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Abstract: The number of Unmanned Aerial Vehicles (UAVs) used in various industries has increased
exponentially, and abnormal detection of UAVs is one of the primary technical means to ensure
that UAVs can work normally. Currently, most anomaly detection models are trained using on-
board logs from drones. However, in some cases, using these logs can be problematic due to data
encryption, inconsistent descriptions of characteristics, and imbalanced positive and negative samples.
Consequently, the on-board logs of UAVs may not be directly usable for training anomaly detection
models. Given the above problems, this paper proposes a Time Line Modeling (TLM) method based
on the UAV software-in-the-loop (SITL) simulation environment to obtain and process the on-board
failure logs of drones. The Time Line Modeling method includes two stages: the Fault Time Point
Anchoring Method and Fault Time Window Stretching Method. First, based on the SITL simulation
environment, multiple flight missions were constructed. Failures of several common components
of UAVs are designed. Secondly, the fault’s initial location and end location are determined by the
method of Fault Time Point Anchoring, and the original collection of tagged UAV’s on-board data is
realized. Then, in terms of data processing, the features that are not universal are removed, and the
flight data of the UAV is optimized by using the data balance method of Time Window Stretching to
achieve the balance of normal data and abnormal data. Finally, use of algorithms such as Sequential
Minimal Optimization (SMO), Random Forest (RF), and Convolutional Neural Network (CNN) were
used to experiment with the processed data. The experimental results showed that the data set
obtained based on this method can be effectively applied to the training of machine learning-based
anomaly detection models.

Keywords: UAV; UAV anomaly detection; data balance; SITL

1. Introduction

With the rapid development of control theory, aerodynamic technology, navigation
technology, and communication technology, the application of drones in agricultural image
acquisition [1], traffic monitoring [2], environment detection [3], etc., is gradually increasing.
According to statistics from the Civil Aviation Administration of China, at the end of 2021,
there were 830,000 drones registered with their real names in China alone [4]. However, due
to the drone’s structural complexity and the flight environment’s variability and instability,
the flight of the drone is often affected by external factors such as weather and buildings,
resulting in potential safety hazards. After the drone fails, if no remedial measures are
taken, it may cause the drone to crash and cause loss of life or property to nearby people.
For example, the failure of GPS will lead to the crashing of drones. According to the report
from the British Aviation Accidents Committee, a British survey drone fell on a roof due to
GPS failure [5]. The current security issues of UAVs have attracted widespread attention in
the academic community, and the anomaly detection of UAVs has become one of the current
research topics. Figure 1 shows a typical UAV anomaly detection network architecture. The
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fault detection model can be deployed on the GCS, and when the fault detection model
receives the log, it will be inputted to the fault detection model for judgment in order to
obtain the current state of the drone.
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Figure 1. A typical drone anomaly detection network architecture.

With the development of artificial intelligence technology, machine learning methods
are widely applied to the fault detection of UAVs. Machine learning models based on
drone flight logs require a large number of samples for training, but due to the following
reasons, it is often challenging to obtain drone flight data that can be directly used for
model training:

e  Thelogs of commercial drones are not open source and cannot be obtained. The flight
log of the open-source UAV includes information such as the flight status, telemetry
log, sensor information, communication information, and hardware status of the UAV
within a time window T0~T1. Its data volume is large, the dimension of features is
high, and the description of features is not uniform; that is, heterogeneous data from
different sensors and features are difficult to process.

e  During the flight of the UAV, the time of abnormal flight is much lower than that of
normal flight, which makes the number of samples when the UAV fails much lower
than that of normal flight, and it is challenging to obtain abnormal data. Due to the
extreme imbalance of the data, it is difficult for models to learn the abnormal data, so
the unbalanced flight log cannot be directly used for the fault detection of the UAV.

Given the above problems, this paper proposes a method based on Time Line Modeling
to acquire and process UAV fault flight data in a simulation environment. This paper
constructs the flight mission of the UAV in the simulation environment and realizes the
original collection of the flight log. The time-related features and non-universal features are
removed, and the feature selection of UAV data is realized. The initial and end positions
of the fault data are determined using the Fault Time Point Anchoring Method. The Time
Window Stretching method is used to effectively supplement the abnormal data so that the
data becomes balanced. Machine learning and deep learning algorithms, such as K-NN,
AdaBoost, random forest, Naive Bayesian, Decision Tree, CNN, etc., are used to evaluate the
obtained data sets. The experiment proved that the acquisition method of UAV fault data
in the simulation environment proposed in this paper is effective in UAV fault detection.

In the rest of this paper, Section 2 introduces the related work. Section 3 introduces
the construction method of UAV flight tasks in the simulation environment. Section 4
introduces the Time Point Anchoring method and the balance processing method of positive
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and negative samples. Section 5 evaluates the processed data using machine learning
algorithms and convolutional neural networks. Section 6 concludes the work.

2. Related Work

This section reviews the research related to the abnormal detection of UAVs. Regarding
anomaly detection models, it reviews related works on machine learning-based and deep
learning-based models. In terms of data set acquisition, the real and simulated UAV flight
data acquisition methods are reviewed.

2.1. Related Fault Detection or Intrusion Detection Models
2.1.1. Machine Learning-Based Models

In 2017, Baskaya et al. [6] proposed using the Support Vector Machine (SVM) algo-
rithm to detect engine faults, the process of training and testing using gyroscope and
accelerometer data, and the principal component analysis algorithm as a method to reduce
the spatial feature dimension. The authors used a MAKO drone model to generate data to
test the designed algorithm. In 2019, Benini et al. [7] used Linear Discriminant Analysis
(LDA) as a model and acceleration information from an Inertial Measurement Unit (IMU)
as data to detect actuator failures in drones. In 2022, Cabahug et al. [8] implemented the
fault detection of drones using the K-Means algorithm and the vibration data of drones.
The authors used custom hardware to collect vibration data from UAV propellers. The
K-Means algorithm was used to cluster the three states of the drone.

