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Abstract: Robots are increasingly entering the social sphere and taking on more sophisticated roles.
One application for which robots are already being deployed is in civilian security tasks, in which
robots augment security and police forces. In this domain, robots will encounter individuals in crisis
who may pose a threat to themselves, others, or personal property. In such interactions with human
police and security officers, a key goal is to de-escalate the situation to resolve the interaction. This
paper considers the task of utilizing mobile robots in de-escalation tasks, using the mechanisms
developed for de-escalation in human–human interactions. What strategies should a robot follow
in order to leverage existing de-escalation approaches? Given these strategies, what sensing and
interaction capabilities should a robot be capable of in order to engage in de-escalation tasks with
humans? First, we discuss the current understanding of de-escalation with individuals in crisis and
present a working model of the de-escalation process and strategies. Next, we review the capabilities
that an autonomous agent should demonstrate to be able to apply such strategies in robot-mediated
crisis de-escalation. Finally, we explore data-driven approaches to training robots in de-escalation
and the next steps in moving the field forward.
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1. Introduction

As the development of artificial intelligence (AI) and robotics technology continues
to accelerate, mobile robots are increasingly entering the social sphere and taking on
more sophisticated roles. For example, robots have been designed to provide education
(e.g., [1]), health and home care (e.g., [2]), autism therapy (e.g., [3]), and security services [4].
Regarding the latter task, a number of robots have been developed to assist in security
and policing tasks. The Knightscope security robot is a representative example. This
robot currently patrols parking lots and structures, shopping malls, hospitals, airports,
and corporate campuses across the United States, providing real-time information and
surveillance for security teams [5].

There are many potential applications for a security robot. The device could act as a
mobile sensor providing information to remote human staff or it could act as a deterrent
to crime just by its presence in a particular environment. An expected task in the security
setting is one in which the robot interacts with members of the community. This interaction
might include relatively simple tasks such as having the robot provide information or
directions. Robots could also be expected to engage in complex tasks, such as interacting
with an agitated, confrontational, or potentially aggressive individual with the goal of
defusing the situation. This process is known as de-escalation.

If robots can engage in effective crisis de-escalation, they could potentially help defuse
situations when human personnel are not readily available, or act as part of an on-site
team to help shift an agitated individual towards a state of greater calm and control. When
human first responders are faced with the task of de-escalating an agitated person, there
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is potential for physical harm to both the first responder and the community member [6].
Robots would seem to be an attractive enhancement to existing de-escalation strategies
as the robot could at least be used to reduce the risk to the responder. Furthermore, in
such an encounter, just as with a human responder, a robot could take steps to secure the
environment (e.g., lock doors, remove objects which could be used as weapons) and call
for human assistance. Of course, it is not possible to diffuse or de-escalate every possible
interaction scenario. The more realistic goal is to develop and implement strategies to
diffuse or de-escalate situations as much as possible. The question remains: Can a robot
effectively employ crisis de-escalation strategies in such interactions, and if so, when and
how should robots be used in crisis de-escalation?

This paper considers the task of utilizing mobile robots in de-escalation tasks. Section 2
reviews the literature on de-escalation with individuals in crisis. Section 3 summarizes
the basic requirement for social robots involved in de-escalation and presents a working
model for the process of, and tasks involved in, crisis de-escalation. Section 4 focuses on
integrating de-escalation practices into human–robot interactions, including considerations
for assessing the individual in crisis and the surrounding environment, planning and
orchestrating a response, and communication strategies and principles that support de-
escalation. Section 5 discusses data-driven approaches to training robots in de-escalation,
and Section 6 focuses on the next steps in moving the field forward.

2. Crisis De-Escalation

For the purposes of this paper, a crisis is defined as a short-term and overwhelming
event involving a disruption of an individual’s normal and stable state, in which the usual
coping and problem-solving mechanisms do not work [7]. In this paper, we further narrow
our lens by focusing specifically on crises in which there is an element of agitation and the
potential for aggression. For a safe resolution of the crisis, it is critical for responders to
effectively interrupt the progression of agitation to violence [8]. One way of interrupting
this progression is through the implementation of de-escalation strategies. De-escalation
strategies refer to a complex range of verbal and non-verbal skills designed to enable
agitated individuals to rapidly develop their own internal locus of control [9,10] and to
shift away from a trajectory that may lead to aggression.

De-escalation is commonly practiced by health care workers and mental health nurses,
with an increasing uptake in police and security services [11]. Notably, there is no con-
sensus regarding a clear definition of optimal de-escalation techniques or guidelines [12].
Furthermore, most research on de-escalation focuses on the impact of de-escalation training
programs (e.g., Crisis Intervention Training, Six Core Strategies) on reducing physical
restraint, injury, or violence towards service providers. Although research on the effec-
tiveness of training is relevant for advancing the field of human-led de-escalation, it does
not elucidate which intervention strategies promote effective de-escalation. For example,
most de-escalation training programs contain a significant psychoeducational component
designed to debunk myths about violent behaviour and equip staff with a better under-
standing of the underlying psychology of agitated individuals in crisis. The rationale for
such training is that, with such information, staff will perceive and approach agitated indi-
viduals in a more appropriate manner, perhaps with greater empathy and respect, setting
the stage for a better de-escalation interaction and outcome. Although this training may be
helpful from a human perspective, this research offers little in the way of understanding the
specific, moment-to-moment manifestations of effective de-escalation needed to translate
such practices into human–robot interactions.

