from a low signal-to-noise ratio or reflect measurement error in
a sample.

4. During featurization, the scientist might unknowingly neglect useful information,
which further convolutes the expected behavior described in the original data, incur-
ring featurization error. This is because the featurization process is dependent on the
scientist’s discretion and bias (intended or not) to select valuable information from
that dataset.

Thus, all features reflect these four sources of error to some extent. By optimizing each
step, the total error can be reduced, but never removed entirely. This concept is illustrated
in Figure 3.

Figure 3. Conceptual relation of six types of representations involved in feature measurement by the
amount of physical phenomena they describe, their ease of measurement, and the error incurred by
their measurement. Features (boxed in orange) are computational constructs derived from data which
describe experimental observables on physical samples retrieved from some population. Each step
incurs a new form of error which removes the ability for downstream objects to represent phenomena.
It is impossible to measure any sample itself: instead observables of samples are measured. Properties
are meta-features that describe features. None of the objects in this diagram are singular: multiple
properties can describe multiple features, which are derived from multiple forms of data reflecting
multiple observables of multiple samples in several populations. Features are represented in silico,
while all other representations exist in vitro or in vivo.

2.4. Circumventing Feature-Associated Errors by Systematic Testing

As established in this section, feature selection for a task of interest is an error-prone
process. Proper feature selection strengthens the fields’ computational models of reality [34].
The negatives associated with inappropriate feature selection include the following:

• Existing features are redesigned without insight from previous investigation(s).
• Features are applied in a context that experts in the field know to be inappropriate.
• Errors are made in feature selection that impede network training or human insight.
• Features are implemented in a CPU- or memory-inefficient manner that prevents replication.

Thus, arranging existing features in a taxonomy and developing the means to test them
against a panel of analysis or design tasks would serve to benchmark existing features and
guide scientists both experimentally and algorithmically. In the current work, we set forth
a clear taxonomy that characterizes existing features. We propose that this work, which
is currently without code implementations, can be followed naturally by a community-
sourced effort to algorithmically implement these features in open-source and scientist-
accessible computer code.



Appl. Sci. 2023, 13, 4356 8 of 25

3. Methods
3.1. Literature Curation

An extensive literature survey was conducted in order to identify and collect biomolec-
ular features. This meta-analysis was conducted in accordance with the PRISMA guidelines
for systematic reviews (Supplementary Figure S1) [35]. First, publications were collected
based on literature searches and subsequently filed into one of three Zotero folders broadly
based on essential feature type: nonstructural, structural, or dynamical. For each of these
folders, a file containing each publication title and metadata was exported and stacked in a
single spreadsheet. Then, individual features were extracted from each paper, and columns
describing features were manually enumerated. This produced 1360 features, which were
individually classified. To preserve context and implementation, deduplication of similar
features was not performed. Property columns were then filled for a sample of features
across the reported dataset.

In order to collect publications, searches were performed using the Google Scholar
literature metasearch engine. A total of 79 publications were initially classified as contain-
ing nonstructural features, 305 as containing structural features, and 379 as containing
dynamical features. Later, 45 additional papers were added without this prior classification
scheme, giving a total of 808 papers. In this study, nonstructural indicated that the exam-
ined study focused on fundamental chemical properties and was less reliant on structural or
dynamical information; structural indicated the presence of static detail about the arrange-
ment of atoms in three-dimensional space as determined by X-ray crystallography, nuclear
magnetic resonance spectroscopy, cryo-electron microscopy, or simulation; and dynamical
features contain information about more than one functional state of a molecule or its
transitions between states, whether structural or nonstructural. These three groups may be
additionally distinguished by their treatment of molecular conformation, that is a specific
three-dimensional arrangement of atoms in Cartesian space: “nonstructural” indicates
no specific conformations were specified, “structural” indicates at least one was specified
with explicit attention to coordinates or equivalent information, and “dynamical” indicates
that more than one conformation was specified, albeit not necessarily with coordinates or
equivalent information. Structural and dynamical features were given particular attention
during our literature search .

After sorting, the papers in these folders were examined, and the features within
were extracted, labeled, and classified. Publications were exported into a common file
through the Zotero Export menu function. Features were classified with the same labels,
nonstructural, structural, and/or dynamical, among other taxa (see Results). Finally,
each feature was given both a short and a long name to standardize feature labels and
meanings. Because a large number of papers was scanned for features, this metadata is
presented in the accompanying feature table rather than appearing as citations in this
work. This table can be found on the web at https://github.com/picodase/PREFMoDeL
(accessd on 19 February 2023) by navigating to the comma separated value (CSV) file
feature_database/features.csv.

