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Abstract: Tomatoes are a crop of significant economic importance, and disease during growth
poses a substantial threat to yield and quality. In this paper, we propose IBSA_Net, a tomato leaf
disease recognition network that employs transfer learning and small sample data, while introducing
the Shuffle Attention mechanism to enhance feature representation. The model is optimized by
employing the IBMax module to increase the receptive field and adding the HardSwish function to
the ConvBN layer to improve stability and speed. To address the challenge of poor generalization
of models trained on public datasets to real environment datasets, we developed an improved
PlantDoc++ dataset and utilized transfer learning to pre-train the model on PDDA and PlantVillage
datasets. The results indicate that after pre-training on the PDDA dataset, IBSA_Net achieved a test
accuracy of 0.946 on a real environment dataset, with an average precision, recall, and F1-score of
0.942, 0.944, and 0.943, respectively. Additionally, the effectiveness of IBSA_Net in other crops is
verified. This study provides a dependable and effective method for recognizing tomato leaf diseases
in real agricultural production environments, with the potential for application in other crops.

Keywords: tomato; transfer learning; small sample; IBSA_Net; disease recognition

1. Introduction

In agriculture, the identification of tomato leaf diseases has traditionally relied on
manual identification, which can be subject to fluctuations in accuracy due to the variability
in the experience and expertise of the human identifiers [1]. Additionally, the process is
laborious and time-consuming, making it challenging to identify a large number of experts
with sufficient experience in the identification of tomato leaf diseases [2].

Recent advances in machine learning and deep learning techniques have revolu-
tionized crop pest and disease identification by enabling the automated detection of leaf
diseases. However, traditional machine learning methods face limitations, such as the
need for manual screening of features and the inability to perform fully automated disease
identification, including disease classification [3–6]. Conventional convolutional networks
are also not optimal for recognizing single diseases in crop disease identification and may
not accurately identify diseased regions of the crop [7–9].

Annabel and Muthulakshmi addressed these limitations by employing the random
forest (RF) algorithm to detect three different types of tomato leaf diseases, namely bacterial
spots, tomato mosaic viruses, late blight, and healthy leaf disease. The algorithm achieved
an impressive accuracy of 94.10%, surpassing the results obtained using the SVM and MDC
algorithms, which recorded accuracies of 82.60% and 87.60%, respectively, when applied
to the same dataset [10]. In a similar vein, Das et al. (2020) developed a system that could
detect seven distinct types of tomato leaf diseases using SVM, logistic regression (LR),
and RF. The Haralick algorithm was employed to extract the texture features of the leaves,
and the classifiers were used to classify the extracted features. The results of the study
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revealed that SVM outperformed the other two algorithms, recording an accuracy of 87.60%,
followed by RF and LR, which recorded accuracies of 70.05% and 67.30%, respectively [11].

Deep learning models have been widely applied in plant leaf disease detection and
classification. Thangaraj et al., proposed a TL-DCNN model to identify tomato leaf dis-
eases and compared the performance of Adam, RMSprop and SGD optimizers, finding
that the modified-Xception model with Adam optimizer achieved the best results [12].
Pan Zhang et al., used seven pre-trained EfficientNet-B0-B7 models to train and test on
four datasets of cucumber powdery mildew, downy mildew, healthy leaves and a com-
bination of powdery mildew and downy mildew, finding that efficient-B4 achieved the
highest accuracy (97%) for cucumber disease classification in four tasks [13]. Zhe Tang et al.,
proposed a lightweight convolutional neural network model to diagnose grape diseases,
including black rot, black measles and leaf blight. The model incorporated the squeeze-and-
excitation (SE) mechanism into ShuffleNet and achieved 99.14% accuracy on PlantVillage
dataset [14]. Utpal Barman proposed an SSCNN network for citrus leaf disease classifica-
tion, which can be deployed on smartphones and has higher accuracy and less computation
time than MobileNet [15]. Victor Gonzalez-Huitron et al., used four typical convolutional
network models trained on Plant Village to find the optimal model and present a user
interface on Raspberry Pi [16]. Amreen Abbas et al., generated synthetic images of tomato
leaves by constructing a C-GAN network for the network training [17]. Brahimi et al.
(2017) used GoogLeNet and AlexNet models to detect tomato plant diseases and found
that GoogLeNet had an accuracy of 99.18%, higher than AlexNet’s 98.60% [18]. Jiang et al.
(2020) proposed an improved ResNet50 model to classify three different types of tomato
leaf diseases (spot disease, yellow leaf curling and late blight), which used leaky ReLU
activation function and modified the filter size in each convolutional layer to 11 × 11 to
improve accuracy. The experimental results showed that ResNet50 achieved 98% accuracy
on the test dataset [19]. Rubanga et al. (2020) used pre-trained CNN architectures (such
as Inception V3, VGG16, VGG19 and ResNet) to detect tuta absoluta virus infection in
tomato leaves, finding that Inception V3 had a detection accuracy of 87.20% better than
other architectures [20].