The evidence base of effective de-escalation techniques for human–human interactions
is limited; however, researchers have conducted qualitative studies, literature reviews,
and convened expert working groups in an attempt to elucidate the concepts related to
human de-escalation interactions and to identify common strategies and best practices
across professional disciplines. Hallett and Dickens [12] conducted a concept analysis,
reviewing 79 papers investigating human-to-human de-escalation over the past three
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decades. They identified five domains of de-escalation skills: communication, assessment,
self-regulation, actions, and maintaining safety. Mavandadi and colleagues [13] created and
validated a modified English language version of a pre-existing structured measure of de-
escalation practices [14] containing seven domains of skills: valuing the client, reducing fear,
inquiring about client’s queries and anxieties, providing guidance to the client, working
out possible agreements, remaining calm, and risk management. Todak and James [11]
conducted a systematic observational study of police de-escalation tactics in Spokane,
Washington, identifying eight categories of de-escalation tactics: respect, honesty, calmness,
perspective-taking, compromise, listening, getting to the client’s level and reducing power
imbalances, and client empowerment. They observed that the use of several of these tactics
was associated with a calmer citizen demeanor. Finally, Richmond et al. [10] published an
expert consensus statement on best practice guidelines for verbal de-escalation of agitated
patients in emergency psychiatry, covering ten domains: respecting personal space, not
being provocative, establishing verbal contact, being concise, identifying wants and feelings,
listening closely to what the patient is saying, agreeing or agreeing to disagree, laying
down the law and setting clear limits, offering choices and optimism, and debriefing the
patient and staff.

These papers are not an exclusive list of models published on de-escalation strategies;
however, based on a review of the extant literature, they offer a comprehensive overview
of the current knowledge of de-escalation practices. At first glance, these models contain
both common elements (e.g., remaining calm, listening, use of verbal skills, maintaining
safety), and specific techniques relating to each of the domains that were identified by
Hallett and Dickens [12], Richmond et al. [10], and Mavandadi et al. [13]. As part of this
review, the strategies referred to within these studies are arranged into a working model
of the de-escalation process to inform AI- and robot-based approaches to de-escalation
within human–robot interactions (see Figure 1). Notably, though it is possible to construct
a list of principles and possible techniques for de-escalation, there is no evidence base
to support or offer insights into optimal decision-making around the choice, timing, and
sequencing of de-escalation techniques for specific individuals in specific contexts. As is
the case with most psychosocial interventions, understanding of the moment-to-moment
process of de-escalation and what works for whom and when is currently limited.
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3. Basic Requirements for Social Robots and Working Model for De-Escalation

Human interactions are characterized by a high degree of adaptivity. People instinc-
tively change their actions according to the perceived cognitive and affective state of their
interactive partners and environmental context. This social adaptability is made possible
through the complex interplay of real-time sensory, cognitive, affective, and behavioural
systems that comprise the central nervous system. For robots to successfully enter the
social sphere, they will similarly require the ability to perceive and adapt to their interactive
partners and the environmental context. Robots will need to be able to perceive and ex-
press emotions, sense verbal and non-verbal signals from humans and respond adequately,
comprehend and generate natural language, have memory and reasoning capacities, plan
actions and execute movements, and demonstrate various social competencies accord-
ing to what is required by the specific context [15]. Research in computer science and
engineering has focused on designing cognitive architectures and adaptive behavioural
models inspired by the human brain to enable artificial intelligence in robotic agents and
enable them to exhibit intelligent behaviours, learn new tasks, and adapt to changes in
their environment [16]. Robots capable of de-escalation will require sufficient mastery of
these baseline skills needed for social robots, in addition to computational models geared
specifically towards the de-escalation process.

Working Model of De-Escalation

Grounded in the findings of the qualitative studies, the working group consensus
statement, and the literature reviewed above, we created a working model for de-escalation
(Figure 1). We opted to develop our own model rather than draw upon one in the literature
because the requirements for instructing humans on de-escalation practices differs from
those for robots. By developing our own model, we obtain the level of detail and type of
stepwise organization required for considering the translation of de-escalation practices
into human–robot interactions.

The model begins with principles for verbal and non-verbal communication as well as
other general principles that are typically applicable throughout the de-escalation process.
For robots, these can be conceived as a checklist of relatively fixed conditions that should be
met at most, and in some cases all, timepoints of the interaction. In addition to these general
principles, the model includes a stepwise illustration of de-escalation. Richmond et al. [10]
described de-escalation as follows:

“De-escalation frequently takes the form of a verbal loop in which the clinician
listens to the patient, finds a way to respond that agrees with or validates the
patient’s position, and then states what he wants the patient to do (e.g., accept
medication, sit down, etc.). The loop repeats as the clinician listens again to the
patient’s response. The clinician may have to repeat his message a dozen or more
times before it is heard by the patient.” [10] (p. 19)