3.2. Feature Extraction

Feature extraction was performed using a two-step process. The pdfgrep command-
line utility was used to parse through text in each publication for a series of keyphrases.
These keyphrases were contained in a plain text file called patterns.txt whose complete
contents are shown in Supplementary Figure S2. Some keyphrases were left as incomplete
words in order to match a number of possible suffixes. For example, the prefix “featur” can
match to both “featurization” and “feature” instead of only one, but is unlikely to match to
an off-target word. In order to parse each PDF, the publication hash ID was copied from the
common spreadsheet and pasted into Zotero’s search bar at the root “My Library” folder.
This returned a single entry with the PDF of interest. Opening this file using the PDF
viewer and highlighting the menu bar revealed the PDF file path. An example command
run to produce the pdfgrep output was as follows:

https://github.com/picodase/PREFMoDeL


Appl. Sci. 2023, 13, 4356 9 of 25

pdfgrep -ihnr --context=4 –-file=patterns.txt <PDF_folder>

where the command-line arguments used have the following functions: -i ignores case
distinction so as to include upper- and lower-case matches; -h suppresses printing of the
filename; -n prints the page number on the left-hand column for ease of location in-text;
-r searches the directory recursively for PDFs; and --context=4 yields 4 lines of context
before and after a text match. An example output of this function is shown in Figure 4.

Figure 4. Example pdfgrep command and output for one publication. Features proximate to but not
highlighted by the query are highlighted in yellow.

The output of pdfgrep was inspected and used to hasten an initial keyword scan,
but was not expected to capture all mentioned features. Features were often implicitly
defined or encoded in graphs or diagrams which are not visible in the pdfgrep output.
Thus, articles containing original features were read for textual references, with special
attention to abstracts, introductions, and methods sections. In addition, all figures in each
article were examined. In a second pass through the Zotero library, a second set of folders
(“nonstructural-2”, “structural-2”, and “dynamical-2”) were constructed and analyzed
in the same table. After this analysis, 1360 nondeduplicated features were enumerated.
Approximately 700 other tools were collected, including datasets and machine learning
architectures, which were not analyzed in this study but are included at the provided
GitHub repository. If a feature was presented in a figure or equation, this was enumerated
in two columns, where the first indicated the element type (that is, figure, table, or equation)
and the second indicated the number of the element from the text (2, 3A, 1B, etc.). Analysis
of a sample of this feature set yielded the final taxonomy, where taxa consisted of 45 total
properties: 8 categorical properties and 37 binary properties. These properties are defined
in the Results section, below.

3.3. Analysis Tools

Properties of features were analyzed using the Orange3 Data Mining suite [36]. Mu-
tually exclusive categorical feature properties were analyzed using pie charts and a per-
centage table was used to analyze non-mutually exclusive binary properties. Several
analyses were performed in Orange3, including general dataset analyses such as prop-
erty correlation, as well as unsupervised learning techniques such as hierarchical and
t-SNE clustering [37,38]. t-SNE was used as an example of a dimensionality-reduction
technique to simplify the high-dimensional space (described by 45 feature properties) to a
two-dimensional (2D) space. This enables visualizing similarity between features (such
as how similar feature X is to Y, or X or Y to Z) based on their Euclidean distance to each
other on this 2D space, which is embedded using their enumerated feature properties.
Necessarily, analysis of the visualization is highly dependent on the chosen features and
the properties by which they are characterized. Plot generation details are provided within
the figure captions.

4. Results

Features can be categorized in different ways. Here, we developed an extensible sys-
tem of classification—a taxonomy—of biomolecular features based on a survey of N = 808
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research articles and reviews on proteins and biologically relevant protein-binding ligands.
Clearly, this taxonomy can be logically extended to include nucleic acids, carbohydrates,
organic compounds, etc.

4.1. Taxonomic Charts

The results of this study are summarized by two tree diagrams, one containing cate-
gorical feature properties (Figure 5) and the other containing binary properties (Figure 6).

Categorical feature properties

Source

Experimental

Computational
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Figure 5. Taxonomy of categorical feature properties.
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Figure 6. Taxonomy of binary feature properties.

4.2. Categorical Properties

Some evaluated properties were mutually exclusive. Below, these categories are
described briefly. Note that biomolecular features are reviewed, in particular features
representative of proteins, ligands, and their interactions.

