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Abstract: In recent years, federated GBDTs have gradually replaced traditional GBDTs, and become
the focus of academic research. They are used to solve the task of structured data mining. Aiming at
the problems of information leakage, insufficient model accuracy and high communication cost in
the existing schemes of horizontal federated GBDTs, this paper proposes an algorithm of gradient
boosting decision trees based on horizontal federated learning, that is, secure and efficient FL for
GBDTs (SeFB). The algorithm uses locality sensitive hashing (LSH) to build a tree by collecting similar
information of instances without exposing the original data of participants. In the stage of updating
the tree, the algorithm aggregates the local gradients of all data participants and calculates the global
leaf weights, so as to improve the accuracy of the model and reduce the communication cost. Finally,
the experimental analysis shows that the algorithm can protect the privacy of the original data, and
the communication cost is low. At the same time, the performance of the unbalanced binary data set
is evaluated. The results show that SeFB algorithm compared with the existing schemes of horizontal
federated GBDTs, the accuracy is improved by 2.53% on average.

Keywords: horizontal federated learning; data security; gradient boosting decision tree; privacy
protection; LSH

1. Introduction

In traditional machine learning, a well-trained machine learning model relies heavily
on the data of a large number of users. However, the security and privacy problems
of users’ data cause many users’ data to be sensitive and cannot be directly uploaded
to the central server, which greatly limits the flexibility of data application. Therefore,
Mcmahan et al. [1] put forward Federated Learning (FL) technology. The goal of FL is to
make the model effect as close as possible to that of traditional machine learning methods
under the condition of ensuring the safety of users’ private data, and to realize collaborative
modeling and improve the model effect under the premise of legal compliance. In recent
years, FL has been widely used in joint modeling, which can be divided into horizontal
federated learning [2], vertical federated learning [3] and federated transfer learning [4].

However, due to the differences in geographical location and time distribution of
clients, the original data of federated learning system is often non-iid, which will adversely
affect the accuracy and convergence speed of the model [5], and has been identified as
a basic challenge of FL [6]. At present, many federated deep learning algorithms have
optimized the problems caused by non-iid data [7–9].

Federated learning is influenced by heterogeneous devices and limited network band-
width, which leads to its computing and communication efficiency becoming the biggest
challenge that hinders its practical application. Recently, several federated deep learning
algorithms have been studied to reduce the communication efficiency of the model [10–12].

At present, most of the research on FL focuses on training deep learning models with
privacy protection [13–17]. Although the deep learning model is very powerful for a series
of real-world tasks in the federated scene, it is easily defeated by the “simpler” model
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when faced with tabular datasets, one of which is the gradient boosting decision trees
(GBDTs) [18–21]. The model consists of several decision trees. The decision trees are trained
by gradient boosting method, and then weak learners are constructed in turn to minimize
the loss function. It has many advantages such as fast training speed, high accuracy and
strong interpretability. Many GBDTs frameworks, such as XGBoost [22], LightGBM [23] and
CatBoost [24], have been used in different fields [25–27] and have high learning efficiency
and prediction performance.

Recently, several studies have combined GBDTs with FL, such as GBDTs under se-
cure training in federated setting [28–32]. These methods usually rely on cryptographic
techniques, such as homomorphic encryption (HE) or secure multiparty computing (MPC).
This dependence on heavyweight cryptography (such as HE or MPC) often makes methods
computationally intensive or require a large number of communication rounds, making it
difficult for them to extend to more than a few participants.

Through the above analysis, the existing federated learning scheme has the problem
that the model accuracy is affected by non-iid data. This paper mainly studies the federated
learning scheme that can better fit the non-iid data and improve the model accuracy.
Secondly, the existing federated optimization methods are mostly based on deep learning
algorithms. This paper mainly studies the optimization algorithm of federated GBDTs,
which can make up for the shortcomings of slow training speed and unexplained model of
federated deep learning algorithms in structured data mining. Finally, the existing GBDTs
schemes under secure training in federated environment has the problems of complicated
calculation and high communication cost. This paper mainly studies the federated GBDTs
scheme which can protect the original data security while reducing the calculation and
communication cost.

2. Related Work

This paper mainly studies horizontal FL schemes for GBDTs. Each party has its own
data, and these data have the same features. The existing horizontal FL schemes for GBDTs
has some limitations.

