
Citation: Awuku, B.; Huang, Y.;

Yodo, N. Predicting Natural Gas

Pipeline Failures Caused by Natural

Forces: An Artificial Intelligence

Classification Approach. Appl. Sci.

2023, 13, 4322. https://doi.org/

10.3390/app13074322

Academic Editors: Hugo Rodrigues

and Ivan Duvnjak

Received: 28 February 2023

Revised: 24 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Predicting Natural Gas Pipeline Failures Caused by Natural
Forces: An Artificial Intelligence Classification Approach
Bright Awuku, Ying Huang * and Nita Yodo

Department of Civil, Construction, and Environmental Engineering, North Dakota State University,
Fargo, ND 58102, USA
* Correspondence: ying.huang@ndsu.edu

Abstract: Pipeline networks are a crucial component of energy infrastructure, and natural force
damage is an inevitable and unpredictable cause of pipeline failures. Such incidents can result in
catastrophic losses, including harm to operators, communities, and the environment. Understanding
the causes and impact of these failures is critical to preventing future incidents. This study investigates
artificial intelligence (AI) algorithms to predict natural gas pipeline failures caused by natural forces,
using climate change data that are incorporated into pipeline incident data. The AI algorithms
were applied to the publicly available Pipeline and Hazardous Material Safety Administration
(PHMSA) dataset from 2010 to 2022 for predicting future patterns. After data pre-processing and
feature selection, the proposed model achieved a high prediction accuracy of 92.3% for natural gas
pipeline damage caused by natural forces. The AI models can help identify high-risk pipelines and
prioritize inspection and maintenance activities, leading to cost savings and improved safety. The
predictive capabilities of the models can be leveraged by transportation agencies responsible for
pipeline management to prevent pipeline damage, reduce environmental damage, and effectively
allocate resources. This study highlights the potential of machine learning techniques in predicting
pipeline damage caused by natural forces and underscores the need for further research to enhance
our understanding of the complex interactions between climate change and pipeline infrastructure
monitoring and maintenance.
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1. Introduction

The increase in energy demand was driven by economic recovery after the pandemic
lockdown and several occasions of extreme weather events [1]. Of various energy sources,
natural gas is still the preferred energy source, displaying the highest portion of 36% of
total energy production and energy consumption [2]. Natural gas pipelines are a crucial
component of the general energy infrastructure as they supply natural gas from upstream
sectors to downstream consumers, and the reliability and safety of these pipelines are
essential [3]. Currently, many pipelines in the United States (U.S.) are often operated
near capacity due to the increase in demand and global population in general. Therefore,
they are occasionally subjected to structural or nonstructural failures when this demand
coupled with extreme environmental conditions [4]. Understanding the causes of pipeline
failures and the impact of the incidents is essential for preventing the occurrence of future
incidents [5]. Based on past incidents in 2022, failures of pipeline infrastructure in the
United States were commonly caused by corrosion (18%), material/weld/equipment failure
(35%), excavation damage (18%), incorrect operation (8%), other outside force damage
(5%), natural force damage (3%), and other causes due to harsh climatic and operational
conditions [6]. Gas pipeline failures can also potentially result in more severe operator
injuries, including fatalities and other substantial economic losses. Thus, pipeline structural
health monitoring and modeling are crucial for avoiding these undesirable adverse effects
caused by incidents of pipeline failure [7,8].
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Various fields of research aim to enhance pipeline reliability and safety from physical,
operational, and environmental perspectives. Efforts to improve physical characteristics
involve analyzing material structures and understanding the complex physical phenomena
that lead to failure. For example, Lecuyer and Rice (2017) computed natural gas losses from
damaged pipelines from a complex physics phenomena approach, using a combination of
analytical discharge equations and computational fluid dynamics modeling software [9].
Ozdemir et al. (2011) presented a numerical prediction model for pipeline response to
vibration induced by ground activities, such as earthquakes, construction, traffic, explosions,
or industrial activities [10], in addition to corrosion, which has been found to be another
important cause inducing pipeline failure [11,12].

The pipeline damage risk is not only caused by physical phenomena such as internal
and external corrosion. Since the pipeline infrastructure is spatially extensive, the location
and the weather conditions at that location may influence the risk of pipeline damage. Azari
and Karimi (2018) proposed a quantitative risk-based model to analyze the spatial patterns
risk of urban natural gas pipelines [13]. Cobanoglu et al. (2016) studied a pipeline network’s
trend in reliability due to internal and external corrosion using the Homogeneous Poisson
Process (HPP) and Non-Homogeneous Poisson Process (NHPP) stochastic models [3]. Their
results showed the two most significant failure characteristics were the age in decades
of installation and previous failures [3]. With the current demanding pipeline operating
conditions and the reliability of most pipeline infrastructure perpetually declining, pipelines
require regular maintenance to ensure they are operating safely and efficiently. This can be
challenging in remote areas where access is limited or in harsh environments where weather
conditions are extreme. Thus, pipeline operation should emphasize seeking a balance
between the increasing operational demand, aging infrastructure, and the occasional effects
of extreme weather conditions.

With sensor advancements, data collection has become more accessible, enabling
data-driven analysis with machine learning, artificial intelligence, or big data. This has
advanced pipeline analysis with various data sources [7]. Some examples of the application
of database or data-driven algorithms in pipeline assessment are as follows. Iesmantas and
Alzbutas (2016) developed a criteria-dependent Poisson model as a quantitative integration
method for various pipeline databases to improve pipeline reliability [14]. Seghier et al.
(2020) developed a hybrid AI model for the prediction of stress intensity factors [15]. The
continuation of work from Seghier et al. (2021) compared various AI models (artificial
neural network, M5 tree, multivariate adaptive regression splines, locally weighted poly-
nomials, kriging, and extreme learning machines) for predicting the maximum pitting
corrosion depth in oil and gas pipelines [16]. Li et al. (2021) fused a spatiotemporal
modeling approach with text mining to analyze the emergency severity in the natural gas
distribution pipeline [17]. Popescu and Gabor (2021) analyzed pipeline incidents from a
statistical perspective by determining a hierarchy for the causes of the incident, assigning
weights for the effect posed by the incidents and establishing correlations between various
parameters [18]. Naik and Kiran (2018) performed data mining on the last 21 years of
pipeline accident data from the United States and found that pipeline accidents due to
natural force damage increase during the winter season [19].