Informed by this description, we conceptualized de-escalation as a flexible, creative,
and iterative process, in which crisis responders (i.e., people engaging in de-escalation
with agitated individuals) move fluidly through the stages, drawing upon a large set of
possible skills and approaches to move towards the goal of decreasing agitation and helping
individuals regain their own internal locus of control. From a psychological perspective,
humans engaged in de-escalation are operating with complex schemas and heuristics (or
mental models), drawing upon their training, past experiences, intuition, and rationale
about the current situation. Throughout, crisis responders engage in continual, ongoing
assessment of the agitated individual to gauge the risk for violence and aggression, whether
selected de-escalation strategies are working, and the anticipated trajectory of the situation.
There are few fixed rules about which skills and approaches should be included within each
de-escalation scenario; however, generally, the interaction should begin with (1) establishing
verbal contact (e.g., stating name and role, providing orientation to time and place, etc.)
and developing rapport, and (2) gathering information about agitated individuals and
identifying their concerns or reasons for agitation and escalation. The latter is important for
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informing the selection of subsequent de-escalation strategies and identifying conditions
that may facilitate de-escalation. Next, crisis responders have multiple options by which
to proceed, though their choice should ideally be grounded in their assessment of the
individual and the situation. The consensus of experts in emergency medicine is that
de-escalation can frequently be successful in less than five minutes [10]. After successful
de-escalation, a best practice is to debrief with fellow crisis responders or staff and with the
agitated individual whenever possible.

4. Integrating the De-Escalation Process into Human–Robot Interactions

In the following sections, we explore the elements of our model in greater depth and
integrate them with robotics research, machine learning and artificial intelligence.

4.1. Assessment: Sensing the Environment and Knowing When to Intervene

We described assessment as ongoing throughout the de-escalation process. Humans
are constantly making “assessments” of their environments, continually sensing and pro-
cessing information which subsequently informs their actions. When engaged in de-
escalation, a specific frame is applied such that crisis responders are intentionally attuned
to information that will guide de-escalation intervention (e.g., whether the individual’s agi-
tation appears to be increasing or decreasing, whether the immediate physical environment
and social context contain elements that could exacerbate agitation). Humans are naturally
equipped with several modes through which they can sense information as part of their
“assessment”, including sight, hearing, touch, olfaction, taste, vestibular (movement and
balance), proprioception (where body parts are in relation to one another), and interocep-
tion (sense of the internal state of the body, both consciously and subconsciously). Robots
must be equipped with the hardware and software necessary to sense information relevant
to the tasks required of them. Determining which types of information robots must be
able to sense for de-escalation is one of the first design challenges. Broadly, robots should
be able to sense information to determine whether the environment is secure (i.e., free of
bystanders, potential weapons, etc.) and to assess the level of agitation and its trajectory on
a moment-to-moment basis. Developing robots with functionality for the first is a simpler
task as it does not have same social processing requirements as the latter two.

For human–human interactions, the assessment component of de-escalation comprises
“assessing the aggressor’s emotional state or situation”, “observing and recognizing known
warning signs of aggression”, “using all five senses to assess the situation”, “judging
the anticipated trajectory of the situation in the context of the individual using existing
knowledge”, and “knowing when to intervene” [12] (p. 15). These descriptions reflect part
of the challenge in translating de-escalation practices into robots. For example, humans
experienced in dealing with agitated individuals may have an intuitive sense of what it
means to assess the aggressor’s emotional state or situation and its implications for de-
escalation. In contrast, robots do not have innate emotion detection or built-in capacities for
empathy or “theory of mind” [17,18] to rely upon in making such behavioural calculations.
Furthermore, efforts to build robots or AI systems that can estimate emotional state based
on text, acoustical properties of speech, and visual appearance have yet to reach the level of
performance associated with humans viewing other humans. Some of the other descriptions
are even less helpful. “Knowing when to intervene” is a complex process of being attuned
to agitated individuals. It involves making decisions about when to intervene in response
to the unique context and circumstances, as opposed to applying a blanket rule. It may
also serve as a reminder of the “window of opportunity” to intervene prior to escalation to
more serious agitation, aggression, or violence. “Knowing when to intervene”, however,
offers little in the way of informing the type of behaviours robots should be attuned to or
as a policy to guide their actions.

The escalation of agitation and aggression has been described as occurring on a
continuum. Models of this process typically depict escalation in three phases: (1) trig-
ger/activation phase; (2) escalation phase; and (3) crisis phase. In the trigger phase, a
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catalyst event that induces stress begins the escalation process [19]. In the escalation phase,
anxiety and agitation grow, evoking angry emotions [20]. In the crisis phase, the individual
experiences a loss of self-control and may act violently towards others [19]. Kaplan and
Wheeler [21] describe two additional phases in their “assault cycle” model: recovery and
post-crisis depression. During these phases, agitated individuals begin to regulate their
emotions and regain self-control. Their abilities to think and act rationally begin to return;
they may feel remorseful about their actions, with a dip in mood to below baseline before
returning to normal. During the transition from “crisis” to “recovery”, individuals may
continue to experience elevated stress hormones. As such, though the immediate crisis
may have passed, anger can be easily reignited, prompting a possible return to the crisis
phase [21].