Zhao et al. [33] designed a distributed GBDTs scheme (TFL), in which all parties
take turns to train a differential privacy decision tree. This method only uses the lo-
cal datasets of data participants to update the tree, which leads to low model accuracy.
Yamamoto et al. [34] put forward a federated GBDTs model (eFL-Boost) which focuses
on properly allocating local computing (executed by each data owner alone) and global
computing (executed by all owners in cooperation). Although it can improve the prediction
performance to a certain extent, the accuracy of the model is greatly affected by non-iid
datasets. Tian et al. [35] proposed a GBDTs of private FL (FederBoost) to construct accu-
rate trees through gradient histograms. However, this method brings problems such as
information leakage. Li et al. [36] put forward SimFL, which uses a weighted gradient
boosting method to model a single tree, which is a new direction of GBDTs algorithm under
the FL framework. Unfortunately, when training large-scale datasets, the communication
overhead of each iteration is very large. Therefore, the existing horizontal FL schemes of
GBDTs has some problems, such as insufficient prediction accuracy, model accuracy greatly
affected by non-iid datasets, information leakage and high communication cost.

To sum up, this paper proposes a Secure and efficient horizontal FL schemes for GBDTs
(SeFB). The main contributions of this paper are as follows: (1) Aiming at the influence of
non-iid datasets on the model accuracy, this paper uses Locality Sensitive Hash (LSH) in
the GBDTs of FL, and uses coordinator to count the similar instances of participants, fully
absorbing the gradient information of each participant, and measuring the importance of
the gradient of each participant to updating the tree model, so as to stimulate and motivate
participants with high-quality datasets to make greater contributions. (2) Aiming at the
existing GBDTs schemes under secure training in federated environment has the problems
of complicated calculation and high communication cost. This paper mainly adopts the
master–slave architecture, and the high-performance server is responsible for the global
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complex operations, such as calculating the weighted gradients and global leaf weights.
Participants are responsible for simple operations, such as calculating hash values, building
trees and updating models. Reduce the calculation burden of participants, and at the same
time reduce the number of communications. (3) Experimental analysis shows that the
algorithm can protect the privacy of the original data, and the communication cost is low.
At the same time, the performance of imbalanced binary data sets is evaluated (ROC AUC
and F1-score as indicators). The results show that our SeFB algorithm has higher prediction
accuracy than the current horizontal federated GBDTs scheme.

3. Preliminaries
3.1. Locality Sensitive Hashing (LSH)

Nearest neighbor search plays an important role in machine learning, but it has some
limitations when dealing with high-dimensional data. In order to solve this problem,
Gionis et al. [37] proposed locality sensitive hash (LSH), whose main idea is to map the
data in the original space through the LSH function family. The probability that the hash
values of similar points are equal is large, while the probability that the hash values of
dissimilar points are equal is small. In LSH, the same hash value will correspond to
different input data. Therefore, LSH is used to protect user data in keyword search [38]
and recommendation system [39].

In 2004, Dater et al. [40] proposed LSH based on p-stable distribution, and defined the
hash function as

Fa,b(v) =
⌊

a ∗ v + b
γ

⌋
(1)

where a is a randomly selected k-dimensional vector satisfying p-stable distribution. The
dot product a ∗ v of vector a with vector v maps each vector onto a straight line; b is a
random number with uniform distribution in [0, γ] range; γ is the segment length of the
segment on the straight line. Hash function divides a straight line into several segments
with equal length γ, giving the same hash value to the points mapped to the same segment,
and giving different hash values to the points mapped to different segments.

3.2. Federated Learning for GBDTs
3.2.1. GBDTs

Gradient Boosting Decision trees (GBDTs) is a machine learning algorithm to improve
decision trees. After multiple weak learners train regression trees through local data sets,
they are aggregated into a group of trees in a specific order, thus forming strong learners.
As shown in Figure 1, in each tree, whenever the weak learner inputs instance data, its
prediction results are divided into a certain leaf node. In this way, the leaf weights of
the same prediction results are accumulated to obtain the prediction results of the strong
classifier.

ŷ =
T

∑
t=1

f (x) (2)

where T represents the number of decision trees and ft(x) represents the prediction result
of the T decision tree.

Although GBDTs can obtain good prediction results, it cannot make full use of the
local hardware resources of weak learners, and it also brings challenges to the data security
of weak learners. Therefore, the literature [28] combines GBDTs with federated learning to
achieve better results.
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Next, we briefly introduce the GBDTs training algorithm for federated learning. For-
mally, given a loss function l and a dataset with n instances and d features:
D = {(xi, yi)}(|D| = n, xi ∈ Rd, yi ∈ R), GBDTs minimizes the following objective
functions [22]:

∼
L = ∑

i
l(ŷi, yi) + ∑

k
Ω( fk) (3)
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where, L is the loss function, yi represents the ith target value, ŷi represents the predicted
value of the previous tree, Ω( f ) represents the penalty term of tree complexity, T1 represents
the number of leaves and ω represents the weight of leaves. Each fk corresponds to a
decision tree. By training the model additively, GBDTs minimizes the following objective
function at the tth iteration:

∼
L
(t)

=
N

∑
i=1

[
gi ft(xi) +

hi f 2
t (xi)

2

]
+ Ω( ft) (4)

where, gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

and hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
are the first-order and second-

order gradient statistics of the loss function. Let I = IL ∪ IR, where I represents the instance
set of the parent node. IL and IR represent the instance set of the left child node and the
right child node after splitting the parent node, respectively. The gain value of each split is
expressed as:

Lsplit =
1
2

[ (
∑ i∈IL gi

)2

∑ i∈IL hi + λ
+

(
∑ i∈IR gi

)2

∑ i∈IR hi + λ
− (∑ i∈I gi)

2

∑ i∈IR hi + λ

]
− γ (5)

Since the loss function is quadratic, the leaf weight ŵj and the splitting score of a node
can be expressed as follows.

ω̂j = −
∑ i∈Ij gi

∑ i∈Ij hi + λ
(6)

score =
G2

L
HL + λ

+
G2

R
HR + λ

− G2

H + λ
(7)

where GL and GR (or HL and HR) represent the sum of the data g (or h) after splitting the
left and right nodes, respectively.

The literature [22] shows that gradient can represent the importance of an instance.
For an instance Xb

q ∈ Ib, let Wp
bq =

{
k
∣∣∣Sp

bq = q
}

,which contains the IDs of the instances in

Ip that are similar with Xb
q . Let gb

q and hb
q denote the first order and second order gradients

of loss function at Xb
q , respectively. When the builder B is building a new tree at the t-th

iteration, WGB minimizes the following objective function [36].

∼
L(t)

w = ∑
xb

q∈Ib

[Gbq ft(Xb
q) +

1
2

Hbq f 2
t (Xb

q)] + Ω( ft) (8)

where Gbq = ∑
p

∑
i∈Wp

bq

gp
i , Hbq = ∑

p
∑

i∈Wp
bq

hp
i

Compared with the objective in Equation (4), Equation (8) only uses the instances of
Ib. Instead of using the gradients gb

q, hb
q of the instance Xb

q , we use Gbq, Hbq which are the
sum of the gradients of the instances that are similar with Xb

q (including Xb
q itself). Table 1

shows the list of mathematical notations of variables.
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Table 1. Mathematical notations of variables.

Notations Descriptions

n Total number of similar instances for all data participants.
np Number of similar instances of the p-th participant
p Data provided by all participants

Xp Local dataset of the p-th participant
Ip Instance set of participant p

Gi
bq, Hi

bq Weighted gradient of builder B
Gp, Hp Sums of the gradients (gi and hi in (4)) corresponding to each leaf

tj The j-th tree
Tj The updated j-th tree

4. Secure and Efficient FL for GBDTs
4.1. The SeFB Framework

Because the GBDTs model is optimized in function space instead of Euclidean space
through gradient descent iterative process, the implementation of federated learning setting
of GBDTs algorithm is quite different from that of standard paradigm. Because the weights
in this model are specific leaves generated from local data, traditional model exchange
technology cannot be applied to combine model parameters at the aggregator. That is to
say, it is impossible to train independent weak learner models locality on each side and
integrate the tree structures generated by them on the aggregator.

At present, the frontier research of GBDTs in horizontal federated learning probably
follows the following ways. Participants train a decision tree and send it to other partici-
pants. Participants who receive the decision tree will update their local gradient and train
the next decision tree, which will take turns until the final task is completed. However,
the problem of this scheme is that when the local data set of a participant is very skewed,
the quality of the trained decision tree is low and more seriously, the low-quality decision
tree will affect all subsequent training processes (this process is irreversible, because the
subsequent decision tree will depend on the prediction residuals of all previous models).
Therefore, the determination of the first decision tree is particularly important.

We hope that in the process of building the first tree, we will select the participant
with the best quality and distribution of its data set as the builder, and fully absorb the
gradient information of other participants to alleviate the influence of the local skewed data
set on the decision tree model. In SeFB, we first collect information about similar instances
through LSH, and then use gradient aggregation method to build the tree. In addition, in
terms of privacy protection, we have not exposed the original data of each data owner.

In the process of subsequent update iteration, if the gradients of similar instances need
to be obtained from the participants every time, this means that the communication cost is
directly related to the number of participants, which is not suitable for the practical appli-
cation scenarios of large-scale data sets. Therefore, we adopt the master–slave architecture,
and the high-performance server is responsible for the global complex operations, such as
calculating the weighted gradients and global leaf weights. Participants are responsible for
simple operations, such as calculating hash values, building trees and updating models.
The calculation burden of participants is reduced, and at the same time, the communication
times are reduced. In addition, in terms of accuracy, because the leaf weights are directly
related to the output of the model, them contribute more to the improvement of model
accuracy. Therefore, we add global leaf weights to the constructed tree to update the model
and improve the accuracy of the model.

A schematic of the SeFB framework is shown in Figure 3. It includes the builder
(B), the data participants (P) and the global server (GS). The builder is one of the data
participants and is responsible for building the tree. The global server is responsible for
establishing the global hash table and aggregating the local gradients to calculate the global
leaf weight. Data participants is responsible for computing the hash values and gradients
and sending them to the global server.
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4.2. The Algorithm Design of SeFB

SeFB has two main stages: building the tree and updating the tree. In the stage of
building the tree, the data participant first calculates the hash value by using the randomly
generated Local Sensitive Hash (LSH) function and uploads it to the GS. Then, the GS
builds a global hash table through the collected hash values and broadcasts it to all data
participants. Finally, the builder (one of the data participants) can build the tree structure
by using the global hash table and similarity information without accessing the original
data of other parties. In the stage of updating the tree, the data participants calculate the
local gradient according to the tree shared by the builder and send it to the GS. Then, the
GS calculates and shares the leaf weights by aggregating the gradients. Finally, each data
participant combines the tree and the leaf weights to obtain a new tree, which is added to
the global model. It is worth noting that once a tree is built on one side, it will be sent to
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all parties to update the gradient. All the decision trees we obtain will serve as the final
learning model.

4.3. The Algorithm Description of SeFB

Step 1 Input LSH functions {Fk}k=1,2...L,, instance set for each participant Ip, number of
updates U and data set for each participant Xp,

Step 2 Data participants calculate the hash values of the local instances according to
LSH functions, and upload them to coordinator GS.

Step 3 GS constructs a global hash table according to the hash values and broadcasts
it. At the same time, GS sends a request to participants to obtain the cumulative
gradients of their local similar instances.

Step 4 Data participants construct a matrix of similar instances s = Si
pq according to the

global hash table, and calculate the cumulative gradients Gi
pq ← Gi

pq + gi
q, Hi

pq ←
Gi

pq + hi
q of local similar instances according to the global hash table and upload

them to GS.
Step 5 GS counts the similar instance information of each participant, and selects the

participant with the largest number of similar instances in turn as the builder B
(the active party) of each update iteration.

Step 6 GS calculates the weighted gradients Gi
bq, Hi

bq of the B according to the similar

information between each instance Xb
q in the Ib and Ip.

Step 7 GS sends datagram (weighted gradients and tree-building mark) to B.
Step 8 B uses the previous tree tj−1, data set Xb and weighted gradients Gi

bq, Hi
bq rewrites

the loss function according to Formula (8) and constructs the tree tj according to
Formula (4), and sends tj to other participants.

Step 9 Participants calculate the sum of gradients corresponding to each leaf according
to tj and data set Xp to obtain Gp and Hp, and upload them to GS.

Step 10 GS aggregates Gp and Hp of each participant to obtain G = ∑p∈P
np
n Gp and

H = ∑p∈P
np
n Hp, and calculates the global leaf weights ωi = − G

H+λ with G and
H, and then returns them to the participants.

Step 11 Participants obtain the leaf weights ω, they combine the tree tj with ω and to
obtain Tj.

Step 12 Repeat step5-step11, and output a decision tree in each cycle until the update
iteration ends (j > U).

Step 13 Output global model {T1, . . . , TU}
In step 2, for each instance, the purpose of using LSH is to obtain similar instance IDs.

In order to obtain the similar information between any two instances in the federated data
without exposing the original data, the p-stable LSH function is adopted.

In step 5, GS selects the participant with the largest number of similar instances as
the builder after obtaining the cumulative gradients of local similar instances of each
participant. In other words, the builder at this time is the participant with the best data
quality and distribution.

In step 6, the builder changes the local loss function through the weighted gradients.
The weighted gradients at this time fully absorb the gradient information of all participants,
which can ensure that the constructed model has better generalization.

In step 7, GS can measure the importance of a participant’s gradient to updating the
tree model through np

n (n = ∑U
p=1 np), improve the contribution of high-quality data sets,

and thus speed up the convergence of the model.

5. Discussion
5.1. Security Analysiss

We verify the security of the SeFB algorithm proposed in this paper through the
following three parts. Firstly, the necessity of the security strategy of this algorithm is
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analyzed. Secondly, the index to evaluate the security of the algorithm is introduced.
Finally, the security of this algorithm is proved.

5.1.1. Necessity Analysis of Security Strategy of SeFB

Assuming that SeFB algorithm does not add any security policy, step 2 shares the
original data to coordinator GS in plaintext, which will lead to the risk of data leakage.
Therefore, it is necessary to use LSH function to calculate hash value to encrypt the original
data. In step 10, if GS obtains the gradient information of each participant and the model
structure information at the same time, GS can obtain the original data information through
model backstepping attack. Therefore, it is necessary that GS only allows obtaining gradient
information.

5.1.2. Evaluation Index of the Security of SeFB

Privacy model. a two-party security model was proposed by Du et al. [41] and adopted
by Liu et al. [42] in 2020. We extend the model to multiple parties and obtain the following
privacy definition:

Definition 1 (privacy model). Assume that all participants are semi-city real adversaries. For a
protocol C, execution, where O1, O2, . . . OMand I1, I2, . . . , IMare the output and input of participant
P1, P2, . . . , PM, respectively, is said to be secure for P if there exists an infinite number of tuples
satisfying (O1, O2, . . . , OM) = C(I1, I2, . . . , IM).

When potential risks such as inference attacks are encountered, definition 1 has a
weaker privacy level compared to the security definition in secure multi-party computa-
tion [43]. Due to the literature [36], the corresponding heuristic model is proposed based
on this privacy model.

Definition 2 (heuristic model). If L < d, where L is the number of hash functions and d is the
number of dimensions of the training data. In short, if the number of unknowns (i.e., d) is greater
than the number of equations (i.e., L), then there exists an infinite number of solutions.

5.1.3. Proof of the Security of SeFB

Assume that the global server GS is honest and curious. We prove the security of SeFB
by analyzing whether GS can infer the original data of federated participants.

In step 2, participants perform LSH functions to convert data into hash values. Here,
the number of hash functions (L) is selected to be less than the number of dimensions of
the training data (d). According to Definition 2, an opponent will obtain an infinite number
of possible inputs when attacking with background knowledge. Therefore, the honest and
curious coordinator GS cannot obtain the original data of the participants.

In step 12, GS only obtained the cumulative gradients Gp and Hp of each leaf of each
data participant, but did not obtain the global model. Therefore, the conditions of model
inversion cannot be met.

5.2. Communication Costs

In this section, we discuss the communication cost required for each update of
each scheme.

In step 5–step 11, SeFB needs four communications for each update. First, GS sends
datagram (weighted gradients and tree-building mark) to builder B. Secondly, the builder
B shares the constructed tree with all participants, then the participants transmit the local
gradients to the GS, and finally the GS calculates the global leaf weights and transmits them.

Therefore, after U update iterations, the total communication cost of SeFB is O(U),
which is the same as TFL and eFL-Boost. However, in each update of FederBoost, the
gradient histogram corresponding to each node must be communicated several times
according to the depth of the tree, and the total communication cost is O(HU). SimFL
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needs to obtain instance gradients from other participants every time it is updated, and
the total communication cost is O(|Im|U). Therefore, SeFB can train the model with lower
communication cost than FederBoost and simFL. Table 2 shows the communication times
required for each scheme to update the global model each time, where H represents the
depth of the tree and the Im represents local instance set.

Table 2. Communication times required for each scheme to update the global model each time.

Schemes Communication Times

TFL 1
eFL-Boost 3

SeFB 4
FederBoost 2H

simFL |Im|

5.3. Computational Complexity

In step 5–step 11, SeFB needs to be computed four times for each update: (1) In step
6, GS calculates the builder’s weighted gradients through simple addition operation, and
the computational complexity is O(N). (2) In step 8, builder B builds a tree, and the total
number of data and features owned by the p th participant are Np and N f , respectively, so

the computational complexity of this process is O
(

NdN f

)
. (3) In step 9, each participant

calculates the gradients of each leaf. Assuming that the number of data participants is N,
there are M data participants, so the operation can be completed with a computational
complexity of O(MN). (4) In step 10, GS calculates the leaf weights, and the computational
complexity of this process is O

(
2H)(2H � NM), where H is the depth of the tree. Through

the above analysis, it is concluded that the process of building a tree by B is the most
important.

The computational complexity required for each update of each scheme is shown in
Table 3. In all schemes, all participants share the complete GBDTs, so the computational
complexity of each scheme is equal to that of normal GBDTs.

Table 3. Computational complexity required by each scheme for each update.

Schemes Computational Complexity

TFL O
(

Nd N f

)
eFL-Boost O

(
Nd N f

)
SeFB O

(
Nd N f

)
FederBoost O

(
Nd N f

)
simFL O

(
Nd N f

)
6. Experiments
6.1. Experimental Setups

To validate the accuracy of the proposed SeFB model, we compare SeFB with two
approaches: (1) Non indicates the case that a participant trains a common GBDTs using
federated data from all parties, regardless of privacy concerns. (2) Independent is a case
where training the common GBDTs is carried out independently by local data for each
party. We also compare SeFB with two other federated learning for GBDTs schemes. TFL
is the scheme from Zhao et al. [33]. eFL-Boost is the scheme from Yamamoto et al. [34].
Because the training process in FederBoost [35] is the same as that in GBDTs, it has the
same accuracy as that in Non, so the experimental results of FederBoost are not shown.

In this experiment, the test runs on AMD Ryzen 5 3600 3.6GHz CPU and 16GB RAM.
SeFB algorithm was implemented using the python language. The experimental data
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were used, Credit 1 dataset, Credit 2 dataset and Adult dataset. Table 4 lists the basic
information of the three datasets used in the experiments. It is worth noting that they are
all unbalanced datasets.

Table 4. Experimention on the dataset. The task in the following dataset is binary classification.

Data Set Data Features Positive Data Ratio

Credit 1 [44] 284,805 30 0.2%
Credit 2 [45] 120,269 10 7%
Adult [46] 32,651 14 24%

Here are three evaluation indicators that were originally used for this experiment:
(1) F1-score: harmonic mean of precision and recall. It supports model robustness eval-
uation in experiments with unbalanced data sets. (2) ROC-AUC: area under the ROC
curve. It can ignore the influence of threshold selection in classification and evaluate the
classification effect of the model. (3) Test errors. For any given problem, a lower test error
value means a better prediction.

6.2. Experimental Results

In the practical use of federated learning, the data quality and distribution of par-
ticipants are often uncontrollable, and it is impossible to require all participants’ data to
meet independent and identical distribution [47]. Therefore, this experiment divides the
training data set according to the method of the literature [48] to simulate the unbalanced
data distribution in federated learning.

In the experiment, the datasets are divided into two parts by the unbalanced segmenta-
tion method with a ratio of θ = 80%, which are allocated to both A and B, respectively. The
test error is shown in Table 5. The experimental results show that: firstly, the test error of
SeFB on data part A and B is always lower than Independent, and the prediction accuracy
can be improved by SeFB. Secondly, the test error of SeFB is close to Non; thirdly, compared
with TFL and eFL-Boost, SeFB has lower test error. The test errors of TFL are always larger
than Independent, which hinders their adoption in practice.

Table 5. Test errors of different scheme.

Credit 1 Credit 2 Adult

Non 21.8% 16.5% 18.6%
Independent 25.7% 19.3% 21.3%

TFL 27.7% 21.4% 23.5%
eFL-Boost 24.6% 18.2% 20.7%

SeFB 22.4% 17.3% 19.6%

6.2.1. Performance Impact of the Number of Participants

The core idea of federation learning is to enable multiple participants to jointly train
a model to improve prediction accuracy. Therefore, to investigate the effectiveness of
federation learning, we set up different numbers of participants in this experiment, while
fixing the amount of data for each participant, and evaluated the prediction performance
for each case.