Natural force damage is often referred to as outside force damage, which includes
incidents caused by acts of nature such as earth movement, heavy rains, high winds, and
extreme hot or cold temperatures [20]. Fluctuations in temperature can cause physical
changes in materials, such as expansion and contraction, which can impact the integrity
of pipelines. Although only a small percentage, approximately 3% of the overall pipeline
incidents, were caused by natural forces in 2022 [6], their effect is often debilitating and
may cause catastrophic failure across the energy industry [21]. The study presented in this
paper aims to address the critical need to accurately forecast the natural force failure causes
that impact natural gas pipelines. By incorporating comprehensive data on climate change
into the analysis of pipeline incidents, this research represents a significant advancement in
our ability to predict and mitigate the effects of natural force failures on pipeline infrastruc-
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ture. This study leverages cutting-edge data-driven analysis and sophisticated artificial
intelligence (AI) or machine learning algorithms to provide actionable insights into the
potential impact of natural force failure on pipeline infrastructure.

AI algorithms can be used to predict pipeline damage caused by natural forces by
analyzing various features such as pipeline characteristics, environmental conditions, and
geographical location [22]. By analyzing these factors, AI algorithms can identify patterns and
correlations that humans may not be able to detect, allowing for more accurate predictions of
pipeline damage. Additionally, AI can be used to optimize pipeline maintenance schedules by
predicting when and where pipeline damage is most likely to occur, allowing for proactive
maintenance and potentially reducing the likelihood of damage occurring in the first place [23].
Finally, AI approaches can also be used to monitor pipelines in real time, identifying potential
damage as soon as it occurs and alerting operators to take appropriate action.

Although not all of the above-mentioned factors will be addressed in this paper, the
main contributions of this paper include: (1) the proposed approach of incorporating
climate change data into pipeline incident data, using artificial intelligence algorithms to
predict pipeline failures caused by natural forces, (2) the high prediction accuracy achieved
by the proposed model for natural gas pipeline damage caused by natural forces, and (3) the
emphasis on the importance of enhancing the understanding of the complex interactions
between climate change and pipeline infrastructure monitoring and maintenance. By im-
proving our ability to anticipate and respond to natural-force-related failures, this research
holds the promise of minimizing environmental damage, reducing infrastructure downtime,
and increasing public safety. The rest of this paper is organized as follows: Section 2 details
the proposed methodology, including the data collection, data pre-processing, and model
selection of the machine learning algorithm, and Section 3 demonstrates the effectiveness
of the proposed method by elaborating on the results obtained from the pipeline incidents
analysis. Other discussions for the proposed methodology are detailed in Section 4, and
the conclusions are summarized in Section 5.

2. Methodology

Natural gas pipeline failures caused by natural forces such as landslides, earthquakes,
and floods can have severe consequences on pipeline operators, nearby communities, and
the environment. These incidents can lead to major disruptions in the supply of natural
gas, property damage, injuries, and even fatalities. Moreover, predicting these incidents is
challenging due to the complexity of the underlying factors involved. Therefore, there is
a need to develop a natural force damage modeling framework to classify the causes of
natural force damage to pipelines in the U.S.

The proposed methodology involves collecting a dataset of pipeline incident data
points and a corresponding dataset of climate change data points. These datasets contain
various features related to pipeline failure, including location, time, pipeline age, pipeline
material, temperature, humidity, and wind speed. The pipeline incident data undergoes
pre-processing, feature selection, and descriptive statistical analysis. Supervised machine
learning algorithms are utilized using the scikit-learn software machine learning library
for the Python ecosystem [24]. The algorithms used in this study include the k-nearest
neighbors (KNN), multilayer perceptron neural network (MLPNN), random forest, mul-
ticlass support vector machine (multiclass SVM), and extra gradient boosting classifier
(XGBoost). These algorithms are widely used in supervised learning applications. The
model is trained on a subset of the collected dataset, and its accuracy is evaluated by
comparing the predicted outcomes with actual outcomes from a testing set. If necessary,
adjustments are made to the model to ensure accurate predictions. Finally, the model is
integrated into a production pipeline that inputs pipeline incident data and climate change
data and outputs the probability of natural gas pipeline failures caused by natural forces.

The proposed AI algorithm shown in Figure 1, is expected to contribute to preventing
future incidents and minimizing the catastrophic losses associated with natural gas pipeline
failures caused by natural forces. By predicting the likelihood of pipeline failures, the
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algorithm will help operators take proactive measures to address potential issues before
they become critical. Additionally, the algorithm will enable regulators to make more
informed decisions on safety regulations, thereby improving safety for both operators and
the public. In short, the proposed natural force damage modeling framework, which uses
machine learning algorithms, can accurately predict the likelihood of natural gas pipeline
failures caused by natural forces. This framework will aid in proactive measures to prevent
pipeline failures, minimize catastrophic losses, and improve safety for both operators and
the public.
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Figure 1. Main steps of the proposed research with machine learning methodology.

2.1. Data Description

In this study, data on pipeline incidents were obtained from publicly available sources
provided by the Pipeline and Hazardous Material Safety Administration (PHMSA), a
division of the United States Department of Transportation. The data pertained to incidents
involving natural gas transmission pipelines and spanned from 2010 to 2022, yielding
1321 data points across the U.S., as shown in Figure 2. Various causes can induce natural
gas pipeline incidents such as excavation, incorrect operation, corrosion, material failure,
and natural forces. Among these different causes, natural force incidents can significantly
impact pipeline infrastructure, causing pipeline damage and failure. Natural forces, such
as landslides, earthquakes, floods, and hurricanes, can lead to pipeline failure, resulting
in environmental damage, injury, and even loss of life. The economic impact of pipeline
damage caused by natural forces can also be substantial, with costs associated with re-
pair, cleanup, and the potential loss of revenue due to service interruptions. Therefore,
understanding the impact of natural force incidents on pipeline infrastructure is crucial
for ensuring pipeline safety and resiliency in climate-change-induced extreme weather
events [4]. Figure 3 shows the number of incidents induced by different causes, indicating
that there were 96 incidents caused by natural forces from 2010 to 2022.
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Figure 2. Distribution of natural gas incidents across the U.S. based on PHMSA 20 year incident
historical data [6].
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Figure 3. Number of natural gas incident causes based on PHMSA 20 year incident data.

The causes of natural force damage to pipelines in the U.S. are diverse and can be
characterized in different ways. This calls for the formulation of natural force damage
modeling as a classification problem. This study developed and evaluated classification
machine learning algorithms to address this issue. The different types of natural force
damage were encoded into ordinal data to streamline the modeling process, as shown
in Table 1. The integration of weather data into the PHMSA database was achieved by
combining the location and time components as a common denominator.
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Table 1. Natural force damage type for pipelines.