Ullah, Z. used a hybrid deep learning approach to detect tomato plant diseases from
leaf images, integrating pre-trained EfficientNetB3 and MobileNet models to achieve
99.92% accuracy [21]. Waheed, H. developed an Android system for diagnosing ginger
plant diseases by training VGG and MobileNetV2 models on a real dataset of ginger leaf
images, achieving real-time detection with high performance [22]. Ulutaş proposed two
CNN models for tomato leaf disease detection, optimized via fine-tuning, particle swarm
optimization, and grid search. Their ensemble model achieved 99.60% accuracy with fast
training and testing times [23]. Luo, Y. created “LiteCNN,” a lightweight neural network
that achieved 95.24% accuracy through knowledge distillation. The network was then
deployed on an FPGA for a low-power, high-precision, and fast plant disease recognition
terminal, suitable for real-time recognition in the field [24]. Fan, X. proposed a transfer
learning-based deep feature descriptor that combined deep and hand-crafted features
through feature fusion to capture local texture information in plant leaf images. The
approach achieved accuracies of 99.79%, 92.59%, and 97.12% on three different datasets [25].
Janarthan, S. proposed a mobile lightweight deep learning model that achieved accuracies
of 97%, 97.1%, and 96.4% on apple, citrus, and tomato leaf datasets, respectively. The model
had approximately 88 million multiply-accumulate operations, 260,000 parameters, and
1 MB of storage space [26].

Image-based methods for tomato leaf disease recognition have limitations. They
require large-scale annotated datasets for training, which are difficult to obtain and may lack
representativeness. Additionally, they do not fully consider the diversity and complexity of
image acquisition conditions in real environments, such as illumination, angle, occlusion,
noise, and other factors. Transfer learning techniques are also not effectively utilized
to improve the model’s generalization and adaptation abilities on different datasets. To
overcome these limitations, this paper proposes a novel convolutional neural network



Appl. Sci. 2023, 13, 4348 3 of 21

model, IBSA_Net, which combines the inverted bottleneck structure and Shuffle Attention
mechanism. The paper also explores the impact of activation functions, such HardSwish,
and MaxPool layer, on the network’s performance. The proposed model achieves high
accuracy, precision, recall, and F1-score on tomato leaf disease classification tasks and
quickly identifies tomato leaf disease regions in real environments. Furthermore, this
paper verifies the validity of IBSA_Net on other crops. The main contributions of this
paper are as follows:

• The IBMax module is proposed to enhance model recognition accuracy by downsizing
feature maps and expanding the perceptual field.

• The Shuffle Attention mechanism is introduced and alternately embedded into the
network modules to enable the model to focus accurately on tomato leaf disease regions.

• The PlantDoc++ dataset is constructed, and an innovative transfer learning approach
is utilized to address the problem of models trained on a single background dataset
being unable to generalize to real-world agricultural production environments.

2. Materials and Methods
2.1. Data Set Structure

The three datasets used in this experiment are the tomato leaf disease dataset in Plant
Village, the PlantVillage Dataset with Data Augmentation (PDDA) on the Kaggle data
site, and the extended dataset based on the PlantDoc dataset, PlantDoc++ [27]. There
are 39 different types of leaves in Plant Village, 10 of which belong to tomatoes. The
tomato leaf disease dataset has nine disease images and one healthy leaf image. However,
since the background of tomato leaves in Plant Village is relatively homogeneous, there
may be a need to identify tomato leaf disease for complex backgrounds in real situations.
The PlantVillage Dataset with Data Augmentation (PDDA), created from the PlantVillage
dataset, was used to simulate tomato leaves photographed in a natural environment by
fusing tomato leaves with a complex background. The PlantDoc dataset is a dataset of
tomato leaf diseases taken in a natural environment, with eight types ranging from a few
dozen to two hundred images per category. Since the original PlantDoc dataset has different
disease categories than PlantVillage, it has unclear and watermarked images. Therefore, this
paper expands PlantDoc by crawling relevant images on the web through ImageAssistant.
After filtering and deleting, PlantDoc has the same disease categories as PlantVillage and
ensures the clarity of each image. The modified dataset is called PlantDoc++.

In this paper, all models are trained on PlantVillage and PDDA, respectively, and the
data set is divided using the ratio of training set: test set of 8:2. The number of the training
set and test set are the same for PlantVillage and PDDA, Please refer to Table 1 for detailed
information. After training on the two different datasets, some series of models trained
on the corresponding datasets are called model clusters. The PlantVillage model cluster
and PDDA model cluster are migrated to learn on the PlantDoc++ training set and finally
tested on the PlantDoc++ test set, respectively. For PlantDoc++, the ratio of the training set
to the test set is 5:5.

Table 1. PlantVillage and PDDA dataset.

Tomato Leaf Category Number of Training
Sets Number of Test Sets Total

Bacterial spot 1360 272 1632
Early blight 1332 266 1598
Late blight 1316 263 1579
Leaf Mold 1528 306 1834

Septoria leaf spot 1375 275 1650
Spider mites 1416 283 1699
Target Spot 1341 268 1609
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Table 1. Cont.

Tomato Leaf Category Number of Training
Sets Number of Test Sets Total

Yellow Leaf Curl Virus 1405 281 1686
Mosaic virus 1259 251 1510

Healthy 1380 276 1656

2.2. Data Pre-Processing

The data enhancement methods used include 30◦, 45◦, and 60◦ rotations of the samples;
random cropping of the images using a 150× 150 size crop frame, cropping and then scaling
to the original size; the random flip of the images, and other operations.