The results of the experiment are shown in Table 6 and Figure 4. Each participant
owns 10% of all the data. We adjusted the number of participants from 2 to 10. The
results show that the performance of all models increases when the number of participants
increases. Moreover, in all cases, all the indexes of SeFB are better than Independent, TFL
and eFL-Boost.
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Table 6. Performance impact of the number of data participants.

Dataset Schemes
F1-Score ROC-AUC

2 4 6 8 10 2 4 6 8 10

Credit 1

Non 0.812 0.826 0.843 0.857 0.861 0.972 0.975 0.975 0.978 0.980
Independent 0.763 0.769 0.768 0.769 0.751 0.963 0.963 0.965 0.966 0.966

TFL 0.792 0.797 0.799 0.805 0.814 0.966 0.972 0.974 0.975 0.976
eFL-Boost 0.801 0.820 0.839 0.841 0.843 0.970 0.972 0.973 0.974 0.975

SeFB 0.811 0.824 0.841 0.851 0.858 0.971 0.974 0.975 0.977 0.979

Credit 2

Non 0.901 0.904 0.906 0.908 0.910 0.922 0.925 0.927 0.930 0.934
Independent 0.882 0.891 0.893 0.893 0.894 0.911 0.912 0.913 0.914 0.916

TFL 0.889 0.891 0.897 0.900 0.902 0.916 0.917 0.919 0.922 0.928
eFL-Boost 0.900 0.902 0.904 0.906 0.907 0.920 0.923 0.925 0.927 0.931

SeFB 0.901 0.903 0.906 0.908 0.910 0.922 0.924 0.926 0.930 0.933

Adult

Non 0.722 0.731 0.740 0.748 0.767 0.888 0.900 0.902 0.906 0.911
Independent 0.662 0.671 0.678 0.683 0.698 0.843 0.844 0.845 0.845 0.847

TFL 0.689 0.693 0.710 0.718 0.732 0.873 0.875 0.877 0.888 0.896
eFL-Boost 0.718 0.724 0.733 0.740 0.752 0.883 0.885 0.889 0.896 0.903

SeFB 0.721 0.729 0.736 0.745 0.763 0.885 0.888 0.897 0.902 0.909
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Figure 4 shows the test errors with different numbers of participants, and the horizontal
coordinate indicates the number of participants. The results show that the upper limit of
SeFB generalization error may increase with the increase in the number of participants.
However, in most cases, the test error of SeFB is lower than the minimum error of Individual
and eFL-Boost. The test error of TFL changes sharply with the increase in the number of
participants, while SeFB is much more stable.

6.2.2. Performance Impact of Participants’ Data Imbalance Ratio

In the practical use of federation learning, the amount of data provided by federated
participants is often different. Therefore, federated learning algorithms should be robust to
unbalanced distributions of data. This experiment used the partitioning method from a
previous study [48] to assign skewed local datasets to the participants. We set the number of
participants to 2 and adjust the imbalance ratio θ from 60% to 80%. One of the participants
received θ∗Nclass0

2 instances with label 0, and θ∗Nclass1
2 instances with label 1, and the other

participant received the opposite.
The experimental results are shown in Table 7 and Figure 5. We can observe that the

performance of all models decreases with the increase in imbalance ratio θ. Secondly, the
performance of SeFB is able to approach Non. Thirdly, in all cases, the performance of TFL,
eFL-Boost and Independent tends to be lower, while the performance of SeFB is always
better than them. Thus, SeFB is able to achieve performance enhancement through FL, even
when the data of the participants are not balanced.
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Table 7. Performance impact of participants’ data imbalance ratio.

Dataset Schemes
F1-Score ROC-AUC

60% 70% 80% 90% 60% 70% 80% 90%

Credit 1

Non 0.823 0.819 0.812 0.807 0.989 0.984 0.978 0.973
Independent 0.773 0.767 0.763 0.756 0.976 0.971 0.966 0.959

TFL 0.797 0.795 0.792 0.782 0.979 0.977 0.975 0.967
eFL-Boost 0.817 0.806 0.801 0.791 0.982 0.979 0.974 0.971

SeFB 0.819 0.815 0.811 0.805 0.987 0.982 0.977 0.972

Credit 2

Non 0.914 0.908 0.901 0.885 0.937 0.935 0.930 0.926
Independent 0.892 0.886 0.882 0.875 0.920 0.917 0.914 0.909