Damage Classification Descriptions

1 Trees or vegetation
2 Snow or ice impact accumulation
3 High winds
4 Temperature
5 Heavy rains or floods
6 Other types of natural force
7 Lightning
8 Earth movement not due to heavy rains or floods

2.2. Coding and Software Libraries

Data pre-processing and post-processing of the pipeline data were carried out using
the Python programming language. The classification machine learning algorithms were
implemented using scikit-learn, a free machine learning library.

2.2.1. Data Selection and Pre-Processing

Data pre-processing is essential for ensuring that the data are suitable for analysis, and
it can help to improve the accuracy and effectiveness of machine learning models. Data
pre-processing is essential for several reasons. First, it improves data quality. Pre-processing
helps identify and correct errors, missing values, and inconsistent data, which can improve
the data quality. Second, it facilitates better feature selection. Data pre-processing can also
be used to ensure the most relevant features are selected during the feature selection process,
which is detailed in the following subsections. Lastly, it enhances model performance.
By pre-processing the data, the performance of the models can be enhanced by ensuring
that the data are consistent, complete, and relevant to the problem at hand [24]. Table 2
presents the pipeline damage data and their respective descriptions based on the merged
report formats to create pipeline incident trends, which PHMSA publishes in their pipeline
incident 20 year trend dataset.

After screening 96 data points to remove incomplete and missing instances, the re-
sulting dataset consisted of 81 data points. Table 2 also contains a set of features with
varying magnitudes, units, and ranges; for example, the age of the pipeline is measured in
years, whereas the pipe diameter is measured in meters. These various features create a
magnitude discrepancy and may significantly impact the accuracy and interpretability of
machine learning models. If the features are not properly scaled or normalized, those with
larger values or a wider range of values can dominate the prediction outcome. Thus, it is
necessary to standardize the features to a consistent level of magnitude with methods such
as z-score normalization, min–max scaling, and logarithmic [25].

This paper employed the z-score approach to scale the numerical features in the dataset,
as shown in Equation (1). The benefit of using the z-scores approach is that it allows for the
standardized comparison of data points across different datasets with different means and
standard deviations [26]. By converting the data points into a standard scale, it becomes
easier to compare the relative position of a data point within its dataset and between
different datasets.

z =
x− µ

σ
(1)

where z represents the scaled value of x, which is an unscaled variable with a mean of µ
and a standard deviation of σ.

Table 2 contains some categorical variables, such as pipe material, crossing, and
incident area type. Most artificial intelligence or machine learning algorithms cannot
process categorical variables as these data types are non-numerical data representing
a group or category. Thus, these numerical data must be transformed into numerical
values. PHMSA does not provide an ordinal or numerical scale for these categorical
variables; therefore, they were converted into an ordinal scale to be interpreted by the
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machine learning algorithms. For example, in Table 2, the categorical variable “crossing”
was converted to 0, 1, 2, and 3, representing bridge, railroad, road, and water crossings,
respectively. Similarly, the rest of the categorical variables in Table 2 were also transformed
into an ordinal scale of 0, 1, 2, . . . , n in which n is the number of categories available for
a variable.

Table 2. Sample of variables influencing pipeline damage description.

Variable Index Variable Description

1 Accident psig Estimated pressure at the point and time of the incident
2 Incident year Year of incident
3 Location datetime Earliest local time and date an incident reporting criterion was met
4 Release type Type of release involved
5 Longitude Location longitude
6 Latitude Location latitude
7 Commodity released type Type of gas commodity released
8 Unintentional release Estimated volume of gas released unintentionally
9 Number of people evacuated Number of members of the general public evacuated
10 Incident identified date time Local time operator identified failure
11 Incident area type Area of incident
12 Operator identity Ops-issued operator identification number
13 Depth cover Depth of cover
14 Crossing Type of crossing
15 Pipe facility type Indicates the type of pipeline system
16 System part involved Part of the system involved in incident
17 Installation year The year the item involved in the incident was installed
18 Pipe diameter Nominal pipe size
19 Pipe material Material involved in incident

20 Temperature Temperature recorded at the location, date, and time at which the
incident occurred

21 Humidity Humidity recorded at the location, date, and time at which the incident
occurred

22 Wind speed The wind speed recorded at the location, date, and time at which the
incident occurred

23 Pressure Atmospheric pressure recorded at the location, date, and time at which
the incident occurred

24 Normal psig Normal operating pressure at the point and time of the incident
25 The estimated cost of gas Cost of gas in USD per thousand standard cubic feet (mcf)
26 Cost of operator The estimated cost of the operator’s property damage and repairs
27 Cost of emergency response The estimated cost of emergency response

2.2.2. Feature Selection

Feature selection, a crucial step in data pre-processing, has demonstrated its effec-
tiveness and efficiency in readying high-dimensional data for various data analysis and
machine learning tasks. The primary goals of feature selection are to simplify models,
enhance predictive accuracy, enhance comprehensibility, and make inferences about the
data [27]. Generally, various methods for feature selection can be categorized into three
categories: filter, wrapper, and embedded methods [28]. The filter approach leverages the
inherent features of the training data without relying on the specific predictive algorithm
being used [28,29]. On the other hand, the wrapper method evaluates the correlation
between feature relevance and optimal feature subset selection by searching for the best
subset of features that aligns with the chosen predictive algorithm [28,29]. Lastly, the
embedded approach integrates feature selection within the training process by utilizing a
learning algorithm specifically designed for this purpose [28].

The Boruta feature selection method was selected for this study. Boruta is a wrapper
method of feature selection, meaning it uses a model to evaluate the importance of each
feature and select the most relevant features. The Boruta was selected because it implements
an all-relevant approach, considering all features that impact the outcome variable. It is
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designed to handle datasets that have a large number of variables, including variables that
may be correlated or redundant. In contrast, many other variable-selection algorithms
follow a minimal optimal strategy, selecting only a small subset of features that produce a
minimal error when using a specific classifier [30]. The pseudocode for implementing the
Boruta feature selection is given as follows in Algorithm 1.

Algorithm 1: Boruta Feature Selection.

1: Create a copy of the original training data set and call it shadow features.
2: Initialize the feature importance of all features to zero.
3: For each feature in the original data set:
4: Create a random permutation of the feature values.
5: Replace the feature values in the shadow features with the permuted values.
6: Calculate the feature importance using a decision tree (e.g., Random Forest).

7:
If the feature importance of the permuted feature is higher than the original
feature, mark it as “not important”.