3. IBSA_Net Model Construction and Module Composition
3.1. Introduce Inverted Bottleneck Structure to Improve Network Accuracy

The bottleneck structure was first proposed in the ResNet model [28]. That paper
pointed out that the model’s training time and parameters can be reduced by changing the
original structure of two convolutional layers with a convolutional kernel size of 3 × 3 to a
structure with a 3 × 3 convolution between two 1 × 1 convolutions. The diagram of the
convolutional structure before and after the improvement is shown as follows.

As shown in Figure 1, after the improvement, the number of input and output chan-
nels are both 256, while the number of input and output channels of the middle convo-
lution is 64, and this is “thick at both ends and thin in the middle” structure is called
the bottleneck module.
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The idea of an inverted bottleneck module was proposed in the Transformer network
and promoted in MobileNetV2 [29,30]. Additionally, the ConvNeXt network also adopts
this structure as one of the basic structures in its ConvNeXt block. By using the inverted
bottleneck structure, the amount of parameters of the whole ConvNeXt network is reduced,
and the recognition accuracy is also improved [31]. The inverted bottleneck structure
is the opposite of the bottleneck structure in that it has fewer input channels and fewer
output channels than the number of channels in the intermediate convolutional layer. The
following figure shows the ConvBN convolutional block that constitutes the IBSA module:
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As shown in Figure 2, the ConvBN convolution block consists of a convolutional layer
with a step number of 2 and a convolutional kernel size of 7 × 7, plus a BatchNorm layer
with the activation function HardSwish. convBN 1 × 1 convolution is similar to ConvBN in
that the convolutional layer uses 1× 1 convolution for channel up-dimensioning and down-
dimensioning. The convolutional kernel in ConvBN has a larger sensory field to extract
more image information. BathNorm is a batch normalization operation that reduces the
dependence of the model on the initial parameters and accelerates the network’s training
and model generalization ability. In the design of the inverted bottleneck module, two
models are used, including the maximum pooling layer (called IBMax) and without (called
IB). The following figure shows the structure of the two modules.
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Figure 2. Comparison of ResNet module before and after improvement (a) The module before
improvement; (b) The module before improvement.

In the two inverted bottleneck introductory modules, the number of input and output
channels of ConBN is c. The middle ConvBN1 × 1 and the third layer ConvBN1 × 1
channel up-dimensioning and down-dimensioning, respectively, and the up-dimensioning
convolution changes the number of channels to four times the original one and then down-
dimensioning back to c, Please refer to Figure 3 for detailed information and specifics. In
the inverted bottleneck primary module with Maxpool, the changing pattern of the number
of channels is the same as in Figure 4a.
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3.2. Adding Shuffle Attention Module to Improve the Spatial Localization Accuracy of the Network
for Sick Regions

For traditional convolutional networks, the spatial localization ability of the network
is poor, i.e., the network cannot locate the leaf disease region well and learn the disease fea-
tures during the recognition process. Shuffle Attention is one of the attention mechanisms,
the core idea of which is to focus on the picture’s critical information [32]. The following
Figure 5 shows the structure schematic of the Shuffle Attention module:
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Figure 5. Shuffle Attention module schematic.

The Shuffle Attention (from now on referred to as SA) module takes the given input
X ∈ RC×H×W , where C, H, and W denote the number of input channels, feature map height
and width, respectively. SA divides the channels into g groups in the channel direction,
i.e., X = [X1, X2, ···, Xg], and for each Xi ∈ RC/g×H×W , it generates two sub-feature maps
by channel separation Xi1, Xi2 ∈ RC/2g×H×W . As shown in Figure 4, after the channel
separation, the upper branch outputs the channel attention map using the interrelationship
between channels; the lower branch generates the spatial attention map using the feature
space relationship.

(1) Channel attention branch

Firstly, feature compression along the spatial dimension is performed by Fgp global
average pooling to generate channel statistics s, for s there is s ∈ RC/2g×1×1, which embeds
the global information of the feature subgraph. S is calculated as
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s = Fgp(Xi1) =
1

H ×W

H

∑
i=1

W

∑
j=1

Xi1(i, j) (1)

s is multiplied with the initial feature subgraph Xi1 after the Fc(·) operation and the sigmod
activation function, and the final output is X′i1.

X′i1 = σ(Fc(s))·Xi1 = σ(W1s + b1)·Xi1 (2)

where W1 ∈ RC/2g×1×1, b1 ∈ RC/2g×1×1, which is in the same dimension as s, have the
effect of scaling and panning the feature subgraphs.

(2) Spatial attention branch

The spatial attention mechanism is more concerned with where the regions of interest
are as a complement to the channel attention mechanism. The separated feature subgraphs
are first subjected to the “Group Normalization” operation (GN) to obtain their spatial
information, and then the feature representation is enhanced using the Fc(·) operation, and
the final output X′i2 is.

X′i2 = σ(W2·GN(Xi2) + b2)·Xi2 (3)

where, W2b2 is shaped as RC/2g×1×1.
The obtained channel attention and spatial attention branch outputs are finally stitched

in the channel dimension, and two feature subgraphs with the number of channels C/2 g are
stitched into a C/g channel subgraph. The feature subgraph that is divided into g groups,
after the channel and spatial attention mechanism to the feature subgraph of X′1, X′2, . . . , X′g,
g feature subgraphs through the aggregation operation, recovered into the same latitude
output as the initial input X X′,X′ ∈ RC×H×W . Finally, the aggregated output is then
subjected to the channel shuffle operation, which enables cross-group communication
of channel dimensions, enhances mutual learning between different information, and
enhances the generalization of the model.

3.3. Enhancing Inter-Network Information Flow and Extraction by Building IBSA_Block

To better describe the model, the inverted bottleneck module (a) in Figure 4 that does
not incorporate the maximum pooling layer is called IB_block, and (b) that incorporates the
maximum pooling layer is called IBMax_block. By combining IB_block and IBMax_block
with the SA module, together with the residual structure, the final model is composed of
IBSA_Net shown in the following figure block; the final model uses the module composed
of IBMax_block and SA, the structure is shown in Figure 6.
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For the IBSA_block composed of IB_block and IB_Maxpool_block, there is no dif-
ference in the overall structure; both of them are input after IBMax_block, and then the
disease area features are extracted by the SA attention mechanism module, and the output
is summed with the branch shortcut to form the residual module. The final output goes
through the activation function. The activation function between the IBSA_block block and
the block is the GELU activation function.

3.4. IBSA_Net Overall Structure

The entire IBSA_Net forms the main structure by superimposing IBSA_block blocks
three times, and the UP_convolution is used for channel up-convolution between IBSA_block
blocks. The channel up-convolution uses a convolution kernel size of 1× 1, and the number
of output channels is twice the number of input channels. The final output uses global
average pooling to extract the information and add the fully connected layer output. The
following Figure 7 shows the structure of the entire IBSA_Net network Meanwhile, Table 2
shows the output dimensions of each module in IBSA_Net.
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Table 2. Output dimensions of the different layers of IBSA_Net.

Network Layer Kernel Size (for Convolutional
and Pooling Layers Only)

Number of Steps (for Convolutional
and Pooling Layers Only) Output Dimension

Input - - (b, 3, 256, 256)
Conv2d 5 × 5 1 (b, 128, 252, 252)

BatchNorm - - (b, 128, 252, 252)
IBSA_block1 - - (b, 128, 126, 126)

UP_conv1 1 × 1 1 (b, 256, 126, 126)
IBSA_block2 - - (b, 256, 63, 63)

UP_conv2 1 × 1 1 (b, 512, 63, 63)
IBSA_block3 - - (b, 512, 32, 32)

UP_conv3 1 × 1 1 (b, 1024, 32, 32)
Avgpool 1 1 (b, 1024, 1, 1)

fc - - (1024, class_num)
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4. Experiment and Analysis
4.1. Experimental Configuration and Parameter Settings

This experiment uses Ubuntu 20.04.4 LTS 64 as the operating system (Canonical Ltd.,
London, UK) and Intel€ X€(R) Silver 4214 as the processor, CPU@2.20GHz, 32 G of RAM
(Intel, Santa Clara, CA, USA). The GPU is an NVIDIA Tesla T4 with 16 G of video memory
(Nvidia, Santa Clara, CA, USA).

In this paper, all experiments are conducted using stochastic gradient descent (SGD)
with multiple batches. For the IBSA_Net network, the batch size (Batchsize) is set to 32; the
number of training rounds epochs is 50; the optimizer adopts the SGD optimizer, the initial
learning rate is 0.01, and the learning rate decay is used, the number of steps (step_size) is
2. The decay reduction factor lr_decay is 0.9. For every two training rounds, the learning
rate is multiplied by the decay coefficient. The cross-entropy loss function is used for the
loss function.

4.2. Evaluation Indicators

To better evaluate the performance of different models on the same dataset, the
following metric is considered to be introduced to evaluate the models: accuracy, which
calculates the number of correctly predicted samples as a proportion of the total number of
samples, as shown in Equation (4). Precision is the probability that, given a positive label,
how many of them are true positives, i.e., the ratio of correctly predicted positive samples
to the total number of predicted positive samples, as shown in Equation (5). The recall is
the accuracy of predicting positive sample instances, i.e., the ratio of correctly predicted
positive samples to the total number of actual positive samples, as shown in Equation (6).
the F1 score integrates Precision and Recall to reconcile both, as shown in Equation (7).

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1 =
2× Precision× Recall

Precision + Recall
, (7)

In the network training process of deep learning, the loss function calculates the
gap between the actual value and the predicted value. The one used in this paper is the
cross-entropy loss function with the following equation.

L = −
n

∑
i=1

p(xi) log q(xi) (8)

where p(xi) is the expected probability of the input and q(xi) is the actual probability of
the input. The smaller the L obtained from both calculations, the smaller the difference
between the actual value and the predicted value, and the more accurate the prediction is.

4.3. Ablation Experiments of Model Lifting by Key Modules

In this subsection, the critical modules mentioned are the HardSwish activation func-
tion, the IBMax module, and the Shuffle-Attention module. We refer to the model in which
all key modules are removed as OriNet.

The addition of activation functions can add nonlinear factors to the network and
increase the expressive power of the neural network. The HardSwish (HS) function was first
proposed in the MobileNetV3 model [33]. Compared with the traditional Swish activation



Appl. Sci. 2023, 13, 4348 10 of 21

function, the HardSwish activation function is faster to compute and has better numerical
stability. For the HardSwish function, the equation is as follows.

Hardswish(x) =


0, i f x ≤ −3

x, i f x ≥ 3
x(x+3)

6 , otherwise

(9)

It extracts the primary information in the image for the maximum pooling layer.
It makes the feature map of the image to operate in the network smaller, making the
information denser while reducing the number of operations.

The following table shows the increase and decrease in comprehensive training and
testing accuracy due to the addition and removal of the three key modules and the compar-
ison of recognition accuracy.

As seen in Table 3, each of the three key modules contributes to the network, and
adding any of the three modules improves network performance. The IBMax module
has the most significant improvement for the first three individual module additions.
The performance improvement from adding two key modules is more significant than
that from adding only one. The above experimental results show that our proposed
key modules effectively improve the network performance, which eventually brings a
9.2% performance improvement.

Table 3. Effect of different key modules on model accuracy.

Models Total Training Accuracy Total Test Accuracy

OriNet 0.913 0.896
OriNet + HS 0.920 0.921

OriNet + IBMax 0.952 0.951
OriNet + SA 0.943 0.949

OriNet + SA + HS 0.967 0.963
OriNet + IBMax + HS 0.975 0.972
OriNet + IBMax + SA 0.981 0.979

IBSA_Net 0.997 0.994

4.4. Comparison Experiments of Model Clusters with Different Datasets

In this study, the performance of the PlantVillage model group was analyzed in terms
of training and testing. The recognition accuracy of six models was evaluated using the
accuracy curve shown in Figure 8a,b. The findings revealed that the IBSA_Net model
outperformed the other models, exhibiting significantly higher recognition accuracy in
the early stages of training. As the training progressed, the accuracy curve of IBSA_Net
tended to flatten after eth 10th round, indicating a convergence effect. After 50 rounds of
training, the IBSA_Net model achieved a training accuracy of 99.7% and a testing accuracy
of 99.4%. While the EfficientNet and MobileNetV3 models showed similar training accuracy
to IBSA_Net in eth 50th round, at 98.4% and 97.6%, respectively, the training and testing
accuracy gaps of models other than IBSA_Net were over 2%. These findings suggest that
these models suffer from overfitting problems and display weaker generalization ability
than the IBSA_Net model.

In Figure 9a,b, the performance of six models on the PDDA dataset is evaluated. The
results demonstrate that the training and testing accuracies of all models have decreased
compared to those of PlantVillage. This decline in accuracy may be due to the greater
complexity of the backgrounds in the PDDA dataset. However, IBSA_Net remains the best-
performing model, indicating its ability to remain less influenced by complex backgrounds
and display stronger robustness than the other models.
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Tables 4 and 5 illustrate that the proposed IBSA_Net model exhibits superior per-
formance on both the PlantVillage and PDDA datasets. Compared to advanced models,
such as EfficientNet and MobileNetV3, along with classical convolutional neural networks,
IBSA_Net achieves higher accuracy, precision, and recall scores. Moreover, IBSA_Net
shows excellent performance in leaf recognition tasks under complex backgrounds.

Table 4. PlantVillage Model Cluster Evaluation Metrics.

Model Accuracy Precision Recall F1-Score

AlexNet 0.882 0.871 0.881 0.876
VGG19 0.862 0.857 0.859 0.858

GoogLeNet 0.954 0.948 0.952 0.950
MobileNetV3 0.953 0.942 0.953 0.947
EfficientNet 0.979 0.971 0.978 0.974
IBSA_Net 0.994 0.989 0.993 0.991

Table 5. PDDA model cluster evaluation metrics.

Model Accuracy Precision Recall F1-Score

AlexNet 0.836 0.841 0.836 0.838
VGG19 0.866 0.869 0.865 0.866

GoogLeNet 0.804 0.799 0.809 0.803
MobileNetV3 0.891 0.892 0.890 0.891
EfficientNet 0.944 0.943 0.944 0.943
IBSA_Net 0.983 0.979 0.984 0.981
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In Figure 10, the loss curve graph reveals that IBSA_Net has the smallest loss and
converges the fastest. After eth 10th round of training, the loss curve of IBSA_Net begins
to flatten, while the training losses of the other five models in the first five rounds are
significantly larger than those of IBSA_Net.
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4.5. Transfer Learning with Small Sample Datasets PlantDoc++

Generally speaking, it is more difficult to obtain many crop disease leaf datasets in
natural environments, especially for the nine tomato leaf disease datasets in this paper.
Although there are more large public datasets available for people to use, the leaves in
the public dataset represented by PlantVillage are primarily taken in a single background,
which does not reflect the pose of leaves in the natural environment and is almost noiseless
data. The models trained on such datasets cannot be extended to use in natural agricultural
production environments. So this paper uses the PDDA dataset to simulate the natural
picking environment. The PDDA dataset is to segment the leaves in the public dataset. It
moves them to the background map of the natural tomato planting and picking environment
to try to fit the tomato leaves in the natural environment, increase the noise of the dataset,
and make the model more robust to the recognition of complex backgrounds and leaves.

Afterward, using the idea of transfer learning, the model clusters trained on PlantVil-
lage and PDDA datasets, respectively, retaining their model parameters, were trained on
the small sample dataset PlantDoc++ before testing the accuracy of the two model clusters
in identifying tomato leaf diseases in natural environments.