McKnight [20] elaborated on the continuum models of agitation and aggression by
describing the progression of emotions and behaviours through the stages. Individuals
move from a state of calm through to anxiety, agitation, aggression, and violence. Assessing
and distinguishing between the different stages of escalation is far from an exact science
with clear algorithms, though some authors have attempted to delineate markers of each of
the stages, e.g., [20] (p. 33). Furthermore, there is variability in how individuals display
emotions and states of agitation. Robots equipped with the hardware and software to
perceive and identify these behaviours could rely on actuarial predictions of the state of
agitated individuals; the more behaviours an individual displays within a certain stage
along the continuum, the more likely they are to be at that stage.

Experts on de-escalation in the context of emergency medicine and psychiatry recom-
mend the use of objective scales to assess agitation [10]. Examples of such measures include
the Overt Agitation Severity Scale (OASS) [22] or the Modified Overt Aggression Scale
(MOAS) [23]. These scales are behavioural checklists quantifying the severity of agitation
based on observable behaviours or varying degrees of specificity. For example, the OASS
requires the assessor to indicate the degree of the presence of vocalizations and oral/facial
movements (e.g., smacking or licking of lips, chewing, jaw clenching; licking, grimacing,
spitting), upper torso and upper extremity movements (e.g., slapping, swatting, hitting at
objects or others) and lower extremity movements (e.g., pacing, wandering). The MOAS
takes a different approach, classifying signs of agitation and aggression into categories of
verbal aggression, aggression against property, self-aggression, and physical aggression.
Each category contains subcategories of behaviours ranging from the least severe to most
severe form of each type of agitation/aggression. For example, the verbal aggression
category asks the assessor to rank agitated individuals according to the structure given
in Table 1.

Table 1. Agitation ranking from low to high. From MOAS [23].

Rating Descriptor

0 No verbal aggression
1 Shouts angrily, curses mildly, or makes personal insults
2 Curses viciously, is severely insulting, has temper outbursts
3 Impulsively threatens violence toward others or self
4 Threatens violence toward others, either self-repeatedly or deliberately

There is a gap between what assessment of agitation means for humans and the
requirements to equip robots with the necessary skills. For the human assessor, these
measurement scales may add an element of “objectivity” and provide benchmarks of
behaviours to look for in quantifying the severity of agitation. In contrast, robots are
not privy to the baseline knowledge possessed by humans to determine the difference
between “curses mildly” or “curses viciously”. Even among humans, there may not be
perfect agreement about what constitutes mild vs. vicious cursing, or about any of the
other behaviours. Humans, however, can conjure an image or thought of how each of these
five subcategories may look, sound, and feel. The descriptions above and behavioural
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checklists can provide a starting point for elements to consider in developing robots capable
of de-escalation, but they fall short in offering the level of specificity required for training a
robot in these practices.

To be engaged in de-escalation, robots not only require the ability to identify indi-
viduals in crisis and determine their level of agitation, but they also need to be able to
assess the impact of de-escalation interventions in real time to determine whether the
intervention is working or whether adjustments are necessary. At a macro-level, indicators
that de-escalation interventions are working include decreased agitation, evidenced by
positive shifts in affect and behaviour. At a micro-level, robots will need to detect indica-
tors that de-escalation is proceeding effectively. These indicators will vary for each task
the robot carries out but may include assessing whether agitated individuals have been
successfully engaged by the robot (e.g., verbal acknowledgment, eye contact), whether
agitated individuals are receptive to de-escalation tasks (e.g., if offered a drink of water,
do they accept it? If limits are set, do they abide by them?), and whether an appropriate
amount of personal space is being maintained.

4.2. Planning the Response: Making Decisions about What to Do Next

As illustrated in Figure 1, de-escalation is not linear, but rather a flexible and iterative
process that may manifest in numerous ways. To maximize the likelihood of a favourable
response from agitated individuals, it would be beneficial for robots to select intervention
strategies according to the stage of escalation and emotions that agitated individuals
are exhibiting. Furthermore, some intervention strategies may have a higher likelihood
of achieving successful de-escalation with individuals, both across and within stages of
escalation. Thus, it would be advisable for the robot to begin with these strategies, assess
their effectiveness with the agitated individual at hand, and shift to a new strategy if
unsuccessful. Some characteristics of agitated individuals (e.g., gender, age, reason for
agitation, current emotional presentation) may make them more or less likely to respond
well to specific de-escalation strategies. For example, Takayama and Pantofaru [24] found
that when a robot’s head is oriented toward a person’s face, the minimum comfortable
distance from the robot increases for women but decreases for men. They also found that
the personality trait of agreeableness was associated with decreased personal space when
people approach robots, while neuroticism was associated with increased personal space.
The determination of relevant factors to guide optimal decision making for robots engaged
in de-escalation remains an open empirical question.