• Source: Either physical experiment or computational model.
• Biomolecule type: Protein, ligand, protein–ligand pair, generic molecule, or other.
• Number of biomolecules: One, pair, multiple, or population. Minimum and maximum

number possible to be represented by each feature are counted as separate properties.
• Fundamental object: Smallest object considered explicitly, e.g., an atom or an amino acid.
• Number of fundamental objects: One, pair, multiple, symmetry group, sample,

or population
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• Form: Data structure, such as a scalar, matrix, or graph.
• Scale: Local, global, or both.

4.3. Binary Properties

Other properties were not mutually exclusive. These properties are grouped and
outlined below.

• Detail: Nonstructural, structural, and dynamical.
• Interpretation: Energetic, kinetic, thermodynamic, quantum dynamic, topological,

functional, and complexation.
• Structural: Sidechain atoms, macromolecular folding, rotation invariance, and transla-

tion equivariance.
• Biological interpretation: Evolutionary, toxological, and metabolic.
• Forces: van der Waals, electrostatic, and hydrophobic.
• Chemical bond: Hydrogen bond, salt bridge, pi bond, and metal bond.
• Environment: Solvent, solute, trapped waters, and pockets/voids.
• Mathematical features: Fixed size, hierarchical, unique, subset-unique, differentiable,

reversible, guaranteed valid, probabilistic, and graph/network.

4.4. Structural-Feature-Specific Properties

Structural features have one particularly unique property.

• Structural comparison: Generated by the comparison of two structures, e.g., RMSD.

4.5. Dynamical-Feature-Specific Properties

Dynamical features have several unique properties. Although these were not ana-
lyzed in the accompanying table, these were nonetheless observed during the course of
feature extraction.

• Dynamic perspective: State-based or transition-based.
• Structure set type: Ensemble or trajectory.
• Probability of dynamics: Most-probable dynamics or rare-event dynamics.
• Considered states: All states or only relevant states.
• Period timescale: Thermal noise, functional motion, or evolutionary.
• Trajectory bias: From a biased simulation, or an unbiased one.

5. Analysis

Pie charts give a property-centric view of the feature dataset. A total of 87% of features
are generated through computational means, 10% are generated experimentally, and 3% of
features can be generated by either. This reaffirms the assertion that experimental and com-
putational methods are complementary (Figure 7A). Almost half of the features exclusively
represent proteins, few exclusively represent ligands, and one-third can represent either
biomolecule, which suggests that irrespective of the biomolecule type (that is, protein or
ligand), a large selection of features are available (Figure 7B). A plurality of features span
both local and global scales, and over a quarter exclusively representing either local or
global properties. Thus, surveyed features are robust to multiple scales, where a randomly
selected feature is at least 70.9% likely to be able to represent either local or global properties
(Figure 7C).

Surveyed features mostly represent one or multiple fundamental objects, with some
representing a population of objects, fewer representing a pair of objects, and 1.7% each rep-
resenting a sample or a symmetry group (Figure 7D). The vast majority of features can repre-
sent singular biomolecules, with a few pair-, multiple-, symmetry group-, and population-
exclusive features (Figure 7E). Most features can also represent multiple biomolecules,
with few exclusively pair- or population-specific features. Only one-third of features can
represent at most singular biomolecules, suggesting biomolecule design tasks may make
extensive use of the provided feature table (Figure 7F). Although features capable of repre-
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senting fewer numbers of biomolecules are the majority, the ability to directly represent
multiple molecules and populations of molecules is encouraging for biosystem design.

Figure 7. Frequency of mutually exclusive properties across a sample of surveyed features: (A) source,
(B) biomolecule type, (C) scale, (D) number of objects, (E) minimum number of biomolecules,
(F) maximum number of biomolecules, (G) fundamental object frequency, and (H) form frequency.

Continuous features constitute a plurality of surveyed features, which makes intuitive
sense as structural features are well represented. Furthermore, 50.5% of features either
take continuous values, vector form, or graph (network) form (Figure 7H). However, these
data are confounded by the form of the feature versus the form of the values within the
feature—that is, whether the feature itself is shaped like a matrix, versus the type of value
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contained at each of its elements (discrete or continuous). In order to better represent
feature diversity, these features should be re-classified according to both the form of the
feature (feature form) and the form of the values within the feature (numerical form),
as applicable. The fundamental objects represented by each feature are more diverse,
with the most common fundamental object, atoms, only composing twenty-six percent of
the feature set, followed by molecules, residues (either an amino acid or a nucleic acid base
pair), binding sites, proteins, ligands, amino acids, and protein–ligand pairs (Figure 7G).

Binary feature properties are outlined in Table 1, which also provides a property-
centric view of the feature dataset. Features with a structural interpretation constitute
the majority of features at 65%, while nonstructural and dynamic interpretations are less
common. A majority of features can represent molecular topology and complex formation,
but very few measure either quantum-dynamic or evolutionary detail. This suggests that
features capable of representing these properties are excellent targets for new investigations.