The tomato leaf categories represented by the 0 to 9 markers in Figure 11 correspond
to the leaf categories from Bacterial_spot to healthy in Table 6. Figure 11 and Table 6 show
that the PlantVillage model cluster has a more significant decrease in the ability to identify
disease datasets in natural environments compared to PlantVillage, with a generally low
recall rate. However, the IBSA_Net network still has the best performance among all
models. This indicates that after transfer learning, IBSA_Net pays more attention to the
leaf features and has stronger robustness.

Table 6. Comparison of evaluation metrics of PlantVillage model clusters on PlantDoc++.

IBSA_Net Precision Recall F1-Score AlexNet Precision Recall F1-Score

Bacterial spot 0.892 0.344 0.496 0.739 0.183 0.293
Early blight 0.735 0.685 0.709 0.656 0.583 0.617
Late blight 0.632 0.851 0.725 0.69 0.58 0.630
Leaf Mold 0.825 0.627 0.712 0.596 0.415 0.489

Septoria leaf_spot 0.779 0.714 0.745 0.451 0.667 0.538
Spider mites 0.732 0.983 0.839 0.601 0.819 0.693
Target Spot 0.674 0.824 0.741 0.488 0.738 0.587
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Table 6. Cont.

IBSA_Net Precision Recall F1-Score AlexNet Precision Recall F1-Score

Yellow Leaf Curl
Virus 0.943 0.746 0.833 0.538 0.424 0.474

Mosaic virus 0.577 0.698 0.631 0.481 0.619 0.541
healthy 0.853 0.861 0.856 1 0.61 0.757

avg 0.764 0.733 0.728 0.624 0.563 0.562

VGG precision recall F1-score GoogLeNet precision recall F1-score

Bacterial spot 0.577 0.161 0.252 0.188 0.548 0.280
Early blight 0.609 0.194 0.294 0.2 0.014 0.026
Late blight 0.345 0.58 0.433 0.338 0.27 0.300
Leaf Mold 0.333 0.049 0.085 1.0 0.024 0.047

Septoria leaf_spot 0.366 0.364 0.365 0.345 0.227 0.274
Spider mites 0.649 0.638 0.643 0.818 0.078 0.142
Target Spot 0.35 0.449 0.393 0.5 0.065 0.115

Yellow Leaf Curl
Virus 0.295 0.576 0.390 0.278 0.682 0.395

Mosaic virus 0.318 0.5 0.389 0.182 0.095 0.125
healthy 0.74 0.77 0.755 0.312 0.8 0.449

avg 0.458 0.428 0.399 0.416 0.280 0.215

MobileNetV3 precision recall F1-score EfficientNet precision recall F1-score

Bacterial spot 0.5 0.125 0.200 0.434 0.344 0.384
Early blight 0.507 0.521 0.514 0.679 0.726 0.702
Late blight 0.579 0.693 0.631 0.875 0.554 0.678
Leaf Mold 0.5 0.506 0.503 0.583 0.675 0.626

Septoria leaf spot 0.489 0.699 0.575 0.821 0.346 0.487
Spider mites 0.675 0.675 0.675 0.651 0.974 0.780
Target Spot 0.66 0.287 0.400 0.672 0.796 0.729

Yellow Leaf Curl
Virus 0.52 0.955 0.673 0.646 0.791 0.711

Mosaic virus 0.5 0.233 0.318 0.4 0.605 0.482
healthy 0.736 0.881 0.802 0.833 0.842 0.837

avg 0.566 0.557 0.529 0.659 0.6653 0.641

In the PDDA model group, all models exhibited higher evaluation metrics than the
PlantVillage model group, thus confirming the previous hypothesis that pre-training on
datasets that simulate complex backgrounds can enhance a model’s ability to distinguish
leaves from backgrounds and reduce interference from background factors. Although
EfficientNet achieved precision and recall scores of 1 for certain diseases, its average
values for all evaluation metrics were lower than those of IBSA_Net. Specifically, its
evaluation metrics were lower for certain diseases, indicating that the model may have
higher recognition rates for specific disease categories while lower recognition rates for
others, which is not suitable for actual agricultural production environments. By contrast,
the proposed IBSA_Net model in this study has almost no imbalanced evaluation metrics,
displaying high evaluation metrics for each disease category. Moreover, IBSA_Net exhibits
excellent transfer learning ability, demonstrating strong knowledge transfer from the source
domain to the target domain. After pre-training on PDDA and testing on PlantDoc++,
IBSA_Net achieved average precision, recall, and F1-score values of 0.942, 0.944, and 0.943,
respectively, which were higher than the average evaluation metric values of the other five
networks. Please refer to Figure 12 and Table 7 for detailed information and specifics.
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Table 7. Comparison of evaluation metrics of PDDA model clusters on PlantDoc++.

