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Abstract: Satellite edge computing (SEC) has garnered significant attention for its potential to deliver
services directly to users. However, the uneven distribution of receiving tasks among satellites in
the constellation can lead to uneven utilization of computing resources. This paper proposes a task
offloading strategy for SEC that aims to minimize the average delay and energy consumption of
tasks by assigning them to appropriate satellite nodes. The approach uses Lyapunov optimization to
convert the long-term optimization problem with task queue length constraints into an assignment
problem within a single time slot and solve it based on the Hungarian algorithm. Experimental
simulations have shown that the proposed algorithm performs better than other baseline algorithms.
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1. Introduction

Satellite networks are widely utilized for emergency communications, navigation and
positioning, earthquake relief, and other applications due to their wide coverage, high data
transmission rates, large capacity, and ability to operate independently of geographical
limitations. Low Earth orbit (LEO) satellites have attracted the attention of scholars owing
to their numerous advantages, including minimal transmission delays, support for global
on-demand access, and terminal miniaturization, among others [1]. Currently, several
countries have launched their own LEO satellite communication projects to supplement
terrestrial services, such as Starlink, OneWeb, and O3b. Nevertheless, the majority of current
LEO satellite networks employ the bent-pipe mode of data transmission, which involves
forwarding large amounts of user data to the ground center for processing through the LEO
network. This approach often leads to substantial network loads and long transmission
delays due to complex inter-satellite links (ISLs) [2]. Additionally, the underutilization of
LEO satellite communication and computing resources often leads to significant resource
waste [2].

Multi-access edge computing (MEC) is an emerging computing paradigm that pro-
poses the use of computing and communication resources near the user edge for task
processing, instead of relying on cloud-centric resources [3]. This approach allows for
data processing to be executed on edge servers, whereas the ground command center is
responsible for storing processing results and conducting further data analysis. Drawing
inspiration from MEC technology, edge servers are now being deployed on LEO satellite
networks, creating what is known as an edge computing satellite (ECS) [4]. In this archi-
tecture, in-orbit resources of LEO satellites can be used directly by ground users for task
processing, effectively mitigating time delays and network load issues. However, owing to
the varying service regions of satellite networks, there are differences in task loads between
satellites. The design of a rational computing offloading strategy for a satellite constellation
can ensure a more balanced task load among satellites, and expedite task completion.
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Therefore, a collaborative task processing approach among LEO satellites (MLSCTP)
is worthy of investigation as it can effectively mitigate issues related to high transmission
delay and network congestion caused by long-distance satellite-ground link transmissions.
Moreover, it addresses the problem of high computational latency resulting from the limited
computing power of a single satellite. However, the research on MLSCTP still faces several
significant challenges [1,5]:

• The satellite topology is highly dynamic, and the ISLs are variable at different moments.
• Each satellite node is hard to manage during its operational phase as the task load

changes, making its computing and communication resources change rapidly.
• No defined collaborative strategy between multiple LