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Abstract: Unsaturated soil shear strength is a significant topic in geotechnical engineering. The
measurement of unsaturated soil properties such as shear strength and matric suction could be costly,
hard, time-consuming, and often impractical to obtain. The purpose of this research is to propose a
new shear strength model for unsaturated soil and to predict the shear strength by using the degree
of saturation directly because the water saturation is easy to obtain. More specifically, this study
focused on Bishop’s shear strength theory and van Genuchten’s soil–water characteristic curve to
describe the effect of saturation on shear strength. The new shear strength model was expressed
as a function of saturation degree, residual degree of saturation, effective shear strength indices,
net normal stress, and five parameters. The performance of the presented model in this paper was
verified by fitting it to data obtained by laboratory tests on silty sand including the triaxial shear test
and soil–water characteristic curve test. From these two laboratory tests, we obtained the variation in
the matric suction and shear strength with the degree of saturation under various dry densities. This
proposed model was also validated against the shear strength results of the clayed-silty sand and
Ankara clay recorded in the literature. Comparing the result of the shear strength under the variation
of one parameter, this model was much more sensitive regarding parameter m, which was related to
the material characteristic. The comparison between the predicted values and experimental points
was particularly fine and showed the ability of this model to be applied to a wide range of soils.

Keywords: shear strength; unsaturated soil; suction; van Genuchten model; degree of saturation

1. Introduction

Shear strength is regarded as one of the important mechanical properties in the forecast
of the stability of slopes, subgrade bearing capacity, and pressure against a soil-retaining
structure. Taking slope failure as an example, after reservoir impounding, reservoir water
level fluctuation and rainfall infiltration have become main factors that affect slope stabil-
ity [1–4]. There are several reasons for this phenomenon. First, infiltrated water increases
the sliding area’s weight and the pore water pressure, leading to slope failure [5,6]. Second,
infiltrated water softens the soil’s shear strength and leads to slope failure [7–9]. Therefore,
shear strength has a significant impact on the analysis of stability for slope in geotechnical
engineering [10].

Many theories or empirical equations have been developed to predict or estimate the
shear strength of unsaturated soil. Bishop pointed out an effective stress shear strength
equation to explain the mechanical behavior of unsaturated soil [11–13]. Later, two inde-
pendent stress sources including net normal stress (σ− µa) and matric suction (µa − µw)
were used to interpret the behavior of soil [14]. These two equations claimed by Bishop and
Fredlund were of great importance for shear strength in an unsaturated soil area, however,
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matric suction (µa − µw), which is difficult to test, was still included in these two mod-
els [15,16]. In order to develop an empirical model of shear strength for unsaturated soil,
many scholars such as Abramento [17] and Toll [18] have pointed out an empirical model
with fitting parameters. Many of these equations also adopted the soil–water retention
curve (SWCC) as the controlling parameter to project shear strength [10,19]. Vanapalli [10]
showed a procedure to predict the shear strength of an unsaturated soil by using the
soil–water characteristic curve and the saturated shear strength parameters. Zhang [20] pro-
posed an effective stress equation that was able to predict the soil strength and deformation
behavior. Lu [21] proposed a closed-form equation for effective stress in unsaturated soil
that only required two controlling parameters including the inverse of the air entry pressure
and the pore size spectrum number. Other scholars have also discussed empirical models
that considered the air-entry value [22] or the distinct element method [23]. However,
these models focused on the relationship between the shear strength and matric suction
rather than directly considering the water content. In addition, experiments for suction are
time-consuming and need an expensive and sophisticated laboratory test system [24,25].
This resulted in a limited application of shear strength empirical equations in engineer-
ing and scientific areas. Up to now, there has only been a limited practical application
of the unsaturated soil shear strength theory in engineering practice. Nonetheless, engi-
neers can measure the degree of saturation with a simple experimental method at each
location. As summarized above, for various engineering fields, it is of great importance
to propose a simpler method to directly estimate the shear strength of unsaturated soil
including saturation.