More features are rotationally and translationally invariant than those which had
structural detail, which is reasonable as structural-detail-containing features are the most
likely to depend on rotations and translations. Thus, it is expected that rotational and
translational invariance is concentrated in molecules without a structural representation.
Recent work has produced architectures capable of learning from features with rotational
and translational equivariance [39], such as the SE(3) transformer [40], so these issues with
many structural features are not insurmountable. Fewer features are capable of representing
amino acid sidechains, which correlates with a presence of global structural analyses that
subselected alpha-carbon atoms from a larger protein structure, while neglecting amino
acid side chains. This is useful for global structural or dynamical features, but less so for
features describing molecular interactions (binding or enzymatic). However, as sidechain-
scale local dynamical features are developed for faster biomolecular rearrangements, this
difference should diminish (Table 1).

Approximately one-quarter of features represent forces of any kind, which are likely to
be concentrated in features with dynamic representations. Bond types are far more variable,
with hydrogen bonds and salt bridges being most commonly represented in one-third
of features, with pi bonds being least represented at fewer than one-fifth. This disparity
signifies greater attention applied to hydrogen bonds, which is generally true in the field
due to their known importance in secondary structure, stabilization of internal protein
structure, solvent interactions, and ligand binding. By contrast, pi bonds and metal bonds
are far less common. As more precise structural and dynamical methods are developed,
these types of interactions should gain more attention (Table 1).

Approximately half of features are capable of representing environmental features such
as solvent, solute, and pockets. Trapped water-capable representations are less represented
in the dataset, as they required not only the appropriate experimental structural detail but
also solvent representation, among other details (Table 1).

Among the mathematical properties surveyed, features are most commonly guar-
anteed to be valid representations. This is expected, as many analysis algorithms give
deterministic output generated from extensively validated static experimental data (such
as crystal structures from the PDB [41] and PDBBind [42]), while by contrast experimental
methods often require specialized skills. Some computational methods are not guaranteed
to be valid, such as biased sampling molecular simulations. For example, over 40% of
features are of fixed dimensions or can represent detail hierarchically. The least commonly
satisfied properties are subset uniqueness, which is only guaranteed with certain latent
space representations from neural networks. Reversibility is often lost because many fea-
tures concentrate on the most relevant parts of a dataset while ignoring other aspects of an
experiment. Only one-third of features can be interpreted probabilistically, which is highly
represented with dynamical and reduced structural features (Table 1).
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Table 1. Non-mutually exclusive property frequency across a sample of features grouped by detail,
interpretation, structural interpretation, forces, bonds, environmental, and mathematical information.
Properties satisfied by greater than fifty percent of features in the global dataset are bolded.

Group Property Global %

Detail Nonstructural 39.1
Structural 65.1
Dynamic 40.1

Interpretation Energetic 42.6
Kinetic 26.0
Thermo 35.8

Quantum dynamic 9.4
Topological 59.1
Functional 30.9

Complexation 47.1

Structural interpretation Sidechain 50.9
Folded 31.2

Rotation invariant 75.3
Translation invariant 76.4

Biological interpretation Evolutionary 6.4
Toxological 2.8
Metabolic 8.7

Forces Electrostatic 23.4
Hydrophobic 23.7
Van der Waals 23.7

Bonds Hydrogen bond 29.3
Salt bridge 27.0

Pi 16.0
Metal 20.9

Environment Solvent 50.2
Solute 47.8

Trapped water 37.7
Pocket/void 46.7

Mathematical Fixed size 42.3
Hierarchical 44.5

Unique 25.5
Subset unique 3.7
Differentiable 33.1

Reversible 18.7
Guaranteed valid 73.7

Probabilistic 32.3
Graph/network 25.8

Correlated properties (Table 2) tend to fall pairwise into three groups: mathematical,
interactions (including forces and bonds), and environment. These results are easily
rationalized because features describing bonds tend to describe many types of bonds,
rotationally invariant metrics are almost always translationally invariant, and features
describing energetic detail are closely related with bonds and environment. An interesting
correlation is between reversibility and subset-uniqueness. This may be rationalized
because reversible transformations compress essential information into a secondary space,
such that all parts of the transformed space are sufficiently unique to distinguish the
elements in the untransformed space.