In addition to between-person differences in optimal robot decision making, there can
exist within-person considerations. That is to say, the same individual may have varied
reactions to robots depending on their current state and the context of their agitation. For
example, a grey literature publication on de-escalation training identified common underly-
ing reasons for agitation along with suggested corresponding intervention goals [25]. The
underlying reasons were fear, frustration, manipulation, and intimidation. When escala-
tion is motivated by fear, individuals are presumed to be defending themselves against a
perceived threat, and the goal of intervention is to respond in ways that will reduce the
perceived threat. When frustration underlies the escalation, individuals are presumed to
be acting out in response to a need to express intolerable frustration, and the suggested
de-escalation approach is to convey that the crisis responder is in control of the environ-
ment. If manipulation is assessed to be the underlying motive of escalation, individuals are
presumed to be impulsively attempting to obtain something in exchange for maintaining
emotional control and not doing something dangerous. In this case, interventions that
indicate crisis responders’ detachment and refusal to become involved in manipulation are
thought to decrease the likelihood that individuals will perceive a gain from their agitated
behaviour and thereby promote de-escalation. Finally, when escalation is driven by the
motive to intimidate, individuals are presumed to be engaging in a calculated attempt to
obtain something in exchange for the physical safety of others. Clear communication of
consequences for aggression and violence is the suggested de-escalation strategy [25]. The
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validity of this model of the underlying reasons for escalation and suggested response
styles needs to be explored empirically; however, it exemplifies how robots’ decision-
making models for de-escalation need to consider contextual factors that can vary within
individuals and across situations.

Though shifting to a new intervention strategy may be necessary if the current strategy
is ineffective, it will be important for robots to develop an intelligence capable of perceiving
when a strategy needs to be repeated versus when it is ineffective and needs to be changed.
At times, crisis responders may pursue more than one strategy concurrently (e.g., validating
feelings and circumstances while also setting limits, or asking clarification questions while
also problem solving and offering food or water). Robots engaged in crisis de-escalation
will similarly need to be able to make decisions to move fluidly between strategies. The
pacing of interventions will also be an important consideration for robots. For example,
robots will need to decide how long to wait before repeating an instruction or request.
Humans make decisions around pacing based on a complex array of verbal and non-verbal
perceptions about individuals they are interacting with, in combination with individual
differences in communication style. Appropriate pacing for human–robot interactions in
the context of crisis de-escalation is another empirical domain that remains to be explored.

4.3. Actions to Support De-Escalation

The components discussed in the last two sections occur “behind the scenes”; they
are not directly observable to people with whom robots may be interacting. This section
addresses the ways in robots may outwardly engage in de-escalation practices. Much
like humans, robots can draw on an array of verbal and non-verbal characteristics and
behaviours to convey meaning and exert desired effects on their environment. Though
not an all-inclusive list, robots can vary in terms of their appearance (e.g., gender, size,
anthropomorphism, use of avatar, uniform, method for displaying emotion, etc.), language
(e.g., including both the content of what is said and how the robot says it—tone, volume,
speed, accent, etc.), personality (e.g., introverted vs. extraverted), gaze behaviour, move-
ments, and proxemics (i.e., personal space). Researchers within the field of human–robot
interaction have begun to explore how design choices within these areas can impact inter-
actions with humans. A comprehensive review of every domain of robot-design research
relevant to de-escalation tactics is beyond the scope of this paper, as many warrant their
own independent review. Instead, we present representative examples within domains to
illustrate the spectrum of design considerations.

4.3.1. Verbal Communication Principles

As outlined in Figure 1, there are numerous verbal communication principles that crisis
responders are advised to incorporate throughout de-escalation interventions, regardless
of the specific strategies implemented at that moment. These include active listening, para-
phrasing, using open questions and clear, concise, and decisive language, demonstrating
perspective-taking, and showing empathy and concern. Robots engaged in de-escalation
require the ability to understand and respond to open-ended input from agitated indi-
viduals, who may be uncooperative and deviate from a predictable conversational flow.
Continued advancement in voice-enabled chatbots, harnessing natural language processing
technology, will be crucial in developing robots that can utilize sophisticated receptive and
expressive language skills to effectively employ these verbal de-escalation strategies (see
Xiao et al. [26] for a recent example of a model for an interview chatbot capable of active
listening). Regarding empathy, Bejarano and colleagues [27] found that a robot designed to
maintain the flow of conversation by asking related vs. unrelated follow-up questions to
further understand a person’s feelings was perceived as more empathetic than one that
did not use questioning. This finding suggests that humans may be just as sensitive to the
nuances that convey empathy and understanding (and related constructs) in robot–human
interactions as they are in human–human interactions.
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Some research suggests that design choices regarding verbal communication may be
more complicated than simply using state-of-the-art AI voice technology. For example,
Law and colleagues [28] conducted an experiment in which they manipulated a robot’s
perceived emotional intelligence, gender, and communication method (voice vs. text) to
explore the impact on trust. Unexpectedly, they found that participants reported greater
trust in the robot when it communicated through text rather than voice format. They
hypothesized that this effect may have been due to participants’ expectation that the robot
would have a more expressive and human-like voice and the violation of this expectation
subsequently resulted in reduced trust.

4.3.2. Non-Verbal Communication Principles

Non-verbal communication principles that should be integrated throughout de-escalation
interactions include the use of an appropriate tone of voice, appearing calm, engaging in
slow and predictable movements, making appropriate, non-provocative eye contact, being
non-threatening, maintaining appropriate personal space and physical positioning, exhibit-
ing slow and simple pacing, showing congruence between words and actions, showing
concern, and matching agitated individuals to reduce perceived power differentials.