8: Repeat steps 4 to 7 for a predetermined number of iterations.
9: End.
10: Keep only the features that are marked “important”and discard the rest.

2.2.3. AI Approach: Machine Learning Algorithms

Numerous AI or machine learning algorithms have been documented in the literature
in the domain of machine learning. However, an exhaustive examination of all algorithms
is beyond the scope of this research. Thus, the authors focused on reviewing the most
commonly employed multi-classification algorithms that have demonstrated superior per-
formance compared to alternative approaches. In this paper, a comparison was conducted
between the predictive performance of five commonly utilized machine learning classifiers
in several domains to solve classification problems. The selected classifiers used in this
paper included (1) k-nearest neighbors (KNN), (2) multilayer perceptron neural network
(MLPNN), (3) random forest, (4) multiclass support vector machine (multiclass SVM), and
(5) extra gradient boosting classifier (XGBoost). The summary of each of the classifiers is
provided as follows.

K-nearest neighbor (KNN): In practice, the KNN machine learning algorithm exhibits
excellent performance compared to more complex machine learning algorithms [31]. This
is due to its ability to determine similarities among data, enabling it to make predictions
on unseen data [32]. Furthermore, it does not make additional assumptions and is flex-
ible, making it suitable for a variety of applications [31]. The KNN algorithm is widely
considered to be one of the top 10 machine learning algorithms [33] and is often used
as the baseline algorithm in several domain problems [34]. Additionally, KNN is capa-
ble of generalizing unseen data with potentially complex geometries compared to other
algorithms [31].

The KNN machine learning algorithm uses the k-closest data points in the feature
space as inputs, and it outputs a classification of pipeline damage caused by natural forces.
The damage type is determined by the majority vote of its k nearest neighbors in which k is
a positive integer that is chosen based on the data. The KNN classifier operates by finding
the nearest neighbors of each query point, with k being specified by the user. However, the
optimal value of k is highly dependent on the data, which is why different values, ranging
from 1 to 50, were explored in this study. The best value of k was determined using the grid
search method, based on the scikit-learn 2019a user’s guide.

Random forest: The concept of random forests was introduced by Leo Breiman in
the early 2000s as a method for constructing a predictive ensemble using a collection of
decision trees grown in randomly selected subspaces of the data [35]. The method involves
utilizing multiple randomized decision trees and averaging their predictions, resulting in
exceptional performance in scenarios in which the number of variables exceeds the number
of observations [34]. Additionally, this approach is flexible and can be applied to complex
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problems or customized to specific learning tasks and provides assessments of variable
significance. Its adaptability makes it a valuable tool for large-scale projects [35].

Multiclass support vector machine (SVM): SVM is predominantly used to solve binary
classification problems by identifying a separating hyperplane for the data points [36]. For
a multiclass classification problem, SVM has two methods: the one-versus-rest approach,
which involves training m classifiers: one for each class in a dataset with m classes. During
classification, each classifier predicts the probability of a specific class, and the class with
the highest probability is selected. The one-versus-one classifier approach trains a classifier
for each pair of classes, considering all possible combinations. During classification, each
classifier predicts the probability of one class, and the class with the most votes is chosen as
the final classification [36]. SVM was selected as one of the algorithms because it generally
performs well in high-dimensional spaces and can effectively classify new, unseen data [37].
SVMs can handle both linear and non-linear data, making them suitable for a wide range
of classification tasks.

Extra gradient boosting classifier (XGBOOST): XGBoost is a highly efficient imple-
mentation of gradient-boosted decision trees that prioritizes optimized memory usage
and harnesses the full potential of hardware computing power. This results in a faster
execution time and improved performance compared to many traditional machine learning
algorithms and deep learning models. The core concept behind boosting is to construct
subsequent sub-trees from the original tree in a sequential manner, with each new tree
reducing the errors of the previous one. The new sub-trees modify the residuals from the
previous iteration to minimize the error in the cost function [38].

Multilayer perceptron neural network (MLPNN): MLPNN is a supervised learning
algorithm that learns a function f (·) : Rm → Ro by training on a dataset in which m is the
number of input dimensions and o is the number of dimensions for output (Scikit-Learn
2007). An MLPNN operates in three stages. Firstly, during the forward pass, the model
inputs are multiplied by the weights, the bias is applied to each layer, and the model output
is calculated. This predicted output is then evaluated against the given inputs, and the
loss is determined at the output. The output model provides predicted results based on
the input parameters, and a backpropagation algorithm is used to compare the predicted
results with the actual results. Different loss functions may be employed, depending on the
desired performance and requirements [39].

During the backward pass, partial derivatives of the cost function that concern various
parameters are propagated back into the network [40]. This process involves the backprop-
agation of loss, and the model weights are updated using gradient descent. An MLPNN
typically consists of at least three layers of nodes: an input layer, a hidden layer, and an
output layer [38]. Given a set of features X = x1, x2, . . . . xm and a target y, an MLPNN
can learn a non-linear function approximator for a classification problem [40].

The MLPNN was selected as one of the algorithms because of its capabilities of
modeling complex, non-linear relationships between input and output variables with a
wide range of input data types [40]. Additionally, MLPNNs can generalize well to new
data and adapt to changes in the input data by adjusting their internal parameters, making
them useful for applications in which the data are subject to change over time. With regard
to handling complex data, an MLPNN can be scaled up by adding more layers or nodes to
the overall neural network architecture [41].

Model Evaluation: After employing the five algorithms on the training data, the
models were evaluated using an independent testing dataset to assess their performance.
The confusion matrix was calculated, and performance metrics, including accuracy, recall,
and precision, were measured using the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Recall =
TP + TN
TP + FN

(3)
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Precision =
TP

TP + FP
(4)

F1 score = 2× precision× recall
precision + recall

(5)

where TP = true positives; TN = true negatives; FP = false positives; and FN = false
negatives. Accuracy measures the model’s overall prediction correctness, recall measures
the prediction sensitivity, and precision is known as positive predictive value. A way to
balance the trade-off between precision and recall is the F1 score.