2.1.2. Deep Learning-Based Models

In 2021, Farrukh et al. [9] used the bidirectional long short-term memory neural
network (BiLSTM) to match the attack according to the existing attack of the model: if
the match is successful, a warning is issued; if no attack is matched, the data is sent to an
anomaly detector based on the Local Outlier Factor (LOF). If the anomaly detector detects
an anomaly, it will issue an alarm and collect the data of this attack instance, then mix the
new instance data with the old data and send them to the BiLSTM for training to complete
incremental learning. The authors used the CSE-CIC-IDS2018 data set [10] to test the model.
In 2022, Al-Haija et al. [11] used a deep convolutional neural network to detect malicious
threats from drones in Wi-Fi traffic. Two-way and one-way drone traffic data were used for
model training and testing. In 2022, Tlili et al. [12] proposed to use variants of the Long
Short-Term Memory neural network (LSTM) to detect anomalies and faults simultaneously.
This model consists of the main branch and two sub-branches. The main branch produces
the general LSTM encoder architecture. The two sub-branches are used to detect anomalies
and faults.

2.2. Related Data Acquisition Methods
2.2.1. Real UAV Data Acquisition Method

In 2020, Zhao et al. [13] proposed that consumer drones are usually used in civilian
environments, and traditional physics-based methods will become ineffective in some
cases. They propose to conduct drone intrusion detection through encrypted Wi-Fi data
traffic. In 2021, Keipour et al. [14] based on the Carbon Z T-28 fixed-wing UAV designed
four kinds of faults: disabling the engine, disabling the elevator, disabling the rudder, and
disabling the aileron, realizing the collection of UAV flight logs in the fault state. In 2022,
Ahmed et al. [15] conducted a vulnerability analysis of drones used in the education sector.
The drone platform used was Ryze Tello TLW004. This data set contains Wi-Fi Deauthenti-
cation Attack, WPA2-PSK Wi-Fi cracking attack, and a Tello API vulnerability attack.

2.2.2. Simulated UAV Data Acquisition Method

In 2015, Moustafa et al. [16] developed the UNSW-NB15 data set, used three virtual
servers as the experimental environment, and captured 49 different network traffic charac-
teristics. It included nine different types of network attacks and some normal data flow
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characteristics. In 2021, Whelan et al. [17] proposed that GPS spoofing and jamming are the
most common attacks against drones, but conducting these experimental studies in many
fields may take much work. The development of this data set used the Holybro-5500 drone
platform and Hack RF to jam and deceive the drone. They implemented log collection
in the case of UAV jamming and spoofing. In 2021, Ahmed et al. [18] created an IoT test
platform for the medical industry and developed an IoT intrusion detection data set called
ECU-IoHT. This data set reflects different types of network attacks, which contains the
characteristics of different networks under various attacks.

It can be seen that when studying UAV fault detection or anomaly detection models,
the research on the model is subject to the data. However, the UAV data has problems, such
as difficulty accessing drone logs due to data encryption, inconsistent descriptions of drone
logs, and unbalanced positive and negative samples. These problems limit the further
development of anomaly detection models. This paper proposes a method for acquiring
and processing UAV fault data in a simulation environment, that is, a method based on
Time Line Modeling (TLM). Experiments proved that the UAV fault data obtained by the
TLM method can be effectively applied to the training of machine learning models.

3. The Design of Simulation Environments and Simulation Tasks

The workflow of the TLM method is illustrated in Figure 2. First, the UAV simulation
task is constructed, followed by simulating common faults that could occur in UAVs.
Finally, the Fault Time Point Anchoring Method and the Fault Time Window Stretching
Method are used to mark and balance the obtained UAV data, respectively. The specific
implementation of the TLM method is introduced in the following Sections 3 and 4.

Construction of Phase 1: Division of normal data
simulation tasks Failure Simulation and abnormal data

C
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engine failure
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Phase 2: Balanced processing of normal Classification Using Machine
data and abnormal data Learning Algorithms

Figure 2. Flowchart of the TLM method.
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3.1. Simulation Environment
(1) Simulation platform

This paper uses Software-In-The-Loop (SITL) in ArduPilot to simulate the flight of
the UAV. ArduPilot is a versatile open-source autopilot system that can provide autopilot
services for multi-rotor UAVs, fixed-wing UAVs, rovers, ships, etc.

(2) Ground Station

In this paper, the QGroundControl ground station is used to visualize the real-time
position of the UAV. This paper uses the Python interface of Dronekit to realize the drone’s
control, including take-off, going to the next waypoint, outputting the current flight status
of the drone on the console, returning, landing, and other functions.

(3) Communication Control

Dronekit-Python is an open-source Python library used to control the flight of drones.
It uses the MAVLink protocol to communicate with drones through serial ports. The
software-in-the-loop simulation of the drone runs on an Ubuntu 18.04 system based on
VMware Workstation 16.2.3, and the ground station runs on a Windows 11 laptop with
16 GB RAM, 11th Gen Intel(R) Core (TM) i7-11800H @2.30 GHz.

3.2. Construction of UAV Simulation Flight

In this section, the construction of the UAV flight is introduced. This paper identifies
four simple flight paths. The four flight trajectories are shown in Figure 3. A linear
interpolation method is used to insert more waypoints between two waypoints. The
interpolation algorithm is shown in Algorithm 1.

Algorithm 1: Linear interpolation algorithm between two waypoints points

Input: raw latitude and longitude points;

Output: longitude and latitude points after linear interpolation;

for i in len(raw data points):

Calculate the straight line (LineLon;) passing through two waypoints;

for j in range(PointNum):

X_New= Equidistant points at highest and lowest latitudes;
Y_New=Bring X_New into the equation of LineLon;;
Save X_New, Y_New to txt file;

End.