IBSA_Net Precision Recall F1-Score AlexNet Precision Recall F1-Score

Bacterial spot 0.914 0.885 0.899 0.917 0.355 0.512
Early blight 0.959 0.959 0.959 0.849 0.625 0.720
Late blight 0.922 0.941 0.931 0.769 0.83 0.798
Leaf Mold 0.934 0.855 0.893 0.58 0.622 0.600

Septoria leaf spot 0.932 0.925 0.928 0.504 0.917 0.650
Spider mites 0.974 0.966 0.970 0.817 0.767 0.791
Target Spot 0.982 0.991 0.986 0.686 0.449 0.543

Yellow Leaf Curl Virus 0.93 0.985 0.957 0.707 0.803 0.752
Mosaic virus 0.932 0.953 0.942 0.75 0.643 0.692

healthy 0.943 0.98 0.961 0.916 0.87 0.892
avg 0.942 0.944 0.943 0.749 0.688 0.695

VGG precision recall F1-score GoogLeNet precision recall F1-score

Bacterial spot 0.494 0.448 0.470 0.85 0.354 0.500
Early blight 0.43 0.671 0.524 0.806 0.74 0.772
Late blight 0.854 0.406 0.550 0.697 0.842 0.763
Leaf Mold 0.461 0.422 0.441 0.833 0.602 0.699

Septoria leaf spot 0.516 0.85 0.642 0.683 0.842 0.754
Spider mites 1.0 0.718 0.836 0.898 0.974 0.934
Target Spot 0.672 0.815 0.737 0.815 0.935 0.871

Yellow Leaf Curl Virus 0.785 0.761 0.773 0.823 0.97 0.890
Mosaic virus 0.704 0.442 0.543 0.733 0.767 0.750

healthy 1.0 0.703 0.826 0.947 0.881 0.913
avg 0.691 0.623 0.634 0.808 0.791 0.785

MobileNetV3 precision recall F1-score EfficientNet precision recall F1-score

Bacterial spot 0.696 0.667 0.681 0.827 0.948 0.883
Early blight 0.762 0.877 0.815 0.812 0.945 0.873
Late blight 0.832 0.881 0.856 0.960 0.950 0.955
Leaf Mold 0.902 0.554 0.686 0.875 0.928 0.901

Septoria leaf spot 0.777 0.759 0.768 0.957 0.835 0.892
Spider mites 0.826 0.932 0.876 0.926 0.957 0.941
Target Spot 0.936 0.676 0.785 0.837 1 0.911

Yellow Leaf Curl Virus 0.792 0.91 0.847 0.94 0.94 0.940
Mosaic virus 0.711 0.628 0.667 1 0.791 0.883

healthy 0.744 0.98 0.846 0.917 0.653 0.763
avg 0.797 0.786 0.782 0.905 0.8947 0.894

4.6. Attentional Visualization Experiment

In order to better understand how convolutional neural networks identify diseases in
different parts of the images during training, this paper utilizes the Grad-CAM attention
visualization tool to generate attention heat maps of the network’s predictions [34,35]. The
heat map highlights important regions by color-coding them, where redder and warmer
colors correspond to regions of greater importance that the network is most interested
in, while cooler colors (bluish) denote regions of less interest. Attention visualizations
were obtained for some diseased leaves, and the corresponding heat maps are shown in
Figure 13. From the heat maps, we can observe that within the PlantVillage model cluster,
the red areas of the three models, except IBSA_Net, are small and scattered. In contrast, the
warm areas of the IBSA_Net network are mainly concentrated around the disease spots,
but the attention is not focused on the disease spot area. This indicates that the disease
information learned from a single background dataset may not generalize well to more
complex background datasets.
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It is important to note that in the first attention heat map of early blight, GoogLeNet
and VGG networks identified non-disease areas, such as the hole formed by the branch
in the upper left corner and the overlap of the leaf edge and background, as diseased
spots. As depicted in the figure, these networks tend to show “false spots” in red regions of
their attention heat maps. In contrast, after pre-training on the PDDA dataset, IBSA_Net
demonstrated a superior ability to distinguish between “false spots” and actual diseased
regions. The attention heat map of IBSA_Net mostly identifies diseased spots, assigning
higher attention weights to these regions. The “false spots” related to the holes formed
by the branch are colored light yellow and cyan, indicating lower network attention to
these areas. Similarly, in the Target_Spot dataset, IBSA_Net effectively avoided predicting
shadows or non-disease black spots as diseased regions, whereas other networks made such
errors. These findings suggest that IBSA_Net can self-learn the differences between diseased
regions and the environmental illusions of leaves and better distinguish between them.

Conversely, in the PDDA model cluster, there are significantly more warm regions in
the attention heat maps and more overlap with the disease spot region. Precisely, the warm
color regions of IBSA_Net largely overlap with the disease spot regions and cover most of
the spots. This suggests that the ability to distinguish complex backgrounds from leaf spot
regions was learned from the PDDA dataset and that IBSA_Net had the most significant
ability to generalize from the source domain to the target domain.

To further quantify the level of attention each model pays to the diseased regions
of tomato leaves, we calculated the percentage of warm regions versus diseased regions
for each model’s attention visualization when predicting the PlantDoc++ test set after
training on different datasets. The attention matrix was converted to a NumPy array
format, reshaped to the same size as the original image, and then superimposed on the
original image to generate a visualized attention map. The number of pixels in the attention
map was calculated based on the location of the tomato leaf spots or the bounding box [36].
The number of pixels in the warm area of the attention map was determined by applying a
set threshold. Finally, the ratio of the number of pixels of the object to be recognized to the
number of pixels in the warm area was obtained.