Robot tone of voice can be manipulated using features including volume, speaking
speed, and pitch. The pacing of the de-escalation interaction can also be controlled us-
ing speaking speed along with the amount of speech. Studies examining the impact of
tone of voice on the perception of robot personality suggest that humans are sensitive to
these features and use them to attribute different characteristics to robots. For example,
research indicates that robots who speak at a higher volume, with fast speed, higher and
more varied pitch, and a larger amount of speech are typically perceived as being more
extraverted e.g., [29,30]. Kim et al. [31] found that robot voice volume was negatively
related to perceived friendliness. The de-escalation literature offers little insight into what
specifically constitutes an appropriate tone of voice in the context of de-escalation. Presum-
ably however, the tone of voice of crisis responders should be calm, empathic, warm, firm,
and non-threatening. Future research could elucidate which configurations of a robot’s
tone of voice are most likely to be perceived as having these qualities.

There is a large body of research on the gaze behaviour of robots (see Admoni and
Scassellati [32] for a review). First and foremost, design choices dictate the type of gaze
behaviours of which robots are capable. Virtual agents (i.e., avatars) can allow for fine-
tuned control over the appearance and timing of gaze behaviour, incorporating subtle
eyelid, eyebrow, and eyeball movements. Such small and subtle movements are difficult
to achieve with physical motors on embodied robots. Virtual agents can mimic human
eye movements with greater precision than physical robots because they are animated;
however, it should be noted that encoding realistic gaze behaviour is an ongoing area of
research [33]. Furthermore, although devices such as the Furhat [34], with a rear-projected
head-shaped projection surface, can provide a head-shaped avatar, it is unclear whether
projected avatar displays are as effective as physical structures. Given that de-escalation
invariably requires a physically embodied robot, designs merging embodied robots with
virtual agents (e.g., a robot body with a screen displaying an avatar face) may enable more
realistic gaze behaviour.

Second, humans appear to respond differently to robot gaze than human gaze. A
test of reflexive cueing (the tendency of humans to shift their attention in the direction of
another person’s averted gaze) found that robots failed to elicit this response in people,
suggesting that humans process robot gaze more as directional arrows than as faces [32,35].
Further, eye-tracking studies with infants have found that anticipatory eye gaze does not
shift in response to a human–robot referential gaze as it typically does with humans [36].
Though humans may respond differently to robot gaze, research suggests that humans are
sensitive to the interplay between their own gaze and a robot’s gaze. Robots that convey
joint attention and mutual gaze that is responsive to human interactional partners induce
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greater self-reports of the “feeling of being looked at” compared with robots with gaze
behaviour that is unresponsive to and independent of humans’ gaze [37,38].

The context of human–robot interactions has been found to influence which type
of gaze behaviour is best. When conversational topics are emotionally neutral, robots
that make eye contact are perceived as more sociable and intelligent. When the topic
of conversation is embarrassing, however, robots that avoid eye contact are perceived
more favourably [39]. When the goal of interaction was for robots to persuade their
conversational partners, a natural gaze behaviour was most effective [40]. Moreover, when
persuasive gestures were performed in conjunction with eye gaze, robots’ persuasiveness
was improved; when performed in the absence of eye gaze, persuasive gestures impeded
robots’ persuasiveness [41]. Finally, Admoni and Scassellati [32] note that robots’ gaze
behaviour can be used to regulate the pace of conversations, convey mental states, and
express personality and emotion. Exploring the ideal type of gaze behaviour within de-
escalation interactions and its impact on humans’ perception and response of robots in that
context will be an important area for future research.

Robot movement (e.g., speed of approach) and proxemic behaviour is another ac-
tive field of research e.g., [24,42–45]. Interpersonal distancing theories [46,47] propose
three functions of interpersonal distancing: (1) protection (perceived threat due to spatial
invasion evokes a fight/flight with greater distance, facilitating easier escape); (2) regu-
lation of arousal (interpersonal distance can be used to control the amount of incoming
information and prevent overstimulation); and (3) communication (information about the
nature of the relationship between individuals can be communicated through interpersonal
distancing, such as through physical closeness). Agitated individuals are likely to be in
a state of fight/flight and hyperarousal, thus their needs regarding personal space likely
differ from participants typically included in studies of robot movement and proxemics.
For de-escalation led by human crisis responders, slow and predictable movements are
recommended. One study indicated that humans prefer robots that move more slowly than
humans: approximately 1 m per second just under the average human walking speed [48].
The preference for robots to move slightly more slowly than humans under ordinary cir-
cumstances could mean that movements may need to be even slower in de-escalation
situations, though this needs to be tested empirically. Macarthur and colleagues [43] found
that humans rated robots as more trustworthy when they maintained greater personal
space and had a slower speed of approach; however, the authors did not specify the degrees
of personal space or speeds that were used in the experiment. Ideally, the movements and
proxemic behaviour of crisis responders convey a non-threatening and calm presence to
agitated individuals. Robots’ movement and proxemic behaviours should be designed with
similar goals in mind. The idea of designing robots to move in the same manner as humans
is known as social navigation and is an open area of research in robotics (see Baghi and
Dudek [49] as an example). Work to date in social navigation leaves open the question as to
whether humans would prefer robots to move in ways similar to or different than humans.

