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Abstract: A proposed optimized model for the trajectory tracking control of a wheeled inverted 

pendulum robot (WIPR) system is presented in this study, which addresses the problem of poor 

trajectory tracking performance in the presence of unknown disturbances due to the nonlinear and 

underactuated characteristics of the system. First, a kinematic controller was used to track a refer-

ence trajectory and generate a control law that specifies the desired forward and rotation speeds of 

the system. Next, a nonlinear disturbance observer (NDO) was designed to enhance the system’s 

robustness to external disturbances and improve its tracking performance. Then, the coupled sys-

tem state variables were decoupled into two subsystems: a forward rotation subsystem and a tilt 

angle velocity subsystem. An improved hierarchical sliding mode controller was designed to con-

trol these subsystems separately. Finally, simulation experiments were conducted to compare the 

proposed method with a common sliding mode control approach. The simulation results demon-

strate that the proposed method achieves better tracking performance in the presence of unknown 

disturbances. 

Keywords: wheeled inverted pendulum robot; underactuated; nonlinear disturbance observer;  

hierarchical sliding mode control 

 

1. Introduction 

With the rapid development of technology, human society has simultaneously 

achieved increased convenience and comfort [1]. In today’s factory warehouses and pro-

duction lines, a variety of robots add to the possibilities of Industry 4.0. In the warehouses 

of more advanced companies, transport robots can be found everywhere, replacing tradi-

tional manpower and eliminating the need for workers to carry out repetitive lifting and 

carrying. These “smart” robots can accomplish a task as long as they can follow the re-

quirements of a given transport trajectory. This paper studies the trajectory tracking of a 

mobile wheeled inverted pendulum on a given reference trajectory to achieve perfect 

tracking of the ideal motion trajectory of the robots, meeting the requirements of factory 

transport robots and providing a powerful source of assistance to realizing smart factories 

[2–5]. 

Mobile wheeled inverted pendulum models, such as WIPRs, have attracted much 

attention because of their special advantages, such as compactness, mobility, and human-

like functions. WIPRs are widely used to verify the effectiveness of nonlinear underactu-

ated control methods, and compared with the traditional inverted pendulum, WIPRs 

Citation: Hou, M.; Zhang, X.;  

Chen, D.; Xu, Z. Hierarchical Sliding 

Mode Control Combined with  

Nonlinear Disturbance Observer for 

Wheeled Inverted Pendulum Robot 

Trajectory Tracking. Appl. Sci. 2023, 

13, 4350. https://doi.org/10.3390/ 

app13074350 

Academic Editor: Jonghoek Kim 

Received: 28 February 2023 

Revised: 27 March 2023 

Accepted: 27 March 2023 

Published: 29 March 2023 

 

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2023, 13, 4350 2 of 22 
 

have more applications than traditional inverted pendulum vehicles, especially in un-

known, dynamic, and nonlinear environments, and are commonly used in logistics trans-

portation, commuting, and navigation, as well as in the aforementioned application in the 

environment of factory transportation. However, a WIPR is classified as a typical model 

of nonlinear underactuated systems with two input torques driving two wheels and three 

degrees of freedom (forward, rotation, and tilt angle of the pendulum), and achieving its 

high-performance motion control is still a challenging task for the control community [6–

9]. 

On the one hand, when a WIPR moves, it is always assumed that the ground can 

provide enough friction to prevent the robot from side-slipping and wheel-sliding (i.e., 

the robot is guaranteed to move with purely rolling wheels without skidding phenom-

ena), which is a non-complete constraint at this point. On the other hand, consider that 

the underdriven inverted pendulum body needs to use the input torque of two driving 

wheels to control the three degrees of freedom of WIPR forward movement, rotation, and 

the angle of the inverted pendulum. If we want to use MWIPR to track the trajectory, we 

need to drive a WIPR in real time to control the three form variables with two input vari-

ables, which is a typical underactuated problem. Finally, in the real world, WIPRs operate 

in factories or other similar environments and always encounter various unknown dis-

turbances that interfere with the system. Therefore, the three problems of incomplete con-

straints and underactuated and unknown perturbations are the main challenges faced by 

this particular mobile robot for trajectory tracking control [10–13]. 