This research, based on the unsaturated soil shear strength theory proposed by Bishop
and van Genuchten’s soil–water characteristic curve model, a new multiple parameter
shear strength model was developed to describe the influence of saturation. In this model,
the matric suction was replaced by the degree of saturation. In the end, the equation was
a function of saturation degree, residual saturation degree, effective cohesion, effective
angle of internal friction, and net normal stress. The proposed model was validated against
experimental points from experiments such as the triaxial shear test and the SWCC test
as well as the literature data reported for clayed-silty sand [26] and Ankara clay [27].
Section 2 introduces the development of the new shear strength model. The material and
experimental test system described in Section 3 provides the data of the shear strength and
matric suction under an increasing degree of saturation, which could support this model.
Next, the comparison between the model prediction and the measured data are given in
Section 4 to validate and examine the effectiveness of the proposed model. Subsequently,
the comparison between model prediction and measured data in the literature is also
shown in Section 4. The parameter sensitivity analysis is shown in Section 5 to examine the
robustness of the proposed model and evaluate whether the results are affected by varying
key parameters.

2. Theory
2.1. Bishop Shear Strength Model

The shear strength of unsaturated soil put forward by Bishop [12] is well-suited to
characterize the effect of suction on the unsaturated soil, and has been widely adopted
in many geotechnical engineering applications. Bishop extended the definition of soil to
unsaturated soil and modified the shear strength equation as follows:

τf = c′ + (σ− ua)tanφ′ + χ(ua − uw)tanφ′ (1)

where τf is the shear strength; c′ is the effective cohesion; φ′ is the effective angle of internal
friction; (σ− ua) is net normal stress on the failure plane at failure; (ua − uw) is the matric
suction; σ is the total normal stress; ua is the pore-air pressure; uw is the pore-water pressure;
χ is a parameter dependent on degree of saturation. The extended Mohr–Coulomb failure
envelope is shown in Figure 1.
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2.2. Van Genuchten SWCC Model

Many models that considered matric suction and the degree of saturation are listed in
the literature [16,28,29]. In this study, the vG numerical model was selected because this
model has been widely used for various soil types and this model has many advantages
such as the documented quality as well as numerical reliability. In the vG numerical model,
the relationship between matric suction and the degree of saturation can be expressed
as follows:

Pc = −P0[(
Sr − Srw

1− Srw
)
−1/m

− 1]
1−m

(2)

where Pc is the matric suction; P0 and m are curve-fitting parameters P0 is a pressure scaling
factor corresponding approximately to the inflexion point of the retention curve; m is a
parameter related to the material characteristic; Sr is the degree of saturation; Srw is the
residual degree of saturation.

2.3. Khalili Model

To evaluate the relationship between the effective stress parameter χ and the suction,
a new equation was proposed by Khalili [22] using Equation (3).

χ =

{
( ua−uw

ue
)
−0.55, ua − uw > ue

1 , ua − uw < ue
(3)

where ue is the matric suction, which means the transition from the state of the saturated
zone to unsaturated zone. In Khalili’s experiment, the value of ue was equal to 1 kPa. When
(ua − uw) < ue, the effective stress parameter χ is 1; when (ua − uw) > ue, the effective stress
parameter χ decreases with rising matric suction. The effective stress parameter χ ranges
from 0 to 1. The right member of Equation (3) can be rewritten as [ue/(ua − uw)]

0.55. As
the suction is located in the position of the denominator, we can infer that the relationship
between the effective stress parameter χ and the saturation presents an opposite trend
against the soil–water characteristic curve, which has the shape of the letter ‘S’, and this
relationship can be described as the Sigmoid function (logistic function) [30]. Figure 2 shows
the SWCC, which was given by van Genuchten [29] and Figure 3 depicts the hypothetical
curve that refers to the relationship between the effective stress parameter χ and the degree
of saturation. When the saturation approaches 100%, the effective stress parameter χ is
close to 1. When the saturation approaches 0%, the effective stress parameter χ is close to
0. The relationship between the effective stress parameter χ and the degree of saturation
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is like the letter ‘S’ (Sigmoid function) and Equation (4) gives the expression of the curve
‘S’ [31]:

χ =
ξ1

1 + ξ2eξ3Sr
(4)

where ξ1, ξ2 and ξ3 are fitting parameters; e is the Euler’s constant (approximately 2.7183).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 18 
 

of the letter ‘S’, and this relationship can be described as the Sigmoid function (logistic 
function) [30]. Figure 2 shows the SWCC, which was given by van Genuchten [29] and 
Figure 3 depicts the hypothetical curve that refers to the relationship between the effective 
stress parameter 𝜒 and the degree of saturation. When the saturation approaches 100%, 
the effective stress parameter 𝜒 is close to 1. When the saturation approaches 0%, the ef-
fective stress parameter 𝜒 is close to 0. The relationship between the effective stress pa-
rameter 𝜒 and the degree of saturation is like the letter ‘S’ (Sigmoid function) and Equa-
tion (4) gives the expression of the curve ‘S’ [31]: 𝜒 = 𝜉ଵ1 + 𝜉ଶ 𝑒కయ ௌೝ (4) 

where 𝜉ଵ , 𝜉ଶ  and 𝜉ଷ  are fitting parameters; 𝑒 is the Euler’s constant (approximately 
2.7183). 

 
Figure 2. Soil–water characteristic curve. 

 
Figure 3. Effect of the saturation degree on the effective stress parameter 𝜒. 

2.4. The New Model 
Equations (2) and (4) can be put into Equation (1) to obtain the final shear strength 

model, which includes the degree of saturation, the net normal stress, the effective cohe-
sion, and the internal friction angle. Equation (5) shows the expression of the shear 
strength model of multiple parameters: 𝜏௙ = 𝑐′ + ቊ(𝜎 − 𝑢௔) + 𝜉ସ1 + 𝜉ଶ 𝑒కయ ௌೝ ⋅ [(𝑆௥ − 𝑆௥௪1 − 𝑆௥௪ )ିଵ/௠ − 1]ଵି௠ቋ 𝑡𝑎𝑛 𝜙 ′ (5) 

where 𝜉ଶ , 𝜉ଷ , and 𝜉ସ  are the fitting parameters, 𝜉ସ  is a parameter that is related to air 
entry value (𝜉ସ = 𝜉ଵ ⋅ 𝑃଴); 𝑚 is a parameter that is related to the material characteristics; 

drying

absorbing

transition area

unsaturated residual area

boundary effect area

M
at

ric
 su

ct
io

n

residual saturation degree

ai
r e

nt
ry

 v
al

ue

Saturation degree

Ef
fe

ct
iv

e 
str

es
s p

ar
am

et
er

 x

1

Saturation degree

Figure 2. Soil–water characteristic curve.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 18 
 

of the letter ‘S’, and this relationship can be described as the Sigmoid function (logistic 
function) [30]. Figure 2 shows the SWCC, which was given by van Genuchten [29] and 
Figure 3 depicts the hypothetical curve that refers to the relationship between the effective 
stress parameter 𝜒 and the degree of saturation. When the saturation approaches 100%, 
the effective stress parameter 𝜒 is close to 1. When the saturation approaches 0%, the ef-
fective stress parameter 𝜒 is close to 0. The relationship between the effective stress pa-
rameter 𝜒 and the degree of saturation is like the letter ‘S’ (Sigmoid function) and Equa-
tion (4) gives the expression of the curve ‘S’ [31]: 𝜒 = 𝜉ଵ1 + 𝜉ଶ 𝑒కయ ௌೝ (4) 

where 𝜉ଵ , 𝜉ଶ  and 𝜉ଷ  are fitting parameters; 𝑒 is the Euler’s constant (approximately 
2.7183). 

 
Figure 2. Soil–water characteristic curve. 

 
Figure 3. Effect of the saturation degree on the effective stress parameter 𝜒. 

2.4. The New Model 
Equations (2) and (4) can be put into Equation (1) to obtain the final shear strength 

model, which includes the degree of saturation, the net normal stress, the effective cohe-
sion, and the internal friction angle. Equation (5) shows the expression of the shear 
strength model of multiple parameters: 𝜏௙ = 𝑐′ + ቊ(𝜎 − 𝑢௔) + 𝜉ସ1 + 𝜉ଶ 𝑒కయ ௌೝ ⋅ [(𝑆௥ − 𝑆௥௪1 − 𝑆௥௪ )ିଵ/௠ − 1]ଵି௠ቋ 𝑡𝑎𝑛 𝜙 ′ (5) 

where 𝜉ଶ , 𝜉ଷ , and 𝜉ସ  are the fitting parameters, 𝜉ସ  is a parameter that is related to air 
entry value (𝜉ସ = 𝜉ଵ ⋅ 𝑃଴); 𝑚 is a parameter that is related to the material characteristics; 

drying

absorbing

transition area

unsaturated residual area

boundary effect area

M
at

ric
 su

ct
io

n

residual saturation degree

ai
r e

nt
ry

 v
al

ue

Saturation degree

Ef
fe

ct
iv

e 
str

es
s p

ar
am

et
er

 x

1

Saturation degree
Figure 3. Effect of the saturation degree on the effective stress parameter χ..

2.4. The New Model

Equations (2) and (4) can be put into Equation (1) to obtain the final shear strength
model, which includes the degree of saturation, the net normal stress, the effective cohesion,
and the internal friction angle. Equation (5) shows the expression of the shear strength
model of multiple parameters:

τf = c′ +

{
(σ− ua) +

ξ4

1 + ξ2eξ3Sr
· [(Sr − Srw

1− Srw
)
−1/m

− 1]
1−m}

tanφ′ (5)

where ξ2, ξ3, and ξ4 are the fitting parameters, ξ4 is a parameter that is related to air entry
value

(
ξ4 = ξ1 · P0

)
; m is a parameter that is related to the material characteristics; Sr is the

degree of saturation; Srw is the residual degree of saturation; c′ is the effective cohesion; φ′

is the effective internal friction angle; (σ− ua) is the net normal stress.
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3. Materials and Experimental System

The soil tested in this study was obtained from The Three Gorges region in China.
The soil selected was characterized by a clayey fraction (1.88%), silty fraction (14.17%),
and sandy fraction (83.95%). Table 1 presents the simple physical properties of the chosen
soil. It can be seen that the soil sample can be regarded as silty sand because of its
physical properties such as a high water content (ω) and voids ratio (e), a low permeability
coefficient (K), a high liquid limit (LL), and a high plastic limit (PL). By adopting sieving
and hydrometer methods, the particle-size distribution of this soil was also measured,
where the sand particles were the largest.

Table 1. The physical properties of silty sand.

Specific
Gravity (Gs) ω (%) e K × 10−10

(m s−1)

Particle Composition (%)

0.05–2 (mm) 0.002–0.05 (mm) <0.002 (mm)

2.70 32.5 1.45 1.74 87.8 10.6 1.6

3.1. Soil–Water Characteristic Curve Test

In order to validate the rationality of the formula, we adopted a pressure-plate system
to control the suction and define the parameters of the SWCC (vG numerical model). The
experimental device is shown in Figure 4, which was made up of a soil sample chamber,
pressure control equipment as well as an outflow measurement device [32]. The silty sand
was put in the soil specimen chamber. The pressure control equipment controlled air
pressure applied to the soil specimen. The outflow measurement device can collect and
measure water saturation in order to calculate the variation in the water saturation from
the bottom outflow. The silty sand was compacted in a ring (diameter: 70 mm, height:
20 mm) to achieve a dry density of 1.5 t/m3, 1.6 t/m3, and 1.7 t/m3. Before loading, the soil
specimens in the rings were saturated with water. After loading, the specimen’s soil–water
characteristic test at a temperature of 25 ◦C (normal temperature) was measured using the
pressure plate method (Figure 5) or the pressure plate test; the test started with a saturated
sample. The degree of saturation was determined by weighing the wet soil sample.
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3.2. Shear Strength Test

In order to validate Equation (5), a triaxial shear apparatus (Figure 6) was adopted
to control the shear strength and determine the parameters of the proposed model. The
silty clay was compacted in a triaxial saturator (diameter: 61.2 mm, height: 125 mm). After
taking apart the triaxial saturator, the soil enclosed with a rubber membrane was put
into the triaxial compression apparatus (Figure 7), then many triaxial compression tests
with various degrees of saturation (30%, 40%, 50%, 60%, 70%, 80%, 90%) under different
confining pressures including 50 kPa, 100 kPa, 150 kPa, and 200 kPa were conducted. The
initial confining pressure for the triaxial shear test was often set at a low value such as
50 kPa to ensure that the sample was not damaged during the initial stages of the test. The
reason why the effective confining pressure was set at a low value was that the soil sample
had relatively low strength, and this sample can be adequately tested by lower confining
pressures. Excessive pressure could cause damage to the sample, which could result in
inaccurate results. In addition, the sample may experience excessive deformation, failure,
or crushing at higher pressures, which could also affect the shear strength parameters. The
mass of the soil sample and the mass of water need to be measured in advance to put them
together so that the degree of saturation is determined. Degree of saturation = (mass of
water added/(mass of solid + mass of water added)) × 100%.
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Moreover, the shearing velocity was 0.2 mm/min. There are three types of triaxial
shear test including a consolidated drained triaxial test (CD test), a consolidation undrained
test (CU test), and an undrained and unconsolidated test (UU test). In this study, the
consolidated drained triaxial test (CD test) was conducted on saturated soil, and the
consolidation undrained test was conducted on unsaturated soil. In this research, the CU
test was adopted as the experiment aimed for unsaturated soil.

4. Results and Discussion
4.1. Comparison with Experimental Data

For the curve fitting, the nonlinear least squares method was applied to get the parameters
of the vG numerical model and the Equation (4). Table 2 lists four parameters that were
calculated under three various dry densities (ρd = 1.5 t/m3,ρd = 1.6 t/m3, ρd = 1.7 t/m3).

Table 2. Values of the model parameter fitting for the experimental points.

Parameter ξ2 ξ3 ξ4 = ξ1·P0 m

ρd = 1.5 t/m3 40,009.57 −4.21 20,295.99 0.24
ρd = 1.6 t/m3 40,017.51 −4.51 11,675.79 0.21
ρd = 1.7 t/m3 64,735.01 −5.01 9886.80 0.20

The soil–water characteristic curve of the soil measured at various dry densities and
fitted curve is plotted in Figure 8. As shown in Figure 8, the predicted curve provided
good consistency with the experimental points because the correlation coefficient was 0.95.
This also verified the vG numerical model. For a rising degree of saturation, the matric
suction declined. Further analysis revealed that when the degree of saturation was less
than 50%, the suction rose with increasing dry density. When the soil became increasingly
compacted, the voids became smaller and the bonding situation of the soil particles became
increasingly tight. This is why matric suction decreased with an increasing degree of
saturation. There was no significant variation in the matric suction when the saturation
was more than 50%. In the boundary effect stage, as the number of large pores containing
free water reduces with increasing dry density, the declining amplitude of the volumetric
water content decreases with the increasing matric suction. In the transition stage, the
higher the dry density of silty sand, the greater the air entry value of the sample. It is
really difficult for soil samples of higher dry density to evolve from a saturated state to an
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unsaturated state. The larger dry density corresponds to the larger pores with free water,
fewer pores as well as poorer connectivity of water, as a result, it is difficult for water to
drain out of the sample. Therefore, if the sample wanted to evolve from the quasi-saturated
status to unsaturated status, it would need more matric suction. In the residual stage, the
residual volumetric water content of the sample increased with increasing dry density.
There were more soil particles in the samples with higher dry density, which could provide
more adsorption space (such as pores on the surface of particles and small pores between
particles) for capillary water and bound water.
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Figure 8. SWCC based on the experimental points and fitted curve at various dry densities.

Figure 9 shows that the effective stress parameter of the unsaturated soil increased
with a rising degree of saturation and the shape of this curve looked like the letter ‘S’. The
correlation coefficient between the modeled and experimental data was 0.98, which can
also be regarded as a validation of Equation (4).
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Figure 9. The effective stress parameter χ of the calculated points and fitted curve at various
dry densities.

The relationship between the principal stress difference and axial strain was plotted
with the principal stress difference as the vertical axis and axial strain as the horizontal
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axis (Figure 10a). As outlined in the Chinese Standards for Soil Test Methods (GB/T50123-
1999), the test should be stopped when the total axial strain is 20%. If there is no peak,
we considered a shear peak at 15% of the axial strain as the principal stress difference of
the soil sample. Then, a failure shear stress circle was plotted, with the shear stress as the
vertical axis and normal stress as the horizontal axis, which can be obtained to calculate the
shear strength parameters (Figure 10b). In the plot, the circles were around (σ1 + σ3)/2
with a radius of (σ1 − σ3)/2 at failure.
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Figure 10. The schematic diagram of the soil shear strength parameter calculation. (a) Stress–strain
curve. (b) Mohr’s circle.