In human–human interactions, congruence between actions and words conveys gen-
uineness and supports a sense of trust, safety, security, and greater predictability within
relationships. Above, we described a study in which greater trust was reported when the
robot communicated in text rather than voice format, with this effect possibly explained
by a violation of the expectation for the robot to have a more expressive and human-like
voice [28]. The robot in this case could be considered “incongruent”, in that its voice
was not consistent with what participants expected based on its other qualities. Other
studies within the field of human–robot interaction have noted effects related to a possible
violation of expectations or “incongruence”. Chita-Tegmark et al. [50] found that, despite
studies suggesting that women are typically perceived as more emotionally intelligent
than men [51,52], male robots were rated as more emotionally intelligent than female
robots, not only when the robots had gendered voices, but also when the only indication
of their gender was their name. The researchers hypothesized that this finding may be
due to a violation of the expectation for female robots to be more emotionally intelligent,
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whereas male robots were perceived as performing better than expected, thus resulting
in more favourable ratings. To determine what congruence looks like for robots engaged
in de-escalation, a necessary first step may be developing a thorough understanding of
human expectations of robots in this role, so that robots can be designed in a way that is
consistent and “congruent” with human expectations.

Robots have access to a range of non-verbal communication mechanisms that are
unavailable to humans, which can be uniquely manipulated to produce different effects.
One example is the size or height of the robot. Walters and colleagues [53] found that robots
with a humanoid face and a shorter height (1.2 m tall) were perceived as less conscientious
and more neurotic, while the same robot with a taller height (1.4 m tall) was perceived as
more humanlike and conscientious. It is unclear at this time how a robot’s size might impact
de-escalation, but studies such as this suggest it will be an important factor to consider.

4.3.3. Specific Tasks

The specific tasks of de-escalation described in Figure 1 (e.g., establish verbal contact,
develop rapport, gather information, validate feelings and circumstances, limit setting, use
of humour, offer choices, give reassurance/support, problem solving, etc.) do not represent
an all-inclusive list of potential de-escalation strategies. Given that robot-led de-escalation
has yet to be attempted, there is little evidence to draw upon in terms of how robots
can effectively engage agitated individuals in specific de-escalation tasks. Furthermore,
de-escalation tasks require a varied and flexible skillset. For example, the skills required to
offer an agitated individual food and water versus the verbal and knowledge-based skills
required to engage in problem-solving are radically different in terms of their computational
and physical requirements. Robots engaged in de-escalation do not need to be able to
perform all possible de-escalation tasks—equally effective human crisis responders certainly
vary in terms of the specific skills they draw upon and tasks they tend towards. At this
point, it is difficult to make recommendations regarding which types of tasks to prioritize,
as there is not adequate evidence to inform such recommendations. The starting place for
specific tasks, may also be dictated by the tasks that are most feasible given the current state
of technology and by the context in which the robot is intended to engage in de-escalation
(e.g., healthcare, customer service, security, etc.).

5. Training the Robot

Robots designed to engage in crisis de-escalation cannot be programmed in a fixed,
algorithmic, rule-based manner, as for the most part, there are not specific, universal
rulesets to govern the interaction (e.g., if client’s speech volume increases by 25%, then
move 1 m away). Even if there were algorithms governing human-to-human de-escalation,
whether those would translate into an effective robot-to-human de-escalation is an empirical
question. Whether humans will respond similarly to robots as they do to humans engaged
in analogous behaviours is also an open empirical question. It is worthwhile noting
that humans undergoing training in de-escalation face the same limitations that robots
must overcome, with regard to a lack of specific algorithms to guide their behaviour.
Though there are some general principles of de-escalation that beginner crisis responders
can draw on to inform their initial approach, the development of expertise in this area
requires repeated practice and experience. Through an experience-based or “data-driven”
learning process, the human brain can detect patterns and develop implicit and explicit
“schemas” and “heuristics”, or, in the language of computer programming, “policies”, to
guide behaviour in future de-escalation interactions.

At this point in time, there are modern machine-learning techniques that are well
suited to data-driven strategies for learning. There exists a range of possible approaches,
including, e.g., fuzzy logic [54] and supervised and unsupervised neural networks [55,56].
However, one approach that might be particularly suitable is reinforcement learning.
Reinforcement learning [57] is an adaptive form of artificial intelligence in which the
machine learns a new policy to follow through the provision of rewards associated with
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a target system state. A reward function serves as an incentive mechanism to inform the
agent (i.e., robot or machine) what is correct and what is wrong, with the goal of the agent
being to maximize the total reward. In standard reinforcement learning, the agent performs
an action in the environment and then receives the next state and reward. The agent learns
by iteratively interacting with the environment.

Reinforcement learning has found a wide range of applications from wireless network
optimization [58] to power distribution management [59] and the development of socially
aware navigation functions for robots [60]. Developing reward functions for robots to learn
crisis de-escalation skills is a challenging task, as de-escalation involves a complex series of
behaviours, the sequence of which is neither well understood, nor necessarily consistent
within and between individuals and contexts. The potential action space for robots training
in de-escalation will also be so large that sparse reward environments (i.e., when a very
small number of actions return a reward) will likely pose a challenge because selecting
actions at random may not achieve the final reward state (i.e., successful de-escalation,
however it may be defined). Reward shaping may offer some promise in overcoming this
challenge. In this method, a reward function is designed to provide more frequent feedback
on appropriate behaviours by rewarding actions that achieve states that are precursors
of or close to the final goal state. Still, setting the reward function for de-escalation is
more complicated than most, if not all, of the tasks in which reinforcement learning has
been successful. For example, when training an agent to play chess or to stack a block
on top of another block, the desired end state is more easily defined (i.e., win vs. lose;
block balanced on top of other block vs. not). Operationalizing a successful de-escalation
intervention is not as easily done. Broadly, the reward function could reinforce actions that
are associated with reductions in a person’s agitation, but defining what does and does not
represent the end state of reduced agitation is layered, depending on both the context and
humans involved.