LineLon; = k x LineLat; + b 1)

Among them, k refers to the slope of two points (Lat;, Lon;), (Lat; 1, Lon; ). b is the
coefficient. Lat;, Lon; refers to the currently processed longitude and latitude, and LineLon;,
LineLat; refer to the newly generated longitude and latitude. For example, the straight line
passing through points A(—35.3632621,149.1652374) and B(—35.36328381, 149.16306103)
is LineLon; = 100.24735145735254 x LineLat; + 3694.238601803339.

The matrix of Equation (2) shows the coordinate points generated by the interpola-
tion algorithm.

[ —35.3632621 149.16523739
—35.36326365 149.16508193
—35.3632652 149.16492648
[LineLat; LineLon;] = ) . )
—35.36328226 —35.36328381
| —35.36328381 149.16306102

In order to simulate the altitude change of the UAYV, this paper generates altitude in
a random range and uses the Savitzky-Golay filter algorithm [19] to smooth them. The
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comparison effect before and after smoothing is shown in Figure 4; the blue line refers to
the randomly generated height within the range of 15 to 25 m. It can be seen that its change
range is huge. The red line refers to the altitude after smoothing. It can be seen from the
figure that the altitude change of the UAV smoothed by the algorithm is more gentle, which
can simulate the height change of the actual UAV.

:UAV flight paths

:UAV flight paths
:Set points

:Set points

:UAV flight paths
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:Set points
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Figure 3. UAV 2D flight trajectory map.
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Figure 4. Altitude comparison of waypoints before and after using the Savitzky-Golay algorithm.

This article uses a 3-dimensional scatter diagram to display the changes in the way-
points before and after using the linear interpolation algorithm and Savitzky-Golay filter
algorithm. As shown in Figure 5, the blue line is the change of longitude, latitude, and
altitude, and the orange line is the change of longitude and latitude. Figure 5a shows that
there are only six waypoints before the waypoint is inserted, and the altitude changes dras-
tically, which cannot genuinely simulate the actual flight trajectory of the UAV. As shown
in Figure 5b, after using the interpolation algorithm and the Savitzky-Golay algorithm,
there are 90 waypoints in the figure, and the change of altitude tends to be gentle.
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Figure 5. Changes in waypoints before and after using interpolation and the Savitzky-Golay algorithm.

This paper uses Dronekit to control the UAV for four autonomous flights. The simu-
lations of GPS failure, Accelerometer failure, Engine failure, and Remote-Control System
failure were performed simultaneously. The flight path of the UAV under QGroundControl
is shown in Figure 6. Each point in the figure means: GPS failure occurs from point A to B,
and GPS returns to normal from point B to C; the accelerometer failure occurs from point C
to D, and the accelerometer returns to normal from point D to E; the engine failure occurred
from point E to F, and the engine returned to normal from point F to G; from point G to
H, a Remote-Control System failure occurred. For example, in Figure 6a, a GPS failure
occurs from point A (—35.3615, 149.1625, 21.9135) to point B (—35.3610, 149.1644, 21.2618).
Accelerometer failure occurred from point C (—35.3611, 149.1650, 19.9449) to D (—35.3617,
149.1655, 18.7668). Engine failure occurred from point E (—35.3622, 149.1657, 18.6322) to F
(—35.3629, 149.1654, 19.6512). From point G (—35.3631, 149.1652, 19.8433) to H (—35.3632,
149.1638, 21.7933) a remote control failure occurred.

= — — — :Waypoints
‘UAV flight paths
‘Flight path of the UAV in RTL mode

= — — — :Waypoints
:UAV flight paths
:Flight path of the UAV in RTL mode
A

C

= = = = :Waypoints
:UAV flight paths B
*Flight path-of the UAV in RTL mgde

:UAV flight paths
:Flight path of the UAV in RTL mode
A

(c) The triangle flight path of the UAV in case of failure (d) The pentagon flight path of the UAV in case of failure

Figure 6. The trajectory of the UAV under QGroundControl during fault simulation.

3.3. GPS Parameter Adjustment

The Number of Visible Satellites is an important indicator of whether the UAV ex-
perienced GPS failure. In the simulation experiment, the “Number of Visible Satellites”
variation range is too obvious. When the GPS signal is normal, the value of “Number of
Visible Satellites” is always 10; when the GPS signal is abnormal, the value is always 3. In
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the actual flight process, the “Number of Visible Satellites” change is jittered, so a jitter
should be added to this feature. In the real situation, the value of the “Number of Visible
Satellites” is between 15 and 20 when no one is flying normally, and the value is between 5
and 10 when there is a GPS failure [20].

The function of Equation (3) is used to generate the “Number of Visible Satellites” when
the GPS fails and when the GPS works normally. In Equation (3), x € [Mingae, Maxg,.),
f(x) € [0, Maxgae|, where u is the parameter controlling the curvature of the curve,
i € (0,00); the smaller the y, the gentler the curve, and the larger the y, the steeper the
curve. Ming,, is the minimum number of satellites generated, Maxg,;, is the maximum
number of satellites generated, and Ming,,, Maxg,, € N*.

Take Ming,y, as 3 and Maxg,;, as 10 in the fault state, at this time x € [3,10], f(x) € [0, 10].
The Number of Visible Satellites is 0, which means that there is no satellite to provide
services for the UAV under the GPS failure state, and the Number of Visible Satellites is
10, which means that the GPS service provider can provide the maximum number of GPS
usage in the GPS failure state. Take Ming,, as 8 and Maxgy, as 20 in the normal state, at
this time x € [8,20], f(x) € [0,20]. The Number of Visible Satellites generated is between 0
and 20, and the number of satellites taken at this time is 8 to 20. The Number of Visible
Satellites is 8, which is the number of GPS required to maintain the normal flight of the
drone under normal GPS conditions. The Number of Visible Satellites is 20, which is the
maximum number of GPS usages that the GPS service provider can provide when the GPS
is working normally.

(x—Maxsate)z
( 2 x (;l)z )

®)

e —
flx) = arie

The “Number of Visible Satellites” produced by Equation (3) follows a normal dis-
tribution. The graphs produced by Equation (1) under normal and abnormal conditions
are shown in Figure 7. The solid orange line represents the image of the “Number of
Visible Satellites” generated by when the GPS fails, and the dotted orange line represents
the unused value range beyond the specified range. The solid gray line represents the
“Number of Visible Satellites” function image generated when the GPS is normal. The gray
dotted line represents the unused value range beyond the specified range.

Nsats Distribution

Anomaly

Anomaly-Not-Used

2004

Norma:
Normal-Not-Used

1254

= 1004 \

254

004 -

Figure 7. f(x) under normal and abnormal GPS conditions.
The change in the “Number of Visible Satellites” before and after adding dithering is

shown in Figure 8. As shown in Figure 8a, before adding dithering, the value of “Number
of Visible Satellites” is 3 or 10; after adding jitter, it has more abundant values.
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Figure 8. The change of “Number of Visible Satellites” before and after adding jitter.

3.4. Simulation of GPS Faults

@

Simulation parameter configuration when simulating GPS failure

When performing software-in-the-loop simulations of UAVs, the parameters can be

changed to simulate the effects of wind speed, wind direction, sensor failure, etc., on UAVs.
For example, set “SIM_GPS_DISABLE” from 0 to 1 to simulate a GPS failure during the
operation of the drone. Some parameters for simulating UAV failure are shown in Table 1.

Table 1. Some parameter settings in the GPS failure simulation.

Parameter Value Description
SIM_WIND_T_ALT 60.000000 Full wind height
SIM_GPS_DISABLE 0/1 Clear GPS fault/simulate GPS fault

FS_EKF_THRESH 0/1 Disable/enable fail-safe mechanism
SIM_BATT_VOLTAGE 12.6 Simulate ambient battery voltage

@)

GPS failure simulation

The trajectory of the UAV at the ground station QGroundControl is shown in Figure 9.

From point A to B and from point C to D, the drone experienced a GPS failure; from point
B to C, the drone’s GPS returned to normal. In the simulation environment, after losing the
GPS signal, the drone’s response is to keep the current running position and continue to fly
forward. After the GPS signal is restored, the drone will move toward the received GPS
coordinates at a speed different from normal flight until it reaches the designated waypoint.

:UAV flight paths p
:Flight path of the UAV in RTL mode

A(-35.3615,149.1625,21.9135)

B(-35:3610,149.1644,21.2618)

i I)[:—S5.361.‘-,149.1655,18..‘-*;"
L]

\ <t

WLk
e

- —\' \ \
3611,149.1650.19.9449)

Figure 9. The flight trajectory of the UAV in the state of GPS failure.
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In order to understand the impact of GPS failure on the drone, we extracted the drone’s
information from the log. Figure 10a shows that after the GPS failure, the UAV stalled,
and the UAV ran at a relatively fast speed when the TimeStamp is 500,000 ms. When the
TimeStamp was 600,000 ms, the GPS failure of the UAV recovered, and there was a short
pause. Since the flight mission had to be continued, it returned to the original waypoint at
a relatively fast speed. From Figure 10b,c, due to the change of velocity, the Circular Angle
and acceleration were abnormal. It can be seen from Figure 10d that after the GPS failure,
the UAV lost its accurate judgment on its position, so the roll angle and pitch angle of the
UAYV were abnormal.

—— GPS.Spd

GPS.Spd

300,000 400,000 500,000 600,000 700,000 800,000 300,000 400,000 500,000 600,000 700,000 800,000
TimeStamp(Ms) TimeStamp(Ms)

(a) GPS Speed (b) Circular Angel

— AccX —— ATT.Roll

10 P ANAAAAAAN A A AN s £ 20 el

| |
|| T ] Mm

N

Degree
°

Accelerated Velocity
H

300,000 400,000 500,000 600,000 700,000 800,000 300,000 400,000 500,000 600,000 700,000 800,000
TimeStamp(Ms) TimeStamp(Ms)

(c) Accelerometers (d) Roll And Pitch
Figure 10. The status change of the drone when GPS fails.

3.5. Simulation of Accelerometer Faults
(1) Simulation parameter configuration when simulating the accelerometer failure

Both accelerometer one and accelerometer two were disabled in the simulation en-
vironment by setting SIM_ACCEL1_FAIL and SIM_ACCEL2_FAIL to 1. Since the drone
cannot acquire correct acceleration information, it cannot derive a current, correct position

estimate and heading estimate to simulate accelerometer failure. Some parameters of the
simulation environment when simulating Accelerometer failure are shown in Table 2.

Table 2. Some parameter settings in accelerometer fault simulation.

Parameter Value Description
SIM_WIND_T_ALT 60.000000 Full wind height
FS_EKF_THRESH 0/1 Disable/enable fail-safe mechanism
SIM_ACCEL1_FAIL 0/1 Clear/simulate accelerometer 1 fault
SIM_ACCEL2_FAIL 0/1 Clear/simulate accelerometer 2 fault

(2) The Simulation of Accelerometer Failure

By changing the parameters of the accelerometer during the UAV flight, the UAV
accelerometer’s failure state was simulated. The trajectory of the UAV under QGround-
Control is shown in Figure 11. Accelerometer failures occurred from point A to point B
and from point C to point D. It can be seen that after the drone fail-safe mechanism was
disabled and the drone lost acceleration information, the flight trajectory presented an
unstable state. The rest of the flight track accelerometers were working normally, and the
flight track of the UAV presented a stable state.
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:Flight path of the UAV in RTL mode

A(-35.3614.149.1624,21.9110)

B(-35.3620,149.1630,19.9659)

- ™

.3621,149.1536,21.3505)

C(-35.3618,149.1631.20.9340)

Figure 11. The flight trajectory of the UAV in the state of accelerometer failure.

In order to better understand the impact of accelerometer failure on the UAV, the
information of the UAYV, as shown in Figure 12, was extracted after the flight. As sho

status
wn in

Figure 12a, the accelerometer failure occurred when the TimeStamp was about 250,000 Ms
to 390,000 Ms, and the GPS speed of the drone had abnormal vibrations. The reason is that
after the drone lost accurate position estimation after the accelerometer failure, the UAV
tried to maintain the current flight trajectory through past position information so that the
speed will be unstable. Due to the change in speed, as shown in Figure 12b, the UAV’s
Circular Angle also appeared abnormal. As shown in Figure 12¢, after the accelerometer

failure, the acceleration information of the drone in the x, y, and z axes were comp

letely

lost. Since accurate position estimation could not be obtained through the acceleration
information, so the roll angle and pitch angle were also abnormal during this period.
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Figure 12. State change of drone with accelerometer failure.
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3.6. Simulation of Engine Faults

(1) Simulation parameter configuration when simulating engine failure
In the simulation environment, SIM_ENGINE_MUL was set to 0 to simulate the failure
of the drone’s engine. Since parameters such as wind force and wind speed have little effect

on engine failure, the wind speed is always 0 during the experiment. Some parameters of
the simulation environment when simulating engine failure are shown in Table 3.

Table 3. Parameter settings in the engine failure simulation.

Parameter Value Description
SIM_WIND_T_ALT 60.000000 Full wind height
FS_EKF_THRESH 0/1 Disable/enable fail-safe mechanism
SIM_ENGINE_MUL 1/0 Clear/simulate engine failure
SIM_BATT_VOLTAGE 12.6 Simulate ambient battery voltage

(2) The Simulation of Accelerometer Fail

The running trajectory of the UAV under QGroundControl is shown in Figure 13.
Engine failure occurred from point A to point B and from point C to point D. In the
simulation environment when the drone’s engine failed, the drone fell from the air to the
ground. If the fault is recoverable, the UAV can be launched from the ground to perform the
flight mission again. The UAV will quickly take off from the ground to continue the mission.

= = = = Waypoints

:UAV flight paths

:Flight path of the UAV in RTL mode
A(-35.3633.149.1633,18.3046)

C(-35.3624,149.1633.20.8023)
B(-35.3617,149.1630,20.1482)

D{(-35.3622,149.1631,20.7588)

Figure 13. The flight trajectory of the UAV in the state of engine power loss.

In order to understand the impact of power loss on the state of the UAYV, this article
extracts some information for analysis. As shown in Figure 14a, when the TimeStamp was
about 330,000 Ms, the power of the UAV was lost, and its GPS speed was 0. After the power
was restored, the UAV took off quickly and continued to perform flight missions. From
Figure 14b,c, when the TimeStamp was about 320,000 Ms, before the UAV’s power was lost,
its circular surface angle and acceleration were abnormal and then became 0. As shown in
Figure 14d, when the TimeStamp was about 330,000 Ms, the drone’s pitch and roll angles
were abnormal and became 0 after landing. That is because the UAV fell to the ground from
a high altitude in free fall after losing power, and its roll angle showed irregular changes.
After landing, the UAV was still, so the angle did not change.
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Figure 14. UAV state changes when engine power is lost.
3.7. Simulation of Remote-Control System Faults
(1) Simulation parameter settings when simulating remote control failure

A remote controller is a tool for the operator to control the drone and send instructions
to the drone. When the parameter SIM_RC_FAIL is set to 1, it means that the simulated
Remote-Control System failure starts. Table 4 lists some parameters of the simulation
environment when simulating a remote controller failure.

Table 4. Parameter settings in the Remote-Control System failure simulation.

Parameter Value Description
FS_EKF_THRESH 0/1 Disable/enable fail-safe mechanism
SIM_RC_FAIL 0/1 Clear/simulate remote control faults
SIM_BATT_VOLTAGE 12.6 Simulate ambient battery voltage

(2) The Simulation of Remote-Control System Failure

In the event of a remote controller failure, the UAV loses all communication with the
remote controller. The UAV starts the RTL (Return to Launch) mode, ends the current
mission, and returns to the take-off point immediately. However, the UAV in a normal state
will completely perform the originally set flight mission. The planned flight trajectory of
the UAV is shown in Figure 15a,b, and the flight trajectory when the remote controller fails
is shown in Figure 15¢,d. There was a remote failure between points A and B.

In order to better understand the change in the state of the UAV when the remote
controller fails, some information about the UAV is extracted after the flight. As shown in
Figure 16a, the remote-control failure occurred when the TimeStamp was about 350,000 Ms.
Since the UAV directly activated the RTL mode, its acceleration differed from that of a
normal flight. As shown in Figure 16b, when the UAV was in RTL mode, it did not turn
the course of the UAV but returned directly, so its pitch angle and roll angle was abnormal
when the TimeStamp was about 350,000 Ms.
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Figure 15. The flight trajectory of the UAV in the normal state and the fault state.
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Figure 16. UAV status changes when the remote controller fails.

4. Processing of UAV Fault Data
4.1. The Introduction of UAV Fault Data and the Content of This Section

The UAV fault data refers to the on-board logs that the drone records when a com-
ponent of the drone fails. As can be seen from the previous section, this paper simulates
GPS failure, accelerometer failure, engine failure, and remote-control failure in the same
flight. Additionally, it realizes the original collection of on-board logs when the drone fails.
This section introduces the processing method of UAV fault data proposed in this paper
includes the Failure Time Anchoring method and Time Window Stretching method.

4.2. Convert Log to CSV

Since the drone’s log is recorded as a log, it cannot be directly processed by the method
based on artificial intelligence, so the log file needs to be converted. The Mission Planner
(MP) (https://ardupilot.org/planner/, accessed on 13 December 2022) ground station
can load and store the drone’s log as a matrix file. After processing, it can be converted
into a CSV file. This article extracted four different sensor information, and the specific
information names and their corresponding physical meanings are shown in Table 5.

Table 5. Extracted sensor information and names.