3. Results

As outlined in the “Feature Selection” of the research methodology section, the Boruta
algorithm was utilized for feature selection. The top 12 features that influence pipeline
damage are shown in Figure 4. The Boruta algorithm was employed for feature selection
on the pipeline damage dataset. The dataset consisted of 27 features. After running the
Boruta algorithm, 12 relevant features were identified, including the pipe diameter, crossing,
temperature, humidity, longitude, pipe age, type of pipe material, latitude, soil type, depth
of the pipe, and others. These 12 features were considered important predictors for pipeline
damage due to natural forces and align with previous research findings [42]. The Boruta
algorithm also successfully identified the redundant features, which did not significantly
impact pipeline damage. These features were removed from the dataset.
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The diameter of a gas pipeline plays a significant role in its susceptibility to natural
force damage and subsequent deterioration. A pipeline with a larger diameter is typically
more resistant to damage caused by natural forces, such as earthquakes, landslides, and
soil erosion, as it has a greater mass and more structural integrity. On the other hand, a
pipeline with a smaller diameter may be more vulnerable to damage as it may be more
susceptible to deformation and stress due to natural forces. Moreover, the diameter of a
pipeline also affects the pressure level at which the gas is transported. Suppose the pipeline
diameter is too small for the anticipated amount of gas. In that case, the pressure required
to meet demand may exceed the maximum operating pressure, leading to increased stress
on the pipeline and a greater likelihood of deterioration over time [43]. Therefore, it is
important to carefully consider the appropriate diameter of a gas pipeline to ensure its
safety and longevity in the face of natural force damage.

Other important features for pipeline damage are temperature and humidity. The
PHMSA classifies natural force damage to pipelines into distinct categories, which are
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outlined in Table 1. Temperature is among the natural forces that can cause pipeline damage
in multiple ways. Extremely cold temperatures can cause water to freeze, leading to ice
buildup and pressure on pipelines, which results in cracks. Similarly, high temperatures
can cause materials to expand, leading to stress and the potential failure of the pipeline
structure. Additionally, temperature changes can cause ground movement or shifting,
leading to instability and the potential damage to or rupture of pipelines. Therefore,
temperature is an important factor to consider when assessing the risk of pipeline damage
due to natural forces.

Given the various ways temperature can impact pipeline infrastructure, it is essential
to assess the risk of natural force damage and consider climate change parameters in the
prediction of such incidents. In this context, Naik and Kiran (2018) used data mining
algorithms to explore the effects of temperature on pipeline damage incidents. Their
analysis showed that natural force damage was the most frequent type of pipeline accident
when temperatures were below 266.5 Kelvin [19]. Notably, unlike other types of pipeline
accidents, natural force damage was not susceptible to a specific range of temperatures. This
highlights the importance of incorporating climate change parameters into the prediction
of natural force-induced pipeline damage and adopting a comprehensive approach that
considers the effects of changing temperatures on infrastructure and natural systems.

The outcome of the feature selection process highlighted the importance of incorporat-
ing the impacts of climate change stressors on natural gas pipeline damages induced by
natural forces. The natural gas pipeline systems are vulnerable to various effects of climate
change, including alterations in temperature ranges, heightened thermal stress, increased
runoff leading to heavy precipitation and flooding, and more frequent occurrences of
hurricanes, landslides, and land subsidence [44]. This will enable a more comprehensive
understanding of their effects and help to prevent disruptions to the distribution of gas
products to consumers. The complex and interconnected nature of natural gas pipelines,
coupled with the prolonged economic lifetime of the infrastructure, makes it crucial to
address and adapt to the challenges posed by climate change [45].

The selected features were used in the subsequent modeling process to develop a
predictive model for pipeline damage. Overall, the results from the Boruta feature selection
process provided valuable insights into the most important features that affected pipeline
damage and improved the accuracy of the predictive model. Table 3 shows a statistical
summary of the response and the obtained predictive variables.

Table 3. Statistical summary of response and predictive variables.

Variables Count Mean STD Min 25% 50% 75% Max

Natural Force Type 81 3.04 1.95 0 1 3 4 7
Age 81 39.67 25.55 1 23 38 52 109

Temperature 81 52.95 22.92 2 35 57 72 92
Humidity 81 73.74 19 9 61 77 90 100
Latitude 81 40.74 4.55 30.34 38.96 41.12 43.32 60.57

Longitude 81 −90.25 14.83 −151.3 −95.27 −88.94 −80.25 −71.09
Pipeline Diameter 81 2.25 3.433 0 0 0.625 4 16
Pipeline Material 81 2.64 1.49 0 2 3 4 5

Number of Residences Affected 81 103.17 364.11 0 1 1 17 2584
Number of Commercial Affected 81 3.65 1.15 0 0 0 0 770

Crossing 81 0.06 0.24 0 0 0 0 1
Cost of Operator 81 588,721 1,889,704 0 58,420 112,502 287,156 15,400,000

Injury patient Hospitalization 81 0.17 0.378 0 0 0 0 1

The K-nearest neighbor (KNN) algorithm was used with the grid search method to
classify the pipeline damage dataset. The dataset consisted of 12 relevant features obtained
through the Boruta feature selection process. The grid search technique was employed
to find the optimal hyperparameters for the KNN model, which included the number of
neighbors (k) and the distance metric for classification. The results of the grid search showed
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that k = 3 and the Manhattan distance metric were the optimal hyperparameters for the
KNN model. After training the KNN model using the optimal hyperparameters, the model
was evaluated using the testing data. The model achieved an accuracy of 74% (Figure 5) on
the testing dataset, indicating that it was able to classify pipeline damage instances with
acceptable accuracy. However, accuracy alone does not provide a comprehensive picture of
the model’s performance, especially in the case of imbalanced classes.
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To further assess the model’s performance, precision (Equation (3)) and recall
(Equation (4)) values were computed for each class. In a classification problem, a class
refers to a category or label that an observation or data point belongs to. The model showed
a precision and recall of 76% on average for each class, indicating that the model was
reasonably effective in identifying pipeline damage instances caused by natural forces
across all classes. The precision and recall values provide insights into the model’s ability
to accurately predict positive instances and capture all relevant instances, respectively.
Overall, the results from the KNN algorithm with the grid search method demonstrate
that the KNN model, with the identified optimal hyperparameters, can classify pipeline
damage instances with acceptable accuracy. Therefore, this model could potentially be used
as a valuable tool for predicting pipeline damage. In addition to the KNN algorithm, four
other machine learning algorithms were implemented to classify the pipeline damage data:
the support vector machine (SVM), random forest, XGBoost, and multilayer perceptron
neural network (MLPN) algorithms. The comparison results of these five algorithms are
shown in Figure 5.

The grid search technique was also used to identify the optimal hyperparameters for
each algorithm, and the optimal hyperparameters varied between algorithms. For SVM,
the optimal values tested were kernel type, gamma, and C. For XGBoost, the objective type,
maximum depth, and the number of estimators were tested. Lastly, for MLPN, the number
of neurons per layer, learning rate, and activation function were tested. The results from the
grid search revealed that the optimal hyperparameters for each algorithm were as follows:
for SVM, kernel type = ‘rbf’, gamma = 0.01, and C = 1000; for XGBoost, maximum depth = 3,
objective = multisoftmax, and the number of estimators = 100; and for MLPN, the number
of neurons per layer = 100, learning rate = 0.01, and activation function = ReLU.