The three issues mentioned above are of importance for the following reasons. First, 

the incomplete constraint will lead to the WIPR being unable to follow any trajectory 

movement, especially in the case of high-speed heavy load; if the robot’s incomplete con-

straints are not considered in motion planning, this is likely to lead to untimely obstacle 

avoidance and unreachable trajectory. Second, underdriven robots often have excellent 

dynamic performance or price advantages in terms of drive cost, but their biggest problem 

is the higher requirements in controller design. Finally, unknown disturbances will affect 

the control accuracy of the system to a certain extent, and more seriously, will affect the 

stability of the control system [14,15]. 

Many researchers and practitioners have proposed several control algorithms to 

overcome the difficulties faced by the problems associated with WIPR systems. One of the 

widely used methods is fuzzy control, which is an empirical, rule-based control technique 

that can effectively control nonlinear systems. By establishing a dynamic model of the 

WIPR, a fuzzy-logic-based controller can be designed to take the position and angle infor-

mation of the WIPR as the input and output control signals to control its motion state. For 

instance, Jian Huang, in [16], proposed an Integral Interval Type 2 Fuzzy Logic (IT2FL) 

method that can maintain the MTWIP equilibrium while obtaining the desired position 

and orientation to make it work in an uncertain environment. However, the disad-

vantages of fuzzy control include low control accuracy, strong dependence on control 

rules, and difficulty in designing control rules. 

The second control algorithm type is neural network control. Chenguang Yang [17] 

decomposed the underdriven WIPR model into two subsystems. The approximation char-

acteristics of the neural network were used for motion control of the fully driven subsys-

tem, and the sub-fully driven system was used to indirectly control the tilt angle motion 

of the pendulum. However, the method requires a large number of wavelet coefficient 

vectors, making the neural network computationally intensive. 

Finally, sliding mode control, as the most typical robust control method, shows good 

tracking performance and strong robustness, which support its wide use in linear and 

nonlinear systems. For underactuated systems, various sliding mode control methods 

have been proposed by researchers to achieve different control effects, such as integral 

sliding mode control, terminal sliding mode control, and hierarchical sliding mode con-

trol [18–20]. Among them, the application of hierarchical sliding mode control in practical 

underdriven systems is receiving more and more attention, such as balancing control of a 
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double-inverted pendulum and trajectory tracking control of a wheeled inverted pendu-

lum. Nabanita Adhikary, in [21], proposed an integral inverse-step sliding mode control-

ler for underdriven system control. A feedback control law was designed based on the 

backpropagation method, and a sliding surface was introduced in the final stage of the 

algorithm. Jian Huang, in [22], designed two terminal sliding mode controllers to control 

the speed and braking of a UW-Car based on the dynamic model and the terminal sliding 

mode control method. He Ping [23] proposed a hierarchical sliding mode controller 

(HSMC) developed to simultaneously perform speed control and balance control of a two-

wheeled self-balancing vehicle (TWSBV). 

Hierarchical sliding mode control is a control strategy based on sliding mode control, 

which divides the sliding surface into two layers. In the first layer, a high-speed sliding 

surface is introduced, and the control system approaches the desired state quickly. In the 

second layer, a low-speed sliding surface is introduced, and the control system stabilizes 

near the desired state. The layered sliding mode control can improve the control accuracy 

and stability and also has a good effect on the response speed and robustness of the sys-

tem. Therefore, hierarchical sliding mode control has the same drawback in that it is in-

sensitive to disturbances, which can easily cause the “jitter” phenomenon of the system. 

To address the shortcomings of sliding mode control, this paper proposes an improved 

hierarchical sliding mode control method with adaptive exponential convergence law, 

which can adaptively adjust the control convergence law according to the control state 

and smooth the sign function, thus effectively improving the problem of the strong jitter 

of the traditional sliding mode control, and combining the nonlinear disturbance observer 

(NDO), which is the most powerful method for the control of sliding mode. The NDO can 

effectively solve the negative impact caused by the unknown disturbance and make the 

system more robust, and achieve an ideal control effect on the trajectory tracking ability 

of the WIPR system [24–30]. 

Overall, this paper includes the following four aspects: the first part constructs the 

dynamic model of the WIPR system, decouples the multi-coupled state variables, and fa-

cilitates the subsequent controller design; the second part establishes the kinematic trajec-

tory tracking controller of the system and solves to obtain the desired speed of the dy-

namic control system. In the third part, an optimization model of the WIPR system com-

bining nonlinear disturbance observer and hierarchical sliding mode control is designed, 

and the convergence of the nonlinear disturbance observer and the stability of the im-

proved hierarchical sliding mode controller is demonstrated. The fourth part constructs 

the simulation model using the MATLAB/Simulink platform and conducts numerical sim-

ulation comparison experiments. 