Qualitative analysis of two-dimensional t-SNE plots of the feature database (Figure 8)
revealed that dynamically capable features tend to reside in a corner of the space, the area
shown with the yellow background in Figure 8, and that more dynamically capable fea-
tures are also capable of representing complexes. This conclusion is interesting because



Appl. Sci. 2023, 13, 4356 15 of 25

complex-capability appears slightly enriched in dynamically capable representations, but is
ultimately not surprising because complex formation is a dynamic process being extensively
studied by a large number of research groups.

PIP_GCN_Edge

SRW

SDM

TvS

RMSFvResPM

RBC

DRP

0	-	0.25
0.25	-	0.5
0.5	-	0.75
0.75	-	1

Figure 8. An example of feature clustering analysis with t-distributed stochastic neighbor embedding
(t-SNE) where point color describes dynamic representability (yellow indicates that the feature
describes dynamics), point size describes the ability to represent molecular complexes (large points
indicate complexation is represented), and selected features are labeled by technique name. Seven
unique features were selected, shown by a thick colored outline. From the top moving clockwise,
TvS is temperature versus structural state [43]; RMSFvResPM is the root-mean-square fluctuation
versus the residue pairwise matrix [44]; PIP_GCN_Edge is an edge feature vector for protein interface
prediction [45]; SRW is a spectral random walk [46]; SDM is simulated electron density [47]; RBC is
the rotatable bond count [48]; and DRP is a double reciprocal plot [49]. Similarity is indicated by the
Euclidean distance between features. Figure generated in Orange3.

Features capable of representing bonding cluster on the right-hand side of the t-SNE
plot (Supplementary Figure S3). As protein-representing features are concentrated on
the bottom of the figure, this suggests that the majority of protein-capable features do
not explicitly represent bonding. This implies that gross structural features are often
preferred to specific local interactions in the existing set of structural features. Because local
bonding is essential to biomolecular function, it should be emphasized in new features
where appropriate.

A final visualization of the same space (Supplementary Figure S4) suggests that
structurally capable features occupy the right-hand side of the space, and that they are
distributed over more of the feature space. Features representing structure are far more
likely to represent complexation than nonstructural features. This is reasonable as protein–
ligand complexes cannot be richly represented by metrics which ignore structure.
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Table 2. Feature property correlation and assigned groups. Spearman correlation coefficients (SCC)
are used to rank the top twenty pairs in the feature set.

Index SCC Property 1 Property 2 Group

1 0.977 Rotation invariant Translation invariant Mathematical
2 0.830 Metal Salt bridge Bonds
3 0.813 Metal Pi Bonds
4 0.806 Hydrophobic van der Waals Forces
5 0.776 Hydrogen bond Salt bridge Bonds
6 0.760 Hydrogen bond Metal Bonds
7 0.748 Pi Salt bridge Bonds
8 0.724 Metal van der Waals Interactions
9 0.721 Solute Solvent Environment
10 0.697 Hydrogen bond Pi Bonds
11 0.697 Pi van der Waals Interactions
12 0.644 Salt bridge van der Waals Interactions
13 0.634 Reversible Subset unique Mathematical
14 0.626 Hydrogen bond van der Waals Interactions
15 0.615 Electrostatic Hydrophobic Forces
16 0.601 Kinetic Thermodynamic Energy
17 0.601 Hydrophobic Pi Interactions
18 0.598 Energetic Thermodynamic Energy
19 0.592 Hydrophobic Pi Interactions
20 0.589 Linearly combinable Metabolic Math/Bio

6. Discussion
6.1. A Note on Feature Characterization Error

Error in feature characterization may arise from an ambiguous or alternate interpreta-
tion of implicit features. Implicit features are those that are assumed to exist by scientists
familiar with a particular subfield, and may or may not be discussed verbally by prac-
titioners in the laboratory setting, and are not explicitly mentioned (written, graphical,
or subtext) in the scientific literature [50,51]. While explicit features are described through
a formula, definition, figure, or algorithm, often with an accompanying value proposition
that specifies the feature’s properties, implicit features were harder to characterize. They
perhaps contributed to the appearance of a figure, but were not strongly emphasized in the
text. It is possible that these features could be learned by a deep learning model through
representation learning, and therefore the characterization of all implicit features would
be a low-priority task for the field. Work in semantic analysis suggests that language
models are capable of identifying implicit features [52]. Lacking the specific knowledge
of each subfield from which the literature was surveyed in this study, it is very likely that
some features required deeper knowledge and that feature characterization accuracy was
concomitantly reduced. By consulting experts with years of experience in the techniques
of crystallography or quantum chemistry, this characterization accuracy would be raised
significantly. Supplementary Figure S5, which is analogous to Figure 3, illustrates the forms
of error incurred as methods were applied to collect features.