The random forest algorithm’s hyperparameter was not tuned since the model employs
randomization when creating trees to avoid increasing the complexity of the algorithm. The
algorithms were trained using the optimal hyperparameters and evaluated using testing
data. The results indicated that the XGBoost algorithm had the highest accuracy of 92.3% on
the validation dataset. The random forest was the second-best-performing algorithm with
an accuracy of 92.0%, followed by SVM with 89.74% and MLPN with 87.18%. Precision
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and recall values were calculated for each class, and the results showed that XGBoost had
the highest precision and recall values for all the classes, as shown in Figure 5.

Overall, XGBoost was found to be the most suitable algorithm for classifying pipeline
damage instances with high accuracy. However, the random forest and SVM algorithms
also showed promising results and can be considered alternative options. The results
demonstrate the effectiveness of machine learning algorithms in classifying pipeline dam-
age instances and suggest that these models can be used as valuable tools for predicting
pipeline damage.

4. Discussion

Pipeline damage caused by natural forces is a serious problem that affects various
industries, including oil and gas, water management, and transportation. The development
of predictive models that can help identify potential natural gas pipeline damage before
it occurs, thus preventing costly repairs and minimizing the impact on the environment,
is essential. This study utilized various machine learning techniques, the random forest,
SVM, XGBoost, MLPN, and KNN algorithms, to predict pipeline damage caused by natural
forces. The findings indicate that all the models display a high predictive accuracy, with the
XGBoost and random forest algorithms performing exceptionally well. By utilizing these
machine learning models, natural gas pipeline operators can proactively manage their
infrastructure and prevent potential hazards, leading to cost savings, improved safety, and
environmental protection. By identifying key factors that contribute to natural gas pipeline
damage, future pipeline design and maintenance practices can be improved, leading to the
overall safety and reliability of pipeline operations.

This study aligns with the existing literature on the potential of machine learning tech-
niques to predict pipeline damage. Previous studies have demonstrated the effectiveness
of these techniques in predicting failures of natural gas and oil gas pipelines. For example,
Manan et al. (2021) utilized the support vector machine (SVM) algorithm, backpropaga-
tion neural networks, and statistical techniques to predict natural gas pipeline failures [6]
accurately. Similarly, Aljameel et al. (2022) employed five machine learning models to
detect anomalies in oil and gas pipelines, reporting impressive accuracy levels [22]. Ihsan
and Astuti (2022) utilized deep learning algorithms for anomaly detection in natural gas
pipelines, highlighting the versatility of machine learning in the industry [46]. These studies
provided an important context for the potential impact of this study.

Furthermore, the presented research indicates that machine learning techniques can
provide a valuable tool for predicting pipeline damage in the oil and gas industry. Our
focus on predicting pipeline damage caused by natural forces extends the current literature,
which has primarily focused on predicting damage due to corrosion. This study highlights
the potential of integrating climate data into the prediction of pipeline damage caused
by natural forces. This integration can assist operators in identifying pipelines that are
at high risk of damage and prioritize their inspection and maintenance activities. By
incorporating climate data and using various machine learning techniques, including the
random forest, SVM, XGBoost, MLPN, and KNN algorithms, we have shown that machine
learning models can effectively predict pipeline damage caused by natural forces with high
accuracy. The implications of the present study are significant for the pipeline industry, as
it provides a reliable tool for predicting pipeline damage induced by natural forces and
implementing appropriate measures to prevent or mitigate such damage. For example, the
models developed in this study can be used to identify pipelines that are at high risk of
damage due to natural forces and prioritize them for inspection and maintenance.

In terms of future research directions, it would be interesting to investigate the per-
formance of other machine learning techniques, such as deep learning and reinforcement
learning, in predicting pipeline damage caused by natural forces. Researchers can poten-
tially develop more accurate predictive models for pipeline damage due to natural forces.
These advanced AI algorithms can further improve the accuracy of prediction and enable
the development of proactive measures to prevent pipeline damage. Additionally, it would
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be useful to explore the impact of different variables on pipeline damage, such as soil type,
pipeline material, and weather conditions. Incorporating these variables into the predictive
models can create more comprehensive predictive models that consider various factors
influencing pipeline damage, leading to more effective solutions. The broader impact of
this work is significant, as it can positively impact a range of industries that rely on natural
gas pipelines. This work also aids in minimizing the risk of environmental damage and
ensuring the continued supply of natural gas to society.

5. Conclusions

This study has made a significant contribution to the literature by demonstrating the
potential of machine learning techniques in predicting pipeline damage caused by natural
forces. This paper investigated the effectiveness of integrating climate data into pipeline
incident data and achieved a high predictive accuracy of 92.3% for natural gas pipeline dam-
age caused by natural forces. The findings of the study offer a framework for transportation
agencies to efficiently manage their natural gas pipeline systems and preemptively avoid
potential dangers. The developed models are reliable tools for identifying pipelines at high
risk of damage and prioritizing inspection and maintenance activities. The implications of
this study for the pipeline industry are vast, and it highlights the potential for cost savings
and improved safety. Predicting pipeline damage accurately can help prevent failures and
avoid costly emergency repairs. An accurate prediction can also enable operators to take
proactive measures to prevent accidents and ensure that pipelines are safe for public use.
Furthermore, the early prediction of potential damage can help mitigate the significant
environmental consequences of pipeline failures.

The potential for future research in exploring the performance of other machine learn-
ing techniques and investigating the impact of different variables on pipeline damage
suggests that there is scope for further development in this area. Overall, the study under-
scores the importance of leveraging the power of machine learning in predicting pipeline
damage and emphasizes the need for ongoing research to enhance our understanding of
the complex interactions between climate change and pipeline infrastructure monitoring
and maintenance.

Author Contributions: Conceptualization, B.A. and Y.H.; methodology, B.A. and Y.H.; formal analy-
sis, B.A., Y.H. and N.Y.; investigation, B.A., Y.H. and N.Y.; resources, Y.H.; data curation, B.A. and
Y.H.; writing—original draft preparation, B.A., Y.H. and N.Y.; writing—review and editing, B.A.,
Y.H. and N.Y.; visualization, B.A., Y.H. and N.Y.; supervision, N.Y. and Y.H.; project administration,
Y.H.; funding acquisition, Y.H. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was made possible through a grant from the National Science Foundation
(NSF), EPSCoR RII Track-2 Program, through NSF award # OIA-2119691, and the APC was funded
by MDPI.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data will be made available upon request.