There is also the issue of sample inefficiency, given that obtaining the large set of data
required to train an agent is problematic. First and foremost, there are significant ethical
issues associated with sending an untrained or partially trained agent into situations with
agitated individuals to engage in the trial-and-error process of reinforcement learning. Ethi-
cal issues aside, it is also hard to imagine where to acquire a sample of agitated individuals
large enough to train the agent. For example, training an agent to play Atari 2600 games
required millions of attempts to play the game [61]. De-escalation involves a significantly
larger action space and more complicated reward function than Atari 2600 games; as such,
the number of training attempts required would likely be much larger.

Offline reinforcement learning offers some promise in overcoming these challenges.
In offline reinforcement learning, the agent trains on a fixed dataset of previously collected
experiences with known trajectories. The agent interacts with the dataset to collect a set
of experiences to learn a policy without engaging with a real-world environment. Offline
reinforcement learning is particularly valuable for tasks for which real-world interaction is
prohibitively dangerous or expensive, as in the case for training a robot in de-escalation.
This learning paradigm is limited, however, by the datasets that are available for training.
With police bodycams becoming a norm within the field, it is possible that footage collected
from police interactions could be one dataset on which robots could be trained. Terrill
and Zimmerman [62] offer a systematic methodology for coding and analyzing video data
collected from bodycams for patterns of escalation and de-escalation, and observations from
their study regarding the strengths and limitations of bodycam footage may help to guide
machine learning with this type of data. Police interactions are a highly specific context for
de-escalation, however, and would likely not be adequate to train a robot for de-escalation
in other settings. As such, it would be beneficial to acquire datasets representative of other
fields in which de-escalation practices are often implemented (e.g., emergency medicine,
mental health nursing, special education).

With reinforcement learning, the solutions that machines devise to maximize reward
functions are often not the outcomes intended. What is intended is not always consistent
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with what is incentivized, and it can be difficult at times to capture exactly what an agent
should be rewarded to do. Consequently, reward functions use imperfect but easily quan-
tified proxies for desired outcomes. In one example, researchers training an agent on a
motorboat race game encountered a problem in which the agent learned to maximize its
score by circling around and hitting targets repeatedly, but without finishing the race [63].
With de-escalation, it is not hard to imagine reward functions that could be maximized
through strategies causing more harm than good, or strategies that are inherently dan-
gerous. For example, a quick way to reduce agitation would be to cause a person to lose
consciousness, but this is not an acceptable strategy for de-escalation.

Lastly, there remains the challenge of equipping robots with the requisite hardware
and software to sense the information needed for decision making and to adequately
convey the appropriate response to their human interactional partner.

6. Future Directions

Throughout this paper, we have considered the capabilities required by robots to
engage in the de-escalation process from start to finish as autonomous agents. Given the
complexity of this task as well as the question of whether humans would react favourably
to a robot attempting de-escalation, it may be better to consider how robots could assist
humans with aspects of the de-escalation process, rather than how robots could engage in
de-escalation independently. For example, though we have not addressed it in depth thus
far, a crucial step in de-escalation for human teams is the debriefing process. Debriefing
is important as it provides an opportunity for humans to reflect on their interventions,
consolidate aspects that went well, and identify areas for improvement. Robots could
theoretically play a role in augmenting the debriefing process. For example, a robot with a
video record of situations in which de-escalation occurred could be trained to identify key
moments to present to human teams for discussion. Robots could also have a preventative
role. For example, a robot engaged in surveillance in public settings could be trained to
identify individuals exhibiting warning signs of significant agitation so that intervention
by humans can occur before a crisis point is reached. Robots could perform other assistive
roles as well to increase the efficiency and effectiveness of human crisis responders. Finally,
rather than directly interacting with agitated individuals, robots could take on an advisory
role, recommending interventions to human crisis responders engaged in de-escalation.
Trust between human crisis responders and the robot is crucial in this scenario (see de
Visser et al. [64] for a discussion on trust in human–robot teams).

Before robots can be trained to perform any role in de-escalation, research is needed
to better understand and codify de-escalation. Video-recorded naturalistic observational
research on de-escalation would help to fill current gaps in understanding. Naturalistic
observations allow researchers to study phenomenon up close in the moment as they
occur, enabling a fine-tuned examination of moment-to-moment processes in de-escalation.
Most of the current research on de-escalation has been based on post-hoc qualitative
reports from crisis responders, which have provided insight on macro-level themes in de-
escalation but have not allowed for in-depth analysis of more micro-level processes. Video-
recorded naturalistic observations would also help to build the large datasets required for
reinforcement learning regimes to train robots in de-escalation. Though this type of work
can be costly, time-consuming, and labour-intensive, it is a necessary first step in the effort
to develop robots capable of assisting with such a socially and behaviourally complex task
as de-escalation.
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