6.2. Directions for Future Work
6.2.1. Feature Relevance

This study was conducted with the assumption that all features collected are equally
useful for the particular task they were designed for. Thus, in the current iteration of this
feature table, no feature relevance metrics are applied, which precluded supervised learning
on the table to draw some insights. In future iterations of this table, the performance of
specific design tasks for specific molecules should be tabulated for each feature. This
would enable ablation studies on the feature property dataset, unveiling how individual
features or combinations of features help molecular analysis and design. Outside metrics
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can also be used, such as the Comparative Assessment of Scoring Functions (CASF) [53] or
AlphaFold [7] can be used to judge protein–ligand complexes.

6.2.2. Underrepresented Taxa

Through the course of collecting features and analyzing the resulting table of biomolec-
ular features, we recognized that several properties of features in the taxonomy are under-
represented. These areas warrant further attention, and several examples are given below.

1. Residue-Specific Atomic Subsets. Previous work by Cang and Wei included three
atomic structural partitions [54]. In one representation, they included the entire struc-
ture for atom partitioning, in a second representation they only included primary and
secondary shell residues in the binding site, and in a third representation they selected
subsets representing the interactions between two atomic elements. However, this ap-
proach excludes allosteric networks and amino acid level properties. To alleviate this
unintended bias, scientists should partition structures by residue properties and by
computationally or experimentally elucidated allosteric residue interaction networks.

2. Amino acid specific features. Currently, few amino acid specific representations
exist, thus this is a major growth area for protein-specific structural dynamic features.
As mentioned, amino acid motion (and their restriction, such as in active site preorga-
nization) is essential for protein function, although without the tools to experimentally
measure amino acid motion, insights cannot be drawn from amino acid dynamics.
New features should address amino acid specific dynamics, and extend these dynamic
models beyond the common but rudimentary Principal Component Analysis (PCA)
to describe more complex motions with simple equations.

3. Structural trajectories: “dynamicalization” of structural features. It would be com-
putationally trivial to expand all structural features to dynamic structural features
through molecular dynamics simulation. Recent work has improved the efficiency
and analysis of these simulations by integration with DL modeling [55,56] and given
guidance to practitioners for which models they should use with their systems of
study [57].

4. Evolutionary trajectories. In order to make evolutionary methods more accessible
and useful and to take advantage of existing evolutionary knowledge, many desired
features can be computed along an evolutionary trajectory. This is accessible for most
computational methods and may be powerfully applied to evolutionary design tasks.

6.2.3. Deduplication and Expansion of Feature Properties

While compiling features for our dataset, we recognized that some of the features
are repeated, but did not prune these duplicated features in order to not lose the context
in which these features were applied and their specific method of implementation. We
acknowledge that in the absence of deduplication the analysis of feature relevance, feature
ubiquity across different design tasks, and/or historical trends in features is hindered. We
also recognize that unintended bias is also present not only in which features were extracted
from selected publications, but also in the collection of columns used to classify feature
properties, making the accurate assessment of feature properties difficult. For these reasons,
we strongly feel that community-sourced involvement should yield a more systematic
column selection and grouping, ultimately yielding multiple levels of insight into feature
relevance for molecular modeling and design. Thus, future iterations of this dataset will
presumably classify features more exactly.

6.2.4. Potential New Features for Molecular Deep Learning

This current meta-analysis of biomolecular features for deep learning presents a broad
perspective on specific features utilized in publications across the field of biochemistry.
The primary goal for developing our taxonomy was to organize the current state of the art
of biomolecular features for deep learning to strengthen future implementations of deep
learning models to the wide variety of biochemical, molecular interaction, and biomedi-
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cal questions being studied by research investigators worldwide. After our analysis, we
discovered that the resulting taxonomy of features also served to highlight several notice-
able voids in the molecular feature space, especially with respect to dynamic structural
features. A few examples of potential new features are described below. Furthermore, these
features should be, in principle, relatively straightforward to implement using modern
Python libraries.

1. Kinetics-Weighted and Multi-Transition State Sequences. The consensus structure
method described by Smith et al. [58] is an excellent advance in enzyme design,
but can be slightly modified to incorporate more dynamic detail. Each transition
state’s contribution can be weighted by the inverse of the experimentally determined
forward kinetic constant for that particular reaction step. This adjustment would
enable the slowest reaction barriers to exert the greatest influence on the consensus
structure. Secondly, multiple transition states might be considered rather than creating
a consensus structure. This can be accomplished by optimizing multiple states and
their transitions by using fast protein motions, such as sidechain rearrangements,
cofactor vibrations, and other atom-scale dynamics. These two features, coupled with
methods developed to utilize them to the fullest extent, would enhance structure- and
dynamics-based enzyme engineering efforts.