The contributions of this paper are as follows: 

(1) A wheeled inverted pendulum robot with a transport platform is envisioned for use 

in warehouses or other application scenarios to move goods. 

(2) The convergence law of hierarchical sliding mode control is improved to mitigate the 

jitter phenomenon of the sliding mode control system, and an adaptive function is 

introduced to minimize the system jitter. 

(3) By combining a nonlinear disturbance observer and hierarchical sliding mode control 

to estimate unknown external disturbances as input compensation, the system is 

made to control more accurately. 

2. Materials and Methods 

2.1. WIPR Model 

A WIPR is a wheeled inverted pendulum transport robot with a placement table, as 

illustrated in Figure 1. Its left and right wheels are independent drive wheels that control 

the robot’s movement speed, rotation direction, and tilt angle of the pendulum using the 

principle of differential drive to manage the position and posture of WIPR. The general-

ized world coordinate system is denoted OXYZ while  ,x y , representing the center 
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coordinate of the robot wheels. The robot’s forward velocity and rotational angular veloc-

ity are denoted as v  and w , respectively. The angle of the robot’s direction of motion 

concerning the X -axis is represented by  , while   is the tilt angle of the pendulum 

concerning the Z -axis. M  refers to the total weight of the transport platform plus the 

pendulum, whereas m denotes the weight of each drive wheel. The distance between the 

two wheels is represented by d , while r , and l  are the torque of the right wheel and 

the left wheel, respectively. The rotational inertia of each driven wheel is denoted by wI

and MI  represents the rotational inertia of the transport platform and the pendulum to-

gether. The length of the pendulum is represented by L . Detailed introduction of robot 

parameters can be seen in Table 1. 

Table 1. Parameter descriptions. 

Parameter Description 

wm  Mass of each wheel 

M  The total weight of the transport platform plus the pendulum 

wI  The rotational inertia of each driven wheel 

MI  The rotational inertia of the transport platform and the pendulum 

d  The distance between the two wheels 

L  The length of the pendulum 

l  The torque of the left wheel 

r  The torque of the right wheel 

v  WIPR forward velocity 

w  WIPR rotation velocity 

  WIPR Yaw angle 

  The tilt angle of the pendulum 

Remark 1. The forward velocity of MWIPR is vx , and cos sinvx x y    . 

Assumption 1: The tires of the MWIPR do not experience any skidding, and there is no potential 

for lateral deflection during its motion. 
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Figure 1. WIPR system. 

According to Assumption 1, the incomplete constraint equation of WIPR in Equation 

(1) can be listed as follows: 

sin cos 0x y    , (1)

The position and posture of the WIPR in the world coordinate system are represented 

by  , , ,
T

q x y   . As the Lagrangian modeling method does not require the inclusion 

of internal forces within the system, it is a quick and straightforward method of building 

a model. This property makes it particularly well-suited for constructing multivariable 

and nonlinear dynamic models for the WIPR, as demonstrated in this paper. By dividing 

q  into mq  and  , the position of the robot in the coordinate system is denoted by mq

, while the angle of the pendulum is represented by  . Therefore, the Lagrangian method 

[31] is employed to establish the dynamic model of the WIPR, and the resulting mathe-

matical model is presented below as Equation (2). 

   
   

   
   

¨

¨

m m m m mmm

m m

M q M q C q C q Gq q

M q M q C q C q G
 

    


                         





   
0 0

T
mm m m m
dB q A q

d

     
      

    
, 

(2)

By defining    sin , cos ,0mA q    , the incompleteness constraint of Equation 

(1) yields the following result: 

  0m mA q q  , (3)

The WIPR system’s incomplete constraint force is  T
mA q  , where   is the La-

grange Multiplier. To eliminate the constraint forces in the system, we seek to find a ma-

trix   3 2
mS q   that satisfies     0T T

m mS q A q  . 

By defining  ,
T

v w  , therefore, Equation (4) can be deduced. 
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 mq S q  , (4)

To eliminate the incompetent constraint forces, a new vector 1 2 3, ,
T

      
   

 , ,
T

v w    is defined and used to transform the equation. The transformation involves 

multiplying both sides of the equation by a scalar  T
mS q , resulting in Equation (5): 

     , dM q C q q G q        , (5)

The dynamics of the system can be described using the following equation, in which 

  3 3M q   represents the inertia matrix,   3 3,C q q q     is the Coriolis force ma-

trix,   3 1G q   is the gravity matrix,   is the control input matrix, and d  is the to-

tal unknown disturbance. The detailed expressions of each vector or matrix are presented 

below. 
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The value of each variable in the expression is indicated as 
2

11 2 2 /Mm m I r M   , 13 31 cosm m ML   , 

2 2 2 2 2
22 / 2 / 2 sinMm d m I d r I ML     , 

2
33 Mm ML I  , 

   2 2
22 1/ 2 sin 2c ML   ,    2

23 1/ 2 sin 2c ML   , 13 sinc ML    , 

32c     21/ 2 sin 2ML  . 