TFL 0.894 0.886 0.889 0.879 0.931 0.926 0.922 0.916
eFL-Boost 0.909 0.905 0.900 0.891 0.932 0.929 0.927 0.921

SeFB 0.911 0.905 0.901 0.885 0.936 0.933 0.930 0.924

Adult

Non 0.735 0.729 0.722 0.713 0.925 0.911 0.906 0.902
Independent 0.687 0.675 0.662 0.650 0.867 0.856 0.845 0.833

TFL 0.701 0.693 0.689 0.671 0.899 0.896 0.888 0.872
eFL-Boost 0.729 0.723 0.718 0.702 0.912 0.901 0.896 0.891

SeFB 0.731 0.728 0.721 0.711 0.918 0.909 0.902 0.901
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Figure 5 shows the test errors with participants’ data imbalance ratio, where the
horizontal coordinate indicates the imbalance ratio θ. With the increase in θ, SeFB has better
prediction performance than Independent, TFL and eFL-Boost.

6.2.3. Performance Impact of Data Volume Size

In most cases, the performance of a machine learning model is influenced by the
amount of training data. Therefore, in this experiment, we fixed the number of participants
to be three and varied the amount of training data for each participant to evaluate the
federated learning model.

The results of the experiment are shown in Table 8 and Figure 6. In Figure 6, the
horizontal coordinates in the figure indicate the data ratio of the original dataset, and the
amount of data per participant increases as the total number of participants decreases. In
this case, the amount of data per participant is 30%, 60% and 90% of the total amount of
data. We can observe that the prediction performance of all GBDTs schemes improves
as the amount of data increases. Among them, SeFB outperforms Independent, TFL and
eFL-Boost.
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Table 8. Performance impact of data volume size.

Dataset Schemes
F1-Score ROC-AUC

30% 60% 90% 30% 60% 90%

Credit 1

Non 0.811 0.835 0.857 0.968 0.974 0.980
Independent 0.751 0.782 0.801 0.946 0.962 0.966

TFL 0.791 0.811 0.836 0.952 0.965 0.973
eFL-Boost 0.801 0.823 0.846 0.964 0.969 0.975

SeFB 0.805 0.837 0.852 0.965 0.972 0.979

Credit 2

Non 0.898 0.902 0.907 0.922 0.927 0.932
Independent 0.894 0.898 0.903 0.901 0.909 0.914

TFL 0.896 0.899 0.901 0.906 0.916 0.924
eFL-Boost 0.897 0.901 0.903 0.910 0.922 0.927

SeFB 0.898 0.901 0.905 0.919 0.925 0.931

Adult

Non 0.740 0.751 0.772 0.888 0.896 0.903
Independent 0.679 0.693 0.714 0.854 0.857 0.862

TFL 0.712 0.729 0.745 0.867 0.876 0.883
eFL-Boost 0.730 0.743 0.766 0.875 0.883 0.898

SeFB 0.736 0.749 0.772 0.885 0.891 0.902
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7. Conclusions

With the emergence of information leakage incidents, federated learning has been
paid more and more attention because of its privacy protection characteristics. The SeFB
method proposed in this paper is divided into two stages: building a tree and updating
the tree. In the first stage, we use LSH to calculate similar instances, and build a tree
by weighted gradients. This not only solves the problem of low accuracy of the model
caused by different data distribution, but also protects the safety of the original data of each
participant. In the second stage, we calculate the global leaf weight that only needs one
round of communication to update the tree, and compensate the accuracy loss caused by
local calculation by improving the attribute mechanism of the tree. This not only ensures
the accuracy of prediction, but also greatly improves the communication efficiency.

In that discussion section of this paper, we first evaluate SeFB from three aspects:
security, computational complexity and communication cost. The results show that SeFB
not only protects the privacy of the original data, but also ensures the communication
efficiency of the model, so it has good practical application value. Secondly, in the aspect of
prediction performance, we compare SeFB with Independent, TFL and eFL-Boost through
F1-score, ROC-AUC and Test errors. The experimental results show that SeFB is superior
to TFL and eFL-Boost in almost all cases, and has the same performance as Non.
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During the whole training process, participants need to share the gradient information
of local data when updating the boosting tree, so there is still the risk of information
leakage. In the future, the research will focus on the privacy security in the process of
updating the federated gradient boosting decision tree model to protect the security of local
model parameters.
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