2. Bond strain vector. A bond strain vector would describe bond strain for every bond
in a protein or ligand from theoretically ideal values. Such a feature can be visualized
as a one-dimensional vector where each index in the vector holds the energy of
the indexed bond in kilojoules per mole. Through application of Hooke’s law and
idealized bond geometries, bond energy deviations are easily computed. Then, they
can be visualized on a protein structure, or for a ligand, bound in an active site. Such a
feature is extensible to analogues for angular strain (between three atoms) or torsional
strain (between four atoms) which together describe the system in more dynamic and
mechanical detail. This feature would illustrate where strain is present in a protein
or a ligand structure and may prove important in deep learning tasks concerning
function such as recognition, binding, and catalysis [59].

3. Amino acid sidechain normal modes. Conformational plasticity, from high-frequency
rate-promoting vibrations to sidechain rotamer sampling to large domain motion, is
often required to understand protein function [60–63]. This is especially relevant on
the scale of individual amino acid sidechains within a binding pocket, as they are often
subject to rapid structural rearrangements to enable precise biochemical function.
Bonk et al. simulated enzyme active site dynamics with restricted conformational
mobility to determine which structural features activate catalysis [64]. The ability
to compute other such elementary features may lead to widely interpretable insight
when applied to novel systems. For example, single amino acid motions are criti-
cal for the substrate IP7 to enter the active site of PPIP5K2. Here, a single residue
glutamine-192 utilizes spontaneous motion and the irreversibility of reverse substrate
diffusion to ratchet IP7 from a capture site to the active site [65]. These case studies
demonstrate the value of the automatic extraction of this detail to sense amino acid
motions for analysis or design purposes. While alpha carbon PCA is a popular model
to enable quick visually interpretable dynamic structural features for a gross protein
structure traveling through an ensemble or trajectory [66], no analogous feature exists
for substructures such as sidechains within the protein. In order to compute such a
feature, one would fix a reference frame at each alpha carbon and measure wagging
or spinning modes for each amino acid along with their frequencies using PCA or
nonlinear dimensionality reduction techniques. Next, these modes could be projected
onto the larger protein structure and analyzed for their correspondence with the more
slowly relaxing backbone modes produced by alpha carbon PCA. These collections of
principal components can then be used to construct features assuming either inde-
pendence of motion or any particular dependence, based on correlations in molecular
dynamics trajectories or NMR-derived ensembles. By repeating this process for all
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non-glycine amino acids in a structure, these “amino acid sidechain normal modes”
could reveal how sums of large and small dynamic principal components enable
protein function on multiple scales.

4. Docking strength for interaction specificity and uniqueness. Specificity in biomolec-
ular recognition and binding is a composite problem involving the maximization of
on-target interactions and minimization of off-target ones. Because so many off-target
molecules exist in the cell, this is challenging to solve analytically. However, methods
that measure the strength of binding between two proteins raise the potential to
initiate examination of this space. Such a method could be docking-based, but may be
efficiently implemented by using DL to reduce docking strength determination to a
sequence of matrix multiplications. Using such a method, ostensibly a “kinetic associ-
ation constant regressor network”, off-target interactions could be minimized for each
non-target endogenous protein, while on-target interactions would be maximized.
Such a solution would be a first step towards minimizing unintentional drug side
effects without requiring manual testing of all possible cross interactions in the cell.

6.2.5. Automated Feature Engineering and the Need for Functional Data

Representation learning combines human-readable hand-crafted features into high-
dimensional, machine-readable composite features [67,68]. Critically, these composite fea-
tures are constrained by the input data and representative power of the network, and there-
fore must be built from rigorous, representative elementary features that span all aspects
of relevant biomolecular function. Because there is currently insufficient functional data
(binding constants, enzyme kinetics, spectroscopies, etc.) to train DL networks to relate
an arbitrary ligand or protein structure to its function, this space is still sparsely explored.
Thus, while automated feature engineering may judge feature relevance, hand-crafted
features remain relevant.

6.2.6. Unsupervised Learning Visualization for Dataset Exploration

As researchers explore the feature dataset, using interactive tools to visualize the
feature set will facilitate their selection of properties—and subsequently the features—that
are most relevant to their own analyses and design tasks, and their integration into their
own deep learning models. The t-SNE visualization shown in Figure 8 is a statistically
meaningful way to embed high-dimensionality data (as is present in the feature dataset)
into a more readily interpretable two- or three-dimensional map. By judiciously using
color, size, and outlines, even more dimensions are accessible. This visualization allows the
researcher to leverage the feature space for their own task.