Due to the coupling of the state variables in the system, Equation (5) is decoupled 

into Equation (6). 

 
 

 
 

11 33 13 31 1 13 32 2 33 13 3 13 3

33 1 1 13 3
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, (6)

By defining  1 1 2 3 2 1 2 3, , , , ,
TT

           
   , Equation (6) is converted to 

Equation (7). 

   
1 2

2 f g D

 

   

 


  




, (7)

where 
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where 11 33 13 31m m m m  . 

2.2. The Design of the Kinematic Control Law 

In kinematic trajectory tracking control for a WIPR, the system can be simplified to a 

general two-wheeled non-complete mobile robot for trajectory tracking. The process in-

volves utilizing a reference trajectory state vector  , ,
T

mr r r rq x y  , an actual state vec-

tor  , ,
T

mq x y  , and a control objective designed to manage linear and angular veloc-

ities. The objective is to ensure that the actual robot travel trajectory aligns with the refer-

ence trajectory, even if the trajectory error  , , , ,
T T

me x y r r rq e e e x x y y          

approaches zero. To meet the requirement expressed above, the control laws for dv  and 

dw  can be devised as Equation (8). 

lim 0me
t

q


‖ ‖ , (8)

The Lyapunov function is selected as Equation (9). 

2 2
1

1 1
1 cos

2 2
e e eV x y     , (9)

While the error persists, the value 1V  remains greater than zero, thereby rendering 

the function positive definite. Equation (10) describes the derivative of 1V . 

     
1 sin

cos sin sin

x x y y

x y r y x r r

V e e e e e e

e we v v e e we v e w w e

 

  

  

       

   

sin cos sin sin 0x x r y r rve w e e v e e v e w e          , 

(10)

Lyapunov’s stability theorem [32] establishes that the system can achieve asymptotic 

stability if the function is negative definite, i.e., if 1 0V  . Accordingly, the sought control 

law is as follows (11). 

1

2

cos

sin
d r x

d r r y

v v e k e

w w v e k e




 


  
, (11)

Both 1k  and 2k  are positive constants. 
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Substituting the control law into 1V
  gives the following equation. 

   1 1 2cos sin sin cos sin sinx r x r r y x r y r rV e v e k e w v e k e e e v e e v e w e             

2 2
1 2cos cos sin sin sin sin sinx r x r x r r r y y r ee v e e v e k e w e w e v e e e v e k

             
2 2

1 2 sin 0x ek e k


      

(12)

Therefore, 1 0V   can be proven. 

So far, the desired velocity required for the design of the dynamical system is shown 

in Equation (11), and the velocity tracking problem of the dynamical system and the angle 

tracking problem of the pendulum will be solved next. 

2.3. The Design of NDO 

A nonlinear disturbance observer is developed to estimate the actual disturbance in 

the system for an unknown disturbance D, thereby strengthening the system’s robustness. 

To address practical considerations, it is assumed that any disturbance is bounded as fol-

lows [33–35]. 

Lemma 1. For initial conditions that are bounded, a Liapunov function is also uniformly bounded 

 x t  if there exists a continuous positive definite Liapunov function  V x  satisfying the fol-

lowing conditions: 

     1 2x V x x  ‖‖ ‖‖ ,    V x V x c   , (13)

where 1 2, : n     is the V  class function, and , c  all are positive constants. 

Assumption 2. Since no disturbance can be infinite in the real world, we assume that the pertur-

bations in the WIPR system studied in this paper are all bounded, and their first-order derivatives 

and second-order derivatives are assumed to be bounded; thus, the following equations can be ob-

tained. 

1 2 1 2  0, 0D D       ‖ ‖ ，‖ ‖ ，  

‖‖ represents the Euclidean norm of the vector. The NDO is designed as in Equation 

(14). 