For this experiment, a total of 84 tests carried out with four different confining pres-
sures, three different dry densities, and seven different initial saturations (4× 3× 7). Hence,
84 circles were displayed in the final diagram. Then, the cohesion and angle of friction were
obtained by measuring the intercept and slope of the failure envelope. The stress–strain
curve of the soil with the dry density of 1.6 t/m3 and the confining pressure of 150 kPa
under the saturation of 30%, 40%, 50%, 60%, and 70% is shown in Figure 11. The curve with
a saturation of 70% and confining pressure of 150 kPa under the dry density of 1.5 t/m3,
1.6 t/m3, and 1.7 t/m3 is plotted in Figure 12. If the specimen is made up of saturated
soil, the shear strength is constant under different cell pressures. Consequently, the failure
envelope will be parallel to the horizontal axis because the angle of friction is zero. The
other situation is that if the specimen is not saturated, the shear strength will increase as
the confining pressure increases. When the result was plotted, it can be seen that the size of
the circles increased and the failure envelope was an inclined line.

Figure 11. Stress–strain curve under various saturations (ρd = 1.6 t/m3, σ− µa = 150 kPa).
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Figure 12. Stress–strain curve under various dry densities (Saturation = 70%, σ− µa = 150 kPa).

Figure 13 shows the relation between cohesion and saturation. There was a peak of
cohesion at various dry densities when using the traditional test method of compaction.
When the saturation was less than 40%, the cohesion showed an upward trend with an
increasing degree of saturation, because a remolded soil sample made by dry soil and
water was compacted in layers. The absorption between the soil layer and particles is
weak and it is easy for a soil sample to be broken, especially in the link between two layers.
When the saturation degree increases, the absorption between the soil layer and particles
increases, so the cohesion increases. When the saturation is more than 40%, the thickness of
the mucosa between the soil particles increases, the effective stress declines as a result, and
the cohesion showed a downward trend. In addition, when the dry density increased, the
distance between the soil particles became smaller, the absorption became stronger, and the
cohesion became stronger.
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Figure 13. Experiment points of the relationship between cohesion and saturation.

Figure 14 shows that the internal friction angle declined with climbing saturation. It is
generally acknowledged that the total internal friction is made up of sliding friction, which
is related to the mineral composition of the soil, the friction caused by dilatancy as well
as friction caused by broken particles or the rearrangement of particles. When the water
content increases gradually, the combined water film around the soil particles thickens;
as a result, the amount of free water increases, then lubrication increases, and the friction
between soil particles declines. This is why the internal friction angle showed a downward
trend. In addition, when the dry density increased, the original structure became tighter.
Then, the friction increased, which led to an increase in the internal friction angle.
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Figure 14. Experimental points of the relationship between the internal friction angle and saturation.

Figure 15 shows that shear strength dropped gradually with the degree of saturation.
Measured values of the shear strength at higher dry density were greater than those
measured in specimens with a lower dry density. The relationship between shear strength
and degree of saturation at various net normal stresses is shown in Figure 16. As the net
normal stress (σ− µa) became higher, the shear strength became higher.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 18 
 

 
Figure 14. Experimental points of the relationship between the internal friction angle and satura-
tion. 

Figure 15 shows that shear strength dropped gradually with the degree of saturation. 
Measured values of the shear strength at higher dry density were greater than those meas-
ured in specimens with a lower dry density. The relationship between shear strength and 
degree of saturation at various net normal stresses is shown in Figure 16. As the net nor-
mal stress (σ − 𝜇𝜇𝑎𝑎) became higher, the shear strength became higher. 

 
Figure 15. Experimental points and fitted curve of the shear strength at various dry densities. 

 
Figure 16. Experimental points and fitted curve of the shear strength at various net normal 
stresses. 

The measured results and the calculated values for shear strength by the proposed 
model are compared in Figure 17. The difference between the experimental and calculated 
results was generally less than 7%, indicating that the calculated shear strength using the 

0

10

20

30

40

0 20 40 60 80 100

In
te

rn
al

 fr
ic

tio
n 

an
gl

e 
(º)

Saturation (%)

ρd = 1.7 t/m³
ρd = 1.6 t/m³
ρd = 1.5 t/m³

0

40

80

120

160

200

0 20 40 60 80 100

Sh
ea

r s
tre

ng
th

 (k
Pa

)

Saturation (%)

ρd = 1.5 t/m³
ρd = 1.6 t/m³
ρd = 1.7 t/m³
ρd = 1.5 t/m³ fitting
ρd = 1.6 t/m³ fitting
ρd = 1.7 t/m³ fitting

0

20

40

60

80

0 20 40 60 80 100

Sh
ea

r s
tre

ng
th

 (k
Pa

)

Saturation (%)

σ-μα = 50 kPa
σ-μα = 100 kPa
σ-μα = 150 kPa
σ-μα = 200 kPa
σ-μα = 50 kPa fitting
σ-μα = 100 kPa fitting
σ-μα = 150 kPa fitting
σ-μα = 200 kPa fitting

Figure 15. Experimental points and fitted curve of the shear strength at various dry densities.
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The measured results and the calculated values for shear strength by the proposed
model are compared in Figure 17. The difference between the experimental and calculated
results was generally less than 7%, indicating that the calculated shear strength using the
proposed model agreed well with the measured shear strength. The comparison of this
result therefore confirms the reliability of the proposed model.
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Figure 17. The comparison between the predicted and measured shear strength.

4.2. Comparison with Literature Data from Clayed-Silty Sand and Ankara Clay

In order to further examine the predictive values of Equation (5), we refer to the
laboratory test reported in Tomoyoshi [26] and Erdal [27] in the case of the clayed-silty sand
and Ankara clay, respectively. The four optimal parameters in Equation (5) proposed in
this paper were also computed by employing the nonlinear least squares method (Table 3).

Table 3. Values of the model parameter fitting for the literature data.

Parameter ξ2 ξ3 ξ4 = ξ1·P0 m

Clayed-silty sand (e = 1.31) 2.63 −1.42 6.52 0.82
Clayed-silty sand (e = 1.08) 89.07 −1.79 551.05 0.58

Ankara clay 52.59 −3.42 160.82 0.38

Clayed-Silty sand. The clayed-silty sand (sand 0%, silt 92%, clay 8%) has a relatively
uniform grain-size distribution with a median grain size D50 of approximately 0.1 mm.
Tomoyoshi [26] also adopted a pressure-plate system to test the soil–water characteristic
curve, a method similar to this research. The difference was that he used the direct shear
apparatus to obtain the shear strength. The relationship between matric suction, effective
stress parameter, and saturation of various compaction pressures for the modeled data
and measured data are presented in Figures 18 and 19, respectively. Figures 20 and 21
show the prediction of the proposed model for the clayed-silty sand for various compaction
pressures. The computed results were compared with the reported data in that study. The
correlation coefficients between the experimental data and fitting data were 0.95 and 0.98
at a compaction pressure of 100 kPa and 600 kPa, respectively.



Appl. Sci. 2023, 13, 4305 13 of 18
Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 18 
 

 
Figure 18. Soil–water characteristic curve of the experimental points and fitted curve at different 
compaction pressures. 

 
Figure 19. Effective stress parameter 𝜒𝜒 of the calculated points and fitted curve at different com-
paction pressures. 

 
Figure 20. Calculated results on the shear strength of the compaction pressure for 100 kPa. 

160

170

180

190

200

0 20 40 60 80 100

Sh
ea

r s
tre

ng
th

 (k
Pa

) 

Saturation (%)

Compaction pressure = 100 kPa, e = 1.31
Fitted curve

Figure 18. Soil–water characteristic curve of the experimental points and fitted curve at different
compaction pressures.
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Figure 19. Effective stress parameter χ of the calculated points and fitted curve at different com-
paction pressures.
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Figure 20. Calculated results on the shear strength of the compaction pressure for 100 kPa.
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Figure 21. Calculated results on the shear strength of the compaction pressure for 600 kPa.

Clayey soil. The clayey soil (clay fraction 67.9%) researched by Erdal [27] was obtained
from METU (Middle East Technical University). The specific gravity was 2.73, the liquid
limit was 48%, the plastic limit was 21%, and the plasticity index was 27%. Figures 22 and 23
show the modeled and experimental data for the relationship between matric suction and
saturation as well as the effective stress parameter, respectively, with good agreement. The
relationship between the shear strength and saturation under various net normal stresses is
shown in Figure 24. The calculated values were close to the experimental points in Erdal’s
paper. All correlation coefficients were larger than 0.98.
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Figure 22. Soil–water characteristic curve based on experimental points [27] and the fitted curve.
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Figure 23. Effective stress parameter χ based on the calculated data [27] and the fitted curve.
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Figure 24. Comparison of the calculated shear strength of the proposed model and the experimental
data [27].

In geotechnical engineering, after obtaining the soil sample using a cutting ring, it is
easy for engineers to obtain the degree of saturation through a simple laboratory test. The
measurement of the matric suction is expensive, time-consuming, and difficult. Therefore,
knowing the degree of saturation, the shear strength can be determined using Equation (5)
without knowledge of the matric suction. This could also guide practical engineering
applications such as slope stability.

5. Sensitivity Analysis of Four Parameters

The parameter sensitivity analysis was conducted to examine the robustness of the
proposed model and evaluate whether varying key parameters affected the results. In
this model calculation, one parameter was changed while the others remained fixed at
their optimal value. The result of the parameter sensitivity analysis is shown in Figure 25.
Take ρd = 1.5 t/m3 as an example, the ranges of four parameters are shown as follows: ξ2,
[38912.99, 41929.02]; ξ3, [−4.184, −4.049]; ξ4, [19883.32, 20763.47]; m, [0.2397, 0.2429]. By
comparing the range of shear strength under the variation of the one parameter, we found
that this model was much more sensitive regarding the parameter m, which is also related
to the material characteristic. When soil is close to a saturated status, the shear strength
tends to a stable value. This is because the softening effect of soil against shear strength is
much more obvious when soil tends to the saturated status.
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Figure 25. Comparison for sensitivity of the four parameters.

6. Conclusions

In geotechnical engineering, the measurement of saturation degree is relatively sim-
ple through laboratory tests, however, the measurement of matric suction is expensive,
time-consuming, and difficult. Therefore, in this paper, a new shear strength model was
developed, applied, and tested for applications in engineering problems related to unsatu-
rated soil. Test results indicate that this model is of good quality to be used in engineering
to predict the relationship between the degree of saturation and shear strength with a wide
range of soils.

The new shear strength model describing the degree of saturation is expressed as
a multiple parameter equation. Based on Bishop’s shear strength theory and the van
Genuchten model for the soil–water characteristic curve, the proposed model can be ex-
pressed as a function of saturation, residual degree of saturation, effective shear strength
indices (effective cohesion and internal friction angle), net normal stress, and five char-
acterization parameters (ξ2, ξ3, ξ4, m, Srw); Srw is the residual saturation, ξ2 and ξ3 are
fitting parameters, ξ4 is related to the air entry value

(
ξ4 = ξ1 · P0

)
, and m is related to

the material characteristic. In addition, the expression of the effective stress parameter
is described as a Sigmoid function. Comparing the result of shear strength under the
variation of one parameter, we found that this model was much more sensitive regarding
the parameter m, which is related to the material characteristic.

The validation of this proposed model was based on laboratory tests for the determina-
tion of the soil–water characteristic curve and the triaxial shear strength tests of silty sand.
The predicted results were close to the experimental points and the maximum discrepancy
was less than 7%. Furthermore, the calculated results acquired from the proposed model
were compared with the experimental points of the previously published data including
the clayed-silty sand and Ankara clay. The comparison between the theoretical prediction
and experimental points is promising; this also shows the adaptability of the proposed
model to a wide range of soils.

This model can also be incorporated into analytical solutions and the numerical
simulation of slope stability in unsaturated soils. The degree of saturation can be considered
in the unsaturated soil shear strength directly and shear strength can be predicted by using
a simple method to test the degree of saturation after obtaining the soil sample by using a
cutting ring to avoid the complex measurement of the matric suction. Therefore, knowing
the degree of saturation, the shear strength can be determined using Equation (5) without
the knowledge of the matric suction. This could also give guidance to practical engineering
applications such as slope stability. Simultaneously, there are further effects to be added,
and a multiple parameter and complex coupling model that considers temperature will be
explored in the immediate future.
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