6.2.7. Feature Implementations and Future Integrations

Existing software packages have made selected feature sets available for specific types
of biomolecules. Specifically, the DeepChem drug discovery feature library DeepChem [69]
provides feature conversions for ligand systems, and the Graphein library [70] already
includes many graph-based protein features. A broader library could be written for all
described features and diverse molecule types, with each feature classified according to
their properties. Implementing the complete list as presented in the feature table is beyond
the scope of this work, and would benefit immensely from community-level discussion of
optimal approaches for development. It remains an open project to collect this library of
open-source implementations with an accessible and appropriate API for end-users.

Keeping this essential database up-to-date is envisioned as a community-based task
that benefits significantly from the open-source development model. Sharing the task
of collection, implementation, and analysis of features, would materialize several key
benefits. Firstly, the task of collection and analysis would not fall on a single person, which
enables the project to extend beyond the time and effort constraints of that person. Second,
the perspectives represented in the table would be averaged between the contributors
and thus reduce intrinsic or unintentional biases. Thirdly, feature evaluation and opt-in
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performance telemetry could be used to analyze feature relevance by measuring which
features or collection of features perform best in specific tasks [28,30,34,71]. Existing
algorithms [72,73] and software [74,75] are already implemented and capable of using such
telemetry for automated calculation of feature relevance, or to aid investigators in their
search for optimal features [76].

Eventually, such a database of features could be integrated into established molecular
simulation suites. One notable example is Omnia, which uses the package OpenMM for
molecular dynamics trajectory generation, MDTraj [77] for molecular dynamics trajectory
analysis, TorchMD [56] for improved efficiency in molecular simulation, MSMBuilder2 [78]
and PyEMMA [79] for the construction of Markov State Models, and YANK for alchemical
free energy calculations. Another package called ProDy [66] includes several features docu-
mented in the features table. Similar integrated feature modeling suites could automatically
generate robust existing features and enable easier implementations for new compound
features. Finally, integration into protein modeling software suites such as Rosetta would
bring these insights directly to protein designers.

6.2.8. Publicly Available Biophysical Datasets

Compiling datasets from biophysical assays has become a more common practice with
improvements in experimental techniques, software, and hardware over recent decades.
Because features are designed using empirical data, rigorous and auditable feature imple-
mentations require the data to be publicly available. Plentiful publicly available image
and text data were used to train Stable Diffusion [80] and ChatGPT [81], respectively,
which define the state of the art in their tasks. In the biophysical literature, open data
have already led to the creation of powerful deep learning models such as AlphaFold [7]
and RoseTTAFold [6] from the Protein Data Bank (PDB) [41], RGN2 [82] from the Uni-
Parc protein sequence database [83], cryoDRGN [84] from the EMPIAR database [85],
and ModelAngelo [86] from the Electron Microscopy Database (EMDB) [87]. Similarly vast
biophysical databases are poised to be incorporated into useful data-driven deep learning
models to glean dynamical details, such as NMR chemical shift data from the Biological
Magnetic Resonance Database (BMRB) [88] or Small Angle Scattering Biological Data Bank
(SASBDB) [89].

As deep learning has grown in popularity, more public databases of biophysical
observables have been created on the worldwide web. We support this trend, and encourage
the reader to submit their data to these public databases or to create these public databases
with their colleagues if they do not already exist. The overall range of benefits of this
work are hard to predict, but several are easily anticipated. Beyond structural dynamics,
functional data from databases containing binding constants [42], enzyme mechanisms [90],
and enzyme activity measurements [91], or electronic data from biomolecular FRET, EPR,
and Raman spectroscopies could enable direct analysis and design of quantum states in
enzyme active sites, a prevailing grand challenge even with the advent of structural deep
learning networks.

7. Conclusions

A list of 1360 nonunique observed biomolecular features was extracted from N = 808 pub-
lications and classified by a series of feature properties. Feature properties were generalized
to produce a taxonomy of biomolecular features. Feature space was visualized using com-
positional pie charts and unsupervised clustering methods in order to explore and describe
feature space topology. New features were proposed using this taxonomy as a guide which
would serve to fill some voids not currently addressed in the literature. Finally, directions
for further development of the feature table with a mechanism for analyzing each feature’s
efficacy in analysis and design tasks were discussed, and the benefits of implementing
these features in an open sourced, public repository were outlined.
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36. Demšar, J.; Curk, T.; Erjavec, A.; Črt Gorup.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al.
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