 1 1 2D̂ Z P        1 1 2

ˆˆZ L f g D D         
 

 2 2 2D̂ Z P        2 2 2
ˆZ L f g D        

 , 

(14)

D̂  and D̂  represent the estimates of the total perturbation and its derivative, re-

spectively, while 1Z  and 2Z  are intermediate variables in the observer. To meet the re-

quirements of the system, the self-designed nonlinear functions  1 2P   and  2 2P   

are used and must satisfy the conditions  
 1 2

1 2

2

P
L










 and  

 2 2
2 2

2

P
L










. 

Property 1. The error between the estimated and actual values of the disturbance is represented by 

ˆD D D  , while 
ˆD D D     represents the error between the derivative of the actual value 

of a perturbation and the derivative of the estimated value of the same perturbation. 
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The derivation of D  and D  substitution of Equations (7) and (14) into the above 

equation leads to results D
  and D , which are the equations of the NDO, (15) and (16), 

respectively. 

 
 2 2

1 1 1 2 2

2

ˆ P d
D D D D Z D Z L

dt

 
 




        



      

       1 2 1 2 2

ˆˆD L f g D D L            
 

           1 2 1 2

ˆˆD L f g D D L f g D                  
 

 1 2L D D     , 

(15)

 
 2 2

2 2 2 2 2

2

ˆ P d
D D D D Z D Z L

dt

 
 




        



       

           2 2 2 2
ˆD L f g D L f g D                  



 2 2L D D    , 

(16)

By letting ,
T

T TE D D 
 

   and substituting the appropriate Equations (15–(17) can 

be obtained. 

E LE D   , (17)

where 
 
 

1 2 3

2 2 0

L I
L

L





 
  

 
, 

3

0

I


 
  

 
. The observer’s stability is examined, and a Lya-

punov function is selected to make sure that it can reliably predict the system state despite 

any nonlinear disturbances. By selecting an appropriate Liapunov function, we rigorously 

prove the stability of the observer and the precision of its estimation precisely. 

Property 2. L  is a skew-symmetric matrix. 

2

1

2
TV E E , (18)

The proof of the derivative of 2V  can be expressed as follows: 

 2
T TV E E E LE D      2 2

6 20.5 0.5TE L I E   ‖ ‖ ,  (19)

The above design of an NDO for a WIPR can be summarized in the following theo-

rem. 

Theorem 1. For the existence of an unknown disturbance in a WIPR system, the perturbation 

estimation error is bounded for the observer designed according to Equation (14). 

Proof. The design parameters  
 1 2

1 2

2

P
L










 and  

 2 2
2 2

2

P
L










 are such that 

2
60.5L I ‖ ‖  is a negative definite matrix, according to Lemma 1, then E  is bounded. 

□ 
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2.4. The Design of Improved Slide Mode Control 

The sliding mode control algorithm consists of two key elements: (i) the design of the 

sliding mode surface; and (ii) the design of the convergence rate. The design of the sliding 

mode surface is mainly based on the system structure as well as the control objective. As 

for the design of convergence law, there are four different convergence laws: the isokinetic 

convergence law, exponential convergence law, power convergence law, and general con-

vergence law. In this paper, based on the optimal control objective of WIPPR to cope with 

nonlinearity and underdrive, as well as unknown disturbances, the traditional exponen-

tial convergence law is improved by introducing an adaptive control function, and an im-

proved sliding mode control based on the adaptive exponential convergence law is pro-

posed, which can weaken the system jitter while speeding up the system response, mak-

ing the sliding mode control more suitable for tracking the reference trajectory of the 

WIPR system under the action of unknown disturbances [36]. The design for the tradi-

tional exponential convergence law is shown in Equation (20). 

 sgns s s    ,  (20)

where: s  denotes the slip surface function; the parameters  ,   denote the conver-

gence coefficient; and  sgn s  denotes the sign function. 

In the traditional exponential convergence law, the isokinetic term is denoted

 sgn s , and the exponential term is denoted s . When the state of the system is 

far from the slip surface, the exponential term and the isokinetic term in the convergence 

law act simultaneously to help the system move toward the slip surface, and the magni-

tude of the isokinetic term and the exponential term are mainly determined by the refer-

ence  ,  . The exponential term is small, and the isokinetic term acts mainly when the 

system is moving close to the surface. 

This paper makes a corresponding improvement based on the traditional exponential 

convergence law and introduces the adaptive  o s  function to adjust the convergence 

law in accordance with the control state of the system, as shown in Figure 2, which can 

accelerate the convergence speed of the sliding mode and weaken the overshoot phenom-

enon. This allows the sliding mode control to reduce the jitter phenomenon of the system. 