Name Physical Meaning Data Size
GPS Information received from GNSS attached to autopilot 15 x 2450
MU Inertial Measurement Unit Data 15 x 12253

RATE Desired and achieved vehicle attitude rates 13 x 4900

VIBE Processed (acceleration) vibration information 6 x 4900
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4.3. Anomalies Time Window Setting Based on Fault Time Point Anchoring Method

The experimental method was adopted for simulating GPS, accelerometer, engine
(recoverable), and remote controller failures during one flight. There should be a reasonable
division method to distinguish normal data from abnormal data. The method used in this
paper is as follows: when the fault occurs, record it as Ty, ; and record the longitude,
latitude, and altitude at this time. After the flight, go to the GPS information recorded in the
log to find the longitude, latitude, and altitude when the fault occurred so as to determine
the starting position of the faulty sample. Similarly, when the fault ends, record it as T,,,4 ;,
the longitude, latitude, and altitude at this time are also recorded to determine the location
of the sample at the end of the fault. The mathematical description is shown in Equation (4).
Table 6 shows the correspondence between the fault types represented by each class label
and the fault window.

Tstart; = Record(T|{Laty, Lony, Alt})
Tond; = Record(T|{Latj, Lon;, Alt;}) i€ [0, FlyTimes] (4)
TimeWindow; = Typg j — Tstare i = Fault;

Table 6. Fault types represented by class labels.

Labels Fault Type Window Type
0 Normal Fault0
1 GPS failure Faultl
2 Accelerometer failure Fault2
3 Engine failure Fault3
4 Remote-Control System failure Fault4

Among them, Lat; and Lat; refer to the latitude of the drone at a certain moment; Lony
and Lon]- refer to the longitude of the drone at a certain moment; and Alt; and Alt]- refer to
the altitude of the drone at a certain moment. Record () refers to the function of recording
the longitude, latitude, and altitude of the drone. TimeWindow; refers to the time window
of the i-th fault. FlyTimes refers to the number of failed flights /normal flights.

4.4. Feature Processing

The drone’s log contains many features, but some are not universal, such as changes
in the longitude and latitude over a certain period because during the training process
it is impossible to simply determine that a UAV has malfunctioned based on its arrival
at a particular latitude and longitude. Moreover, the time-dependent feature should be
removed, as it only serves to mark the sample location. The feature processing method is
shown in Algorithm 2.

Algorithm 2: Feature Processing

Input: Single CSV file with original features
Output: CSV file with processed features
for Feature; in CSV:
if Feature; Related to time | | Feature; Not universal:
Delete (Feature;);
end if;
end for;
Merge the remaining Feature into one CSV;
end;
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4.5. Data Balance Processing Based on Failure Time Window Stretching Method

(1) Data distribution before time window stretching

The number of instances per file for the completed merged CSV files is too small. For
example, there are only 2555 instances of GPS information, and the specific data distribution
is shown in Table 7. The small size of the sample data is not conducive to learning based
on artificial intelligence models. Additionally, there is an imbalance between normal
and abnormal data, as shown in Figure 17; the normal data comprised 74.21%, while the
remaining abnormal data accounts for only 25.79%. The imbalance between positive and
negative samples results in under-learning for negative samples for the model.

Table 7. Data distribution table for data before balancing treatment.

Normal GPS Fail Accelerometer Fail Engine Fail RC Fail Total
GPS 1896 129 108 104 318 2555
IMU 9479 645 539 519 1591 12,773
RATE 3794 258 216 208 633 5109
VIBE 3793 258 216 208 634 5109

Proportion of each label in the information

RC Failure @B Normal
318(12.44%) @ GPS Failure
Acc Failure

Engine Failure

104(4.07%) Engine Failure

Acc Failure RC Failure
108(4.23%)
GPS Failure
129(5.05%)
Normal
1896(74.21%)

Figure 17. Percentage of labels before data processing.

(2) Data balancing methods

In this paper, the data is balanced by the method of Fault Time Window Stretching,
and the time window of the original normal flight is defined as Timenyyy,1, and the time
window for the abnormal flight is Timer,,1¢, Titenormar, Timepa e 7 0. The amount of data
per unit of time is B, BeR*, the ratio of the abnormal data volume to the total data volume
is a, ae[0,1], and w is calculated as shown in Equation (5). The ratio of target abnormal data
to all data is 7,y € [0,1]. v is calculated as shown in Equation (5) where A, A € R is the
failure time window control factor. The duration of the fault window can be increased
when A > 1, thus increasing the amount of fault data in one flight; the opposite is true
when A < 1.

A= B * Timquult
Timenormar+ Timepqy;s (5)
’Y = % )L — (ﬁ * TimeFault)

TimeNarmaZ + TimeFault

As shown in Table 7, taking the GPS information as an example, before the balancing
process, the number of normal data is 1896, the number of fault data is 659, and the data
of fault types account for 25.79% of all data. In order to facilitate the processing, the data
obtained from the four flights were combined. Figure 18 shows the proportion of each label
after processing. As shown in Table 8, after the balancing process and combining process,
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the number of normal instances is 3609, the number of all fault type instances is 4284, and
the data of faults accounts for 54.27% of all data, which increases the fault data by 28.48%.
An increase in the number of abnormal samples will facilitate the learning of abnormal
data by the Al-based model and improve the model’s generalization.

Proportion of each label in the information

@ Normal
RC Failure () GPS Failure
0,
1277(16.18%) Acc Failure

Engine Failure

Engine Failure RC Failure
606(7.68%) Normal
3609(45.72%)
Acc Failure
1305(16.53%)

GPS Failure

1096(13.89%)

Figure 18. The proportion of each label after processing.

Table 8. Data distribution table of the data set after the balancing process.

Normal GPS Fail Accelerometer Fail Engine Fail RC Fail Total

GPS 3609 1096 1305 606 1277 7893
IMU 18,032 5480 6528 3033 6393 39,466
RATE 7215 2188 2610 1215 2558 15,786
VIBE 7218 2189 2612 1210 2557 15,786

5. Experimentation

In order to demonstrate the validity of the data set, ten classical machine learning
algorithms, as well as a convolutional neural network model (CNN), were used to evaluate
the data set in this paper. The evaluation results are expressed as the precision, recall, and
F-Measure of each machine learning algorithm using this data set. Four sensor information,
namely GPS information, Inertial Measurement Unit (IMU), desired and achieved vehicle
attitude rate (RATE), and processed acceleration vibration information (VIBE), were selected
as data sets. Before feeding the data into the model training, the feature processing method
of Algorithm 2 was applied to each information data to filter the features about time as
well as the features that are not generic.

In the data set, sensors or telemetry information are recorded at different scales, which
leads to some features whose values are not in the same order of magnitude, which can
lead to an imbalance in linear operations and can affect the results of machine learning.
The Max — Min feature scaling method was used to scale each feature between 0 and 1,
using the method shown in Equation (6).

Feature;—Min(Feature;) 6)
Max(Feature;) —Min(Feature;)

Featuregegieq =

Precision can be understood as the ratio between the number of detected features of
a certain class and the number of all detected features; Recall can be understood as the
ratio between the number of detected features of a certain class and the number of all
features of that class in the data set. Since Precision and Recall values sometimes appear
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contradictory, they need to be considered together, and F-Measure is the weighted summed
average of Precision and Recall. Precision, Recall, and F-Measure are calculated as shown
in Equations (7) and (8).

Precision = % (7)
_ _TP
Recall = (TP+EN) ®)

In Equations (7) and (8), TP refers to the number of positive samples correctly identi-
fied, FP refers to the number of negative samples that are misreported, and FN refers to the
number of negative samples predicted by the classifier that is actually positive.

2 x Precision * Recall (9)

Fy1Measure = Precision—+Recall

In Equation (9), Precision is the calculation result of Equation (7) and Recall is the
calculation result of Equation (8).

5.1. Comparison with Related Data Sets
5.1.1. Data Information Comparison

Table 9 highlights the significant shortage of data sets available for UAV fault detection
at present. Moreover, many of the available data sets have imbalanced positive and
negative samples, making them inadequate for effectively training artificial intelligence-
based anomaly detection models for UAVs. In this context, the proposed TLM method
offers a viable solution for obtaining UAV fault data, as well as facilitating the labeling and
balancing of positive and negative samples.

Table 9. Comparison of different UAV anomaly detection data sets.

Number of Abnormal The Proportion of

Data Sets Year Features Number Abnormal Samples (%) Labelled
UAV ATTACK [21] 2021 1110 2 2.2 No
ECU-IoFT [15] 2022 10 3 39.0 Yes
TLM(Ours) 2023 821 4 54.3 Yes

5.1.2. Performance Comparison

As the UAV ATTACK data set does not contain clear positive and negative sample
labels, this paper utilized the K-Means algorithm to cluster the GPS information of UAV AT-
TACK and generated appropriate labels. The labeled GPS information was then subjected
to experimentation using the KNN algorithm to determine its accuracy rate. Notably, the
accuracy of KNN on the ECU-IoFT data set was obtained from [15]. The results presented
in Table 10 demonstrate that KNN achieved the highest accuracy rate on the proposed data
set in this paper.

Table 10. Accuracy of using KNN algorithm on different data sets.

Data Sets Accuracy Using KNN Algorithm (%)
UAV ATTACK 47.76
ECU-IoFT 21.42
TLM(Ours) 70.65

5.2. Performance on Machine Learning Algorithm

From Figure 19, it can be seen that the Random Forest algorithm achieved a high
accuracy rate of 84.0851% when using GPS information as data for training. The tree
algorithm was influenced by the key features, and the changes in several of its features
were obvious when the UAV fails, so the tree algorithm had a higher accuracy rate. The
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worst performing algorithm was the ZeroR, with an accuracy of 47.8966%. ZeroR is a
simple classifier that selects a category with the highest probability as the classification
result of an unknown sample. The performance of the other algorithms was concentrated
between 50% and 70%, and better classification algorithms are needed to classify this data
set so as to accurately identify the normal and abnormal states of drones by analyzing
information from multiple aspects.

Experimental results using GPS information
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Figure 19. Experimental Results.

The results of the evaluation of the data set using other classification metrics are shown
in Table 9; the highest accuracy rate is indicated by bolded text. As seen from the table, the
accuracy of the tree algorithm was generally higher than that of the others. The algorithm
for tree categories relies on just a few features. However, it is often incorrect to judge
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abnormal or normal based on a certain characteristic in real situations. For example, in the
event of a battery failure in a UAV, there will be a sudden increase in discharge during a
certain period. However, imagine the following scenario, in which the UAV encounters
strong wind resistance, the UAV will increase its speed to prevent the mission path from
deviating, and the battery will increase its discharge to keep the engine running normally,
but the UAV does not have a battery failure at this time.

In addition, as shown in Table 11, the accuracy of SMO, AdaBoost, and ZeroR algo-
rithms is NaN because the denominator is 0 in the calculation of Precision. According to
the formula of Precision, i.e., TP + FP is 0, which means that none of the samples were
correctly classified. That also indicates that the classification of this data set is complex, and
traditional machine learning algorithms cannot accurately classify faults.

Table 11. Evaluation of multi-classification algorithms using GPS data.

Method Correct Classified % Incorrect Classified% TP FP Precision Recall F1
Naive Bayes 66.95% 33.04% 0.670 0.205 0.758 0.670 0.646
Logistics 63.76% 36.24% 0.638 0.265 0.696 0.638 0.559
SMO 62.75% 37.25% 0.627 0.275 NaN 0.627 NaN
KNN 70.65% 29.34% 0.707 0.122 0.733 0.707 0.709
AdaBoost 57.68% 42.32% 0.577 0.389 NaN 0.577 NaN
OneR 55.04% 44.96% 0.550 0.287 0.497 0.550 0.511
ZeroR 47.89% 52.10% 0.479 0.479 NaN 0.479 NaN
J48 77.49% 22.50% 0.775 0.121 0.787 0.775 0.774
RandomForest 84.08% 15.91% 0.841 0.081 0.851 0.841 0.840
RandomTree 75.82% 24.17% 0.758 0.126 0.766 0.758 0.753

As shown in Tables 12 and 13, the random forest algorithm and the Naive Bayesian
algorithm are selected in this paper, and the classification effect was evaluated using a
confusion matrix, from which it can be seen that the classification of the accelerometer
faults was the most difficult. In the Naive Bayesian and the random forest algorithm, 288
and 122 normal data were incorrectly classified as accelerometer faults, respectively.