Acknowledgments: This research was made possible through a grant from the National Science
Foundation (NSF) and data from the United States Pipeline and Hazardous Materials Safety Admin-
istration (PHMSA). The findings and opinions presented in this manuscript are those of the authors
only and do not necessarily reflect the perspective of the agencies.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 4322 15 of 16

References
1. The International Energy Agency (IEA) Gas Market Report, Q1 2022. Gas Market Report 2022. Available online: https:

//www.iea.org/reports/gas-market-report-q1-2022 (accessed on 10 January 2023).
2. Natural Gas Explained. About U.S. Natural Gas Pipelines 2022. Available online: https://www.eia.gov/energyexplained/

natural-gas/natural-gas-pipelines.php (accessed on 10 January 2023).
3. Cobanoglu, M.M.; Kermanshachi, S.; Damnjanovic, I. Statistical modeling of corrosion failures in natural gas transmission

pipelines. Pipelines 2016, 195–204.
4. Yodo, N.; Arfin, T. A resilience assessment of an interdependent multi-energy system with microgrids. Sustain. Resilient Infrastruct.

2021, 6, 42–55. [CrossRef]
5. Mahmood, Y.; Afrin, T.; Huang, Y.; Yodo, N. Sustainable Development for Oil and Gas Infrastructure from Risk, Reliability, and

Resilience Perspectives. Sustainability 2023, 15, 4953.
6. US DOT Pipeline and Hazardous Materials Safety Administration. All Reported Incident Cause Breakdown 2022. Available

online: https://portal.phmsa.dot.gov/analytics/saw.dll?Go (accessed on 10 January 2023).
7. Manan, A.; Kamal, K.; Ratlamwala, T.A.H.; Sheikh, M.F.; Abro, A.G.; Zafar, T. Failure classification in natural gas pipe-lines using

artificial intelligence: A case study. Energy Rep. 2021, 7, 7640–7647.
8. Tan, X.; Fan, L.; Huang, Y.; Bao, Y. Detection, visualization, quantification, and warning of pipe corrosion using distributed fiber

optic sensors. Autom. Constr. 2021, 132, 103953. [CrossRef]
9. Lecuyer, H.A.; Rice, C. Computing Natural Gas Losses from Damaged Pipelines Using Analytical Discharge Equations and

Network Modeling Software. In Proceedings of the PSIG Annual Meeting, Atlanta, GA, USA, 9–12 May 2017.
10. Ozdemir, Z.; Lak, M.A.; François, S.; Coulier, P.; Lombaert, G.; Degrande, G. A numerical model for the prediction of the response

of pipelines due to vibrations induced by the operation of a pavement breaker. In Proceedings of the 8th International Conference
on Structural Dynamics, Eurodyn, Leuven, Belgium, 4–6 July 2011.

11. Farh, H.M.H.; Seghier, M.E.A.B.; Zayed, T. A comprehensive review of corrosion protection and control techniques for metallic
pipelines. Eng. Fail. Anal. 2022, 143, 143–106885. [CrossRef]

12. Wang, X.; Qi, X.; Lin, Z.; Battocchi, D.; Chen, X. Enhanced Protective Coatings Based on Nanoparticle fullerene C60 for Oil & Gas
Pipeline Corrosion Mitigation. Nanomaterials 2019, 9, 1476. [CrossRef]

13. Azari, P.; Karimi, M. Extracting spatial patterns of urban gas pipeline risk considering social and structural parameters of urban
blocks. J. Nat. Gas Sci. Eng. 2018, 55, 16–29. [CrossRef]

14. Iesmantas, T.; Alzbutas, R. Bayesian reliability of gas network under varying incident registration criteria. Qual. Reliab. Eng. Int.
2016, 32, 1903–1912. [CrossRef]

15. Ben Seghier, M.E.A.; Carvalho, H.; Keshtegar, B.; Correia, J.A.F.O.; Berto, F. Novel hybridized adaptive neuro-fuzzy inference
system models based particle swarm optimization and genetic algorithms for accurate prediction of stress intensity factor. Fatigue
Fract. Eng. Mater. Struct. 2020, 43, 2653–2667. [CrossRef]

16. Seghier, M.E.A.B.; Keshtegar, B.; Taleb-Berrouane, M.; Abbassi, R.; Trung, N.-T. Advanced intelligence frameworks for predicting
maximum pitting corrosion depth in oil and gas pipelines. Process Saf. Environ. Prot. 2021, 147, 818–833. [CrossRef]

17. Li, X.; Penmetsa, P.; Liu, J.; Hainen, A.; Nambisan, S. Severity of emergency natural gas distribution pipeline incidents: Application
of an integrated spatio-temporal approach fused with text mining. J. Loss Prev. Process Ind. 2021, 69, 104383. [CrossRef]

18. Popescu, C.; Gabor, M.R. Quantitative Analysis Regarding the Incidents to the Pipelines of Petroleum Products for an Efficient
Use of the Specific Transportation Infrastructure. Processes 2021, 9, 1535. [CrossRef]

19. Naik, D.L.; Kiran, R. Data mining and equi-accident zones for US pipeline accidents. J. Pipeline Syst. Eng. Pract. 2018, 9, 04018019.
[CrossRef]

20. Afrin, T.; Yodo, N. Resilience assessment of repair strategies against localized attacks for infrastructure protection. In Proceedings
of the 2019 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA, 28–31 January 2019.

21. Ekic, A.; Wu, D.; Huang, Y. A Review on Cascading Failure Analysis for Integrated Power and Gas Systems. In Proceedings of
the 2022 IEEE 7th International Energy Conference (ENERGYCON), Riga, Latvia, 9–12 May 2022.