Table 8 displays the attention level of each model for the two tomato leaf diseases,
Early_blight and Target_Spot, depicted in Figure 13. For both diseases, the PDDA model
group has a higher proportion of warm-colored regions covered in the attention heat map
compared to the PlantVillage model group. Furthermore, the area percentage of IBSA_Net,
proposed in this paper, has the highest value in all the results.
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Table 8. Percentage of warm and sick areas in the attentional heat map.

AlexNet VGG GoogLeNet MobileNetV3 EfficientNet IBSA_Net

Early_blight
(PlantVillage) 0.83% 13.75% 28.56% 24.79% 41.25% 47.38%

Early_blight
(PDDA) 26.25% 11.67% 52.25% 59.83% 75.63% 78.94%

Target_Spot
(PlantVillage) 8.91% 12.65% 17.34% 22.34% 43.21% 40.27%

Target_Spot
(PDDA) 41.46% 47.59% 71.85% 67.54% 79.84% 87.94%

4.7. Performance of IBSA_Net on Other Crops

While the experiments conducted in this study primarily focused on tomato disease
leaves, the feature extraction and identification capabilities of IBSA_Net can be extended to
other crops. To test this, we evaluated the model’s performance on apple and chili pepper
leaves, the dataset examples are shown in Figures 14 and 15. The apple leaf dataset comprises
five categories: Alternaria leaf spot, Brown spot, Grey spot, Mosaic, and Healthy, while the
chili pepper leaf dataset consists of two categories: Bacterial spot and Healthy. These datasets
were obtained from Yang’s paper and PlantVillage, respectively [37]. The datasets were split
into an 8:2 ratio for training and testing, and the results are presented below.
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From Tables 9 and 10, it is evident that both IBSA_Net and EfficientNet outperformed
the other four models. Although EfficientNet achieved 0.7% higher accuracy than IBSA_Net
on the apple leaf disease dataset, IBSA_Net exhibited superior performance in terms
of Precision, Recall, and F1-score evaluation metrics. Furthermore, on the pepper leaf
disease dataset, IBSA_Net outperformed all other five networks in all evaluation metrics.
The results obtained from the apple and pepper leaf datasets confirm the efficacy of
IBSA_Net in recognizing diseases in different crops. Remarkably, IBSA_Net demonstrated
remarkable disease recognition and generalization abilities, even in the presence of complex
image backgrounds.
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Table 9. Performance of the six models on the apple leaf data set.

Accuracy Precision Recall F1-Score

AlexNet 0.635 0.613 0.634 0.623
VGG19 0.761 0.732 0.760 0.746

GoogLeNet 0.652 0.776 0.681 0.725
MobileNetV3 0.835 0.839 0.835 0.837
EfficientNet 0.935 0.934 0.925 0.929
IBSA_Net 0.928 0.945 0.931 0.938

Table 10. Performance of the six models on the pepper leaf disease dataset.

Accuracy Precision Recall F1-Score

AlexNet 0.795 0.807 0.811 0.809
VGG19 0.871 0.887 0.886 0.886

GoogLeNet 0.917 0.933 0.918 0.925
MobileNetV3 0.946 0.946 0.941 0.943
EfficientNet 0.981 0.978 0.980 0.979
IBSA_Net 0.992 0.995 0.993 0.994

5. Conclusions

The IBSA_Net proposed in this study combines the inverted bottleneck network and
Shuffle Attention mechanism while also incorporating the HardSwish activation function,
IBMax, and other modules. By doing so, the proposed network achieves not only superior
recognition accuracy but also a faster convergence speed. In addition, it can extract multi-
scale plant disease spot features, accurately locate disease areas, and identify tomato leaf
diseases with fine granularity.

To address the issue of the limited generalization ability of models trained on a single
background dataset in natural agricultural production environments, we propose a transfer
learning-based training method for small sample datasets. Specifically, we utilize the PDDA
dataset, which simulates a complex natural background, to pre-train the model clusters.
Experimental results demonstrate that the pre-trained IBSA_Net on PDDA achieves the
best performance on the real dataset. The mean values of 0.942, 0.944, and 0.943 for the
precision, recall, and F1-score, respectively, highlight the effectiveness of our approach.

In addition, the results of attention visualization experiments demonstrated that the
PDDA model group exhibited a significantly larger warm-colored area overlapping with
the lesions compared to the PlantVillage model group. Moreover, the IBSA_Net disease
recognition area demonstrated the highest overlap with the entire lesion area of the leaf
while also exhibiting a good ability to differentiate between “false lesions” and real lesion
areas. Finally, we tested the performance of IBSA_Net on other crops and achieved good
results. These findings suggest that our model and methodology offer an effective and
reliable approach to identifying leaf diseases in complex backgrounds, with potential
applicability to other crops. Nonetheless, this study has certain limitations. Due to the
challenges associated with collecting tomato leaf datasets, there is a paucity of tomato
leaf samples exhibiting growth defects caused by nutritional deficiencies. Furthermore, in
actual agricultural production, some symptoms of viral diseases are akin to those caused
by nutritional deficiencies, leading to network misjudgment and the incorrect identification
of nutrient-deficient leaves as disease-afflicted. In future work, we will gather additional
tomato leaf samples with growth defects resulting from different causes and refine the
model proposed herein to enable better differentiation of these variations.
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