Following the inclusion of the adaptive function  o s , the new exponential convergence 

law is as follows: 

   

 
   

 

sgn

| | 1 log | |

| | log | |

a

a

s o s s s

s s a
o s

s s a b

    


       



, (21)

where 0a  , 0b  , 0  , 0  . 
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Figure 2. The adaptive function  o s . 

Through the analysis, relative to not adding the adaptive function (i.e., o(s) = 1), it 

can be found that when the system motion point is far away from the sliding surface 

(namely, when s is far away from the origin 0), the adaptive function  o s  will increase 

the convergence law, which will speed up the system convergence speed, shorten the sys-

tem state convergence time to the target state, and reduce the control time; when the sys-

tem motion point is close to the sliding surface, s  will converge to 0 and  o s  will be 

less than 1. The role of  o s  here is to suppress the jitter amplitude and weaken the state 

variable fluctuation problem after the system is stabilized, and the suppression effect will 

be more obvious as the parameter b  increases. To further weaken the jitter problem of 

the stabilized system, the smoothing process is carried out for the symbolic function 

 sgn s  in this paper, which is known as the traditional symbolic function [37], as shown 

in the following equation. 

 
1 0

sgn 0 0

1 0

s

s s

s




 
 

,  (22)

The symbolic function after the smoothing process is shown below. 

 sgn , 0.01
s

s
s




 


, (23)

2.5. The Design of the Forward-Rotation Subsystem 

For convenience, the system has been reorganized into the following form (24). 

 

 

33
1 13 32 2 33 13 3 13 3 1 1

2 22 2 23 3 2 2

22 22

1

1 1

m
m c m c m g D

c c D
m m

   

   


      


     


  

  
,  (24)

The state variables in the system described by Equation (24) are highly coupled. To 

address this issue and to expand the system’s asymptotic stability domain, a hierarchical 

sliding mode controller was designed. The controller’s primary objective is to utilize an 
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input control law that can simultaneously control both system variables 1  and 2 , 

thereby, mitigating the problem of system coupling [38]. 

Having obtained the expected forward velocity ( dv ) and angular velocity ( dw ) from 

Equation (11), the error between the actual and expected values can be defined as follows: 

1 1

1 1

2 2

2 2

cos sin
vx d r r r r v

v d d

d r

w d d

e x y x

e v v

e

e w w


   

 

   

 

    


   


   
    

 

 

,  (25)

To design the sliding mode control error tracking scheme for the v -w  subsystem, 

two mutually independent first-layer sliding mode surfaces were initially constructed. 

The equations used to create these slide surfaces are as follows: 

1 1 1, 0
vx vs e e    , (26)

2 2 2, 0ws e e    , (27)

The results of deriving Equations (26) and (27) are presented below. 

1 1 1 1 1 0
v vx v x ds e e e            

2 2 2 2 2 0w ds e e e              , 
(28)

According to Filippov’s equivalent control theory, the equivalent control laws for 1

and 2  are as follows: 

   

 

1 1 1 1 13 32 2 33 13 3 13 3

33 33

2 22 2 2 22 2 23 3 2

1ˆ

ˆ

veq x d

eq d

e D m c m c m g
m m

m e c c D

    

    


      


     


  

  

 (29)

The second sliding surface can be expressed as a linear combination of the first slid-

ing surface. 

3 3 1 4 2 3, 4 0s s s     ， , (30)

To control 1  and 2 , the equivalent control law must be included at the same time 

to control and enter their designed sliding surface, respectively. Therefore, the total con-

trol law is shown in the following equation. 

1 2u eq eq sw      ,  (31)

sw  is the switching law of the converging slide surface phase, and the expressions 

are as follows. 

   22
3 2 4 1 1 3 3 1 3

22

22
3 4

22

1
sgn

1

eq eq

sw

m
o s s s

m

m

m

     


 

 
    

 




,  (32)

To mitigate the jitter phenomenon of the system, the isokinetic and exponential terms 

of the sliding mode control are improved, where 1  and 1  are the isokinetic and expo-

nential terms of the previous design convergence law, and both are positive constants; 
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 3o s  and  3sgn s  are the adaptive and symbolic functions designed in the previous 

paper. To prove that the designed controller is stable, the Lyapunov function is chosen as 

follows. 

2
3 3

1
0

2
V s   (33)

The derivative of 3V  for time is given by the following expression. 

         3 3 3 3 3 1 4 2 3 3 1 4 2 3 3 1 4 2v vx v w x d dV s s s s s s e e e e s e v v e w w                         
   

             

   33
3 3 1 1 1 2 1 3 2 2 1 2 2

22

1
vx d eq eq sw d eq eq sw

m
s e v f D e w f D

m
         

   
                    

   

           2 2
3 1 3 3 1 3 1 1 1 2 2 2 1 3 3 1 3 3 1 1 2 2

ˆ ˆsgns o s s s D D D D o s s s s D D                   
 

   

(34)

By design  1 3 1 1 2 2o s D D     , the result of the following equation can be ob-

tained. 

2 1
3 1 3 3

2
V s V


     (35)

From Lemma 1 in [38], the following equation can be obtained. 

 
 

 
1

0
2

3 0

t t

V t e V t


 

  (36)

It can be seen that the  3V t  index converges to 0, and the rate of convergence de-

pends on 1 . 

As demonstrated by the preceding equation, the error state can attain the slip surface 

in a finite amount of time. Subsequently, the first layer of slip surfaces 1s  and 2s  can 

converge asymptotically to zero, leading to the convergence of both the rotational and 

forward velocities of WIPR to the desired values. 

2.6. The Design of the Tilt-Angle Subsystem 

The system discussed in the previous section can achieve complete tracking of 1

and 2  within a finite time, which enables us to transform it into the following form: 

  31
3 11 32 2 31 13 3 11 3 3 3

1
d

m
m c m c m g D       

 
   , (37)

As WIPR aims to maintain a vertical and stable direction of the pendulum during its 

motion, all relevant parameters ( , ,d d d    ) can be set to zero. As such, the following 

definitions can be employed: 

d

d

e

e




  

  

   


       
, (38)

Let the sliding mode surface be defined as Equation (39), with its derivative ex-

pressed as Equation (40). 

4 5s e e    , (39)

   4 5 5 2 4 4 2 4sgns e e o s s s                  , (40)
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After substituting Equation (37), the control law for the tilt angle subsystem can be 

derived as presented in Equation (41). 

      5 3 11 12 2 31 13 3 11 3 2 4 4 2 4

31 31

1ˆ sgnD m c m c m g o s s s
m m

      


          (42)

To prove the stability of the designed system, the Lyapunov function is chosen as 

follows. 

2
4 4

1

2
V s  (42)

The derivative of 4V  for time is given by the following expression. 

 4 4 4 4 5 4 5 3 3

22

1
V s s s s f D

m
     

 
         

 

   

       2 2
4 2 4 4 2 4 5 3 3 2 4 4 2 4 5 3

ˆsgns o s s s D D o s s s D              
 

  

(43)

By choosing  2 4 5 3o s D   , it enables 4 0V   to hold, indicating that the sys-

tem achieves asymptotic stability. 

Figure 3 displays the schematic block diagram of the control system. 

 

Figure 3. The control system. 

3. Simulation 

The focus of this section is to discuss the trajectory-tracking effect of the system in a 

simulation environment, and to verify the feasibility of the proposed control scheme and 

what the advantages of the proposed method are compared with other control systems in 

this paper. Next, the simulation results of different control systems in the face of the same 

disturbance will be compared to verify the control effectiveness of each system. The pa-

rameters in the system are shown in the following Table 2. 
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Table 2. The value of each parameter variable in the system. 

Parameter (Unit) Value 

 kgM  8 

 kgm  0.5 

 2kg mMI   5 

 2kg mwI   0.3 

 md  0.5 

 mL  0.5 

 mr  0.1 

The simulation experiments in Matlab/Simulink verified the high-precision trajectory 

tracking capability of the system and the stability of the pendulum in robot motion. Dur-

ing the simulation study, the initial position was set as  0, 0, 0
T

mq  , and the initial 

position of the reference trajectory was set as  0,0, / 2
T

mrq  , where the desired 

tracking velocity = 1 m/s and the angular velocity = 1 rad/s. Therefore, the trajectory of the 

robot should be a circle with a radius of 1 m, and the center of the circle is  0,0 . There-

fore, the time function of the reference trajectory was chosen as  sin , = cosx t y t . 

An external perturbation was added, as shown in the following equation. 

 
 
 

1

2

3

0.4sin 0.4

0.5cos 0.5

0.6sin 0.6

D t Nm

D t Nm

D t Nm

 



 

, (44)

To demonstrate the superiority of the proposed method in this paper, three compar-

ative experiments were conducted under the given disturbance conditions: the first ex-

periment involved the simulation results of the unimproved HSMC method, the second 

experiment involved the simulation results of the improved IHSMC method with adap-

tive law but without nonlinear disturbance observer, and the third experiment involved 

the simulation results of the proposed method in this paper (referred to as PC). 