22. Aljameel, S.S.; Alomari, D.M.; Alismail, S.; Khawaher, F.; Alkhudhair, A.A.; Aljubran, F.; Alzannan, R.M. An Anomaly Detection
Model for Oil and Gas Pipelines Using Machine Learning. Computation 2022, 10, 138. [CrossRef]

23. Yodo, N.; Afrin, T.; Yadav, O.P.; Wu, D.; Huang, Y. Condition-based monitoring as a robust strategy towards sustainable and
resilient multi-energy infrastructure systems. Sustain. Resilient Infrastruct. 2022, 8, 170–189. [CrossRef]

24. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

25. Assaad, R.; El-adaway, I.H. Bridge infrastructure asset management system: Comparative computational machine learning
approach for evaluating and predicting deck deterioration conditions. J. Infrastruct. Syst. 2020, 26, 04020032. [CrossRef]

26. Cheadle, C.; Vawter, M.P.; Freed, W.J.; Becker, K.G. Analysis of microarray data using Z score transformation. J. Mol. Diagn. 2003,
5, 73–81. [CrossRef]

27. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.
(CSUR) 2017, 50, 1–45. [CrossRef]

28. Kumar, V.; Minz, S. Feature selection: A literature review. SmartCR 2014, 4, 211–229. [CrossRef]

https://www.iea.org/reports/gas-market-report-q1-2022
https://www.iea.org/reports/gas-market-report-q1-2022
https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php
https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php
http://doi.org/10.1080/23789689.2019.1710074
https://portal.phmsa.dot.gov/analytics/saw.dll?Go
http://doi.org/10.1016/j.autcon.2021.103953
http://doi.org/10.1016/j.engfailanal.2022.106885
http://doi.org/10.3390/nano9101476
http://doi.org/10.1016/j.jngse.2018.04.011
http://doi.org/10.1002/qre.1921
http://doi.org/10.1111/ffe.13325
http://doi.org/10.1016/j.psep.2021.01.008
http://doi.org/10.1016/j.jlp.2020.104383
http://doi.org/10.3390/pr9091535
http://doi.org/10.1061/(ASCE)PS.1949-1204.0000340
http://doi.org/10.3390/computation10080138
http://doi.org/10.1080/23789689.2022.2134648
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000572
http://doi.org/10.1016/S1525-1578(10)60455-2
http://doi.org/10.1145/3136625
http://doi.org/10.6029/smartcr.2014.03.007


Appl. Sci. 2023, 13, 4322 16 of 16

29. Yan, C.; Liang, J.; Zhao, M.; Zhang, X.; Zhang, T.; Li, H. A novel hybrid feature selection strategy in quantitative analysis of
laser-induced breakdown spectroscopy. Anal. Chim. Acta 2019, 1080, 35–42. [CrossRef] [PubMed]

30. Bhalla, D. Select Important Variables Using Boruta Algorithm. TechTarget, 1 June 2017.
31. Prasatha, V.S.; Alfeilate, H.A.A.; Hassanate, A.B.; Lasassmehe, O.; Tarawnehf, A.S.; Alhasanatg, M.B.; Salmane, H.S.E. Effects of

distance measure choice on knn classifier performance-A review. arXiv 2017, arXiv:1708.04321.
32. Miner, G.D.; Miner, L.A.; Goldstein, M.; Nisbet, R.; Walton, N.; Bolding, P.; Hilbe, J.; Hill, T. Practical Predictive Analytics and

Decisioning Systems for Medicine: Informatics Accuracy and Cost-Effectiveness for Healthcare Administration and Delivery Including
Medical Research; Academic Press: Cambridge, MA, USA, 2014.

33. Gou, J.; Ma, H.; Ou, W.; Zeng, S.; Rao, Y.; Yang, H. A generalized mean distance-based k-nearest neighbor classifier. Expert Syst.
Appl. 2019, 115, 356–372. [CrossRef]

34. Hu, L.-Y.; Huang, M.-W.; Ke, S.-W.; Tsai, C.-F. The distance function effect on k-nearest neighbor classification for medical datasets.
SpringerPlus 2016, 5, 1–9. [CrossRef]

35. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
36. Upadhyay, A.; Singh, M.; Yadav, V.K. Improvised number identification using SVM and random forest classifiers. J. Inf. Optim.

Sci. 2020, 41, 387–394. [CrossRef]
37. Dey, A.; Yodo, N. A Dropout-based Neural Network Framework for Tool Wear Prediction under Uncertainty. In Proceedings of

the 2021 IISE Annual Conference, Online, 22–25 May 2021.
38. Dhieb, N.; Ghazzai, H.; Besbes, H.; Massoud, Y. Extreme gradient boosting machine learning algorithm for safe auto insurance

operations. In Proceedings of the 2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Cairo, Egypt,
4–6 September 2019.

39. Nafees, A.; Javed, M.F.; Khan, S.; Nazir, K.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Predictive modeling of mechanical
properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP. Materials 2021,
14, 7531. [CrossRef]

40. Dey, A.; Yodo, N. Conservative Confidence Interval Prediction in Fused Deposition Modeling Process With Linear Optimization
Approach. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2022, 8, 011101. [CrossRef]

41. Davila-Frias, A.; Yodo, N.; Le, T.; Yadav, O.P. A deep neural network and Bayesian method based framework for all-terminal
network reliability estimation considering degradation. Reliab. Eng. Syst. Saf. 2023, 229, 108881. [CrossRef]

42. Kentish, P. Gas pipeline failures: Australian experience. Br. Corros. J. 1985, 20, 139–146. [CrossRef]
43. Kiefner, J.F.; Rosenfeld, M.J. The Role of Pipeline Age in Pipeline Safety; INGAA: Washington, DC, USA, 2012.
44. Oruji, S.; Ketabdar, M.; Gregorian, K.; Motamed, R. Climate Change Resiliency of Natural Gas Pipelines: Overview of Land Subsi-

dence and Associated Issues in Central California. In Proceedings of the International Conference on Sustainable Infrastructure
2019: Leading Resilient Communities through the 21st Century, Los Angeles, CA, USA, 6–9 November 2019.

45. Cruz, A.M.; Krausmann, E. Vulnerability of the oil and gas sector to climate change and extreme weather events. Clim. Chang.
2013, 121, 41–53. [CrossRef]

46. Ihsan, A.F.; Astuti, W. Deep Learning Based Anomaly Detection on Natural Gas Pipeline Operational Data. In Proceedings of the
2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), Bandung, Indonesia, 15–16
December 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.aca.2019.07.012
http://www.ncbi.nlm.nih.gov/pubmed/31409473
http://doi.org/10.1016/j.eswa.2018.08.021
http://doi.org/10.1186/s40064-016-2941-7
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1080/02522667.2020.1723934
http://doi.org/10.3390/ma14247531
http://doi.org/10.1115/1.4051750
http://doi.org/10.1016/j.ress.2022.108881
http://doi.org/10.1179/000705985798272786
http://doi.org/10.1007/s10584-013-0891-4

	Introduction 
	Methodology 
	Data Description 
	Coding and Software Libraries 
	Data Selection and Pre-Processing 
	Feature Selection 
	AI Approach: Machine Learning Algorithms 


	Results 
	Discussion 
	Conclusions 
	References