Table 12. Confusion matrix of Naive Bayes algorithm.

Normal GPS Acc Engine RC Class
780 12 17 134 2 Normal
0 193 0 0 0 GPS
288 3 153 0 1 Acc
1 0 0 126 0 Engine
128 0 0 66 69 RC
Table 13. Confusion matrix of random forest algorithm.
Normal GPS Acc Engine RC Class
847 3 56 35 4 Normal
0 193 0 0 0 GPS
112 0 293 17 23 Acc
2 0 0 125 0 Engine
31 0 0 31 201 RC

5.3. Performance on Convolutional Neural Networks

In order to test the performance of the data set obtained by the TLM method on the
neural network, the information of GPS, IMU, RATE, and VIBE were extracted and input
into the CNN for training. This is done by converting the data with 16-dimensional features
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and 9-dimensional features into grayscale maps and inputting them into CNN for training.
The accuracy and loss during training are shown in Figures 20 and 21.
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From Figure 20a,b, it can be seen that the accuracy of IMU and RATE only converged
to 75% during training; from Figure 21a, the accuracy of GPS information converged to
about 85% during training. From Figure 21b, the accuracy of VIBE information converged
to 63% during training. The test accuracies on the test set are shown in Table 14. It can be
seen that the GPS data had the highest classification accuracy of 85.63%. Comparing other
machine learning algorithms with CNN, the accuracy of CNN did not have a significant
advantage on this task.

Table 14. Test results from CNN.

Category Accuracy
GPS data 85.63%
RATE data 75.32%
IMU data 73.03%
VIBE data 63.15%

Through analysis, the gap between normal and abnormal samples was too small;
after converting the data to images, the differences between positive and negative samples
were further reduced, making the learning of CNN using images difficult. In this paper,
two samples from different failures were selected to illustrate the above issues, and their
grayscale plots are shown in Figure 22.

(a) (b)

Figure 22. After converting the data into a grayscale image, the comparison between (a) normal
sample and (b) abnormal sample.

Tables 15-18 show the classification results of the different data obtained from UAVs on
CNN, Normal, GPS, Acc, Engine, and RC, referring to the four types of fault classification
and normal classification, respectively. In Table 13, which shows the results of testing using
the GPS data, the highest classification accuracy of 96.32% was achieved for GPS faults.
That is because the differences between the individual features in the GPS information
are larger, so it is beneficial to the training of the model. In Table 16, which shows the
classification effect using VIBE vibration data, the classification accuracy for Acc fault was
0. By analysis, it was found that in VIBE information, there were many samples duplicated
at the Acc fault; there is no change in vibration information at the accelerometer fault, so
the features were not learned. The classification effect of the remaining information was
between 60% and 80%.

Table 15. Results of GPS data.

F1-Score Accuracy Recall
Normal 0.8881 0.8846 0.8916
GPS 0.9587 0.9632 0.9544
Acc 0.8436 0.8792 0.8108
Engine 0.6269 0.6802 0.5813

RC 0.7939 0.7470 0.8471
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Table 16. Results of IMU data.

F1-Score Accuracy Recall
Normal 0.7552 0.7325 0.7793
GPS 0.6271 0.7551 0.5363
Acc 0.8360 0.8364 0.8355
Engine 0.6790 0.5516 0.8829
RC 0.6510 0.7395 0.5814

Table 17. Results of RATE data.

F1-Score Accuracy Recall
Normal 0.7506 0.7186 0.7854
GPS 0.6459 0.7560 0.5639
Acc 0.8240 0.8687 0.7837
Engine 0.9182 0.9207 0.9157
RC 0.6959 0.6761 0.7169

Table 18. Results of VIBE data.

F1-Score Accuracy Recall
Normal 0.7158 0.6010 0.8849
GPS 0.4796 0.6666 0.3746
Acc 0.0000 0.0000 0.0000
Engine 0.8919 0.9512 0.8395
RC 0.3177 0.5622 0.2214

6. Conclusions

UAVs are increasingly used in many industries, so fault detection and anomaly detec-
tion for UAVs are becoming increasingly important. When using machine learning and
deep learning methods for fault detection of UAVs, problems arise because the logs of UAVs
are difficult to obtain, features are difficult to extract, and processes and logs of UAVs are
not directly usable. In this paper, a Time Line Modeling (TLM) approach was proposed to
acquire and process the failure data of UAVs. First, based on the software-in-the-loop (SITL)
simulation system of UAVs, a flight mission with four trajectories is constructed. The four
common faults of UAVs (GPS fault, accelerometer fault, engine fault, and Remote-Control
System fault) were simulated in the same flight, and the original logs of the UAV flight
were collected. Secondly, the Time Line Modeling approach is specifically divided into
two stages. The first stage locates the normal and abnormal data of the UAV using a Fault
Point-in-time Anchoring-based approach. The second stage expands the abnormal data of
the UAV using a Time-Window Stretching-based approach. Finally, the flight logs under
four flight trajectories: GPS information, IMU information, RATE information, and VIBE
are used as data. The time-related features, as well as non-generic features, are removed
and put into the machine learning model and convolutional neural network model for
training. The experimental results proved that the UAV fault data set obtained based
on TLM methods was effective. In summary, this paper implemented the collection and
processing of UAV fault logs using the proposed TLM method. This approach provided a
new source of fault data for classifying UAV faults. Our future research will focus on devel-
oping effective models for detecting UAV faults based on the data set obtained through the
TLM method.
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