First of all, by observing Figures 4–6, it can be concluded that the proposed method 

in this paper is better than the other two control methods in terms of both the speed of 

convergence of the error to the steady state and the magnitude of the fluctuation of the 

error after reaching the steady state when compared with the other two methods. This 

undoubtedly reflects the effectiveness of the method in this paper, which can track the 

given reference trajectory very accurately. 
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Figure 4. The error of x. 

 

Figure 5. The error of y. 

 

Figure 6. The error of θ. 
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Figures 7 and 8 give the tracking of the desired speed of the WIPR system under the 

three control methods. Compared with the other two methods, firstly, the control method 

in this paper can track the desired speed more rapidly, reaching the effect of tracking the 

desired speed at 0.7 s, whereas the other two methods track the desired speed in more 

than 1 s, which is much slower than the method in this paper, and the fluctuation fre-

quency is high, which may affect the stability of the WIPR. As can be seen from Figure 8, 

the present method exceeds the other two methods in the tracking effect of rotational ve-

locity relative to the forward velocity, for one. The convergence speed is fast, and more 

importantly, the proposed method is very stable after the velocity tracking reaches the 

steady state, which can be regarded as showing no fluctuation compared with the other 

two methods. 

 

Figure 7. WIPR forward velocity v . 

 

Figure 8. WIPR rotation velocity w . 

The HSMC method with general exponential convergence law has more frequent an-

gle oscillations, and the system is more unstable, as can be seen from the angle change of 

the WIPR pendulum shown in Figure 9, whereas the IHSMC improved convergence law 
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method’s pendulum has smoother oscillations after reaching stability, and the control ef-

fect is obviously stronger than that of the HSMC with general exponential convergence 

law. In terms of response time and maximum overshoot, the suggested method outper-

forms the other two ways, and it can continue to operate smoothly and without oscilla-

tions once it has reached the stabilization point. 

 

Figure 9. The angle of the WIPR pendulum  . 

The variograms of the input torque for the three control methods are presented in 

Figures 10–12. The results indicate that when the convergence law of HSMC follows the 

general exponential convergence law, the jitter vibration of the input torque for the left 

and right wheels of WIPR is evident, which adversely affects the output of the actuator 

(i.e., affects the output of the drive motors of the left and right wheels). In contrast, Figure 

11 illustrates that the improved convergence law significantly reduces the jitter phenom-

enon, resulting in a more beneficial improvement for the actuator. 

 

Figure 10. Input torque under HSMC. 
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Figure 11. Input torque under IHSMC. 

 

Figure 12. Input torque under PC. 

Figure 12 presents the variation of input torque under the proposed control method. 

It can be observed that the input torque obtained by this method is smoother than IHSMC, 

and the jitter suppression effect is more satisfactory. This approach achieves a better 

torque input graph, making it the most effective method among the three for actuator 

benefits. Therefore, the proposed control method demonstrates superior performance in 

terms of reducing jitter and enhancing actuator benefits compared with the other two con-

trol methods, making it a better solution. 

Figure 13 shows the trajectory tracking diagrams of different control systems. From 

an intuitive point of view, the proposed scheme is also significantly better than the other 

two schemes. As shown by the simulation comparison experiment, the method proposed 

in this paper is feasible, and its effect is excellent. 
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Figure 13. Tracking of circular trajectories. 

4. Conclusions 

The purpose of this paper was to study the trajectory-tracking problem for WIPRs 

and propose a hierarchical sliding mode controller with a nonlinear perturbation observer 

to achieve accurate control of the reference trajectory and maintain the pendulum stability 

during motion. A nonlinear disturbance observer was designed to make the system more 

robust to unknown external disturbances. The underdriven coupling of WIPRs was ad-

dressed by dividing the system into two subsystems through the decoupling of its control 

state variables. The hierarchical sliding mode control method with an improved conver-

gence law was then applied to control the system and suppress the “jitter” phenomenon. 

Finally, the Lyapunov function was chosen to verify the stability of the system mathemat-

ically. 

The feasibility of the control system was verified using simulation software. How-

ever, considering the complexity of the real-world environment and external uncertainty, 

future work will focus on building a hardware system for the robot to study the real effects 

of the control method of WIPRs in the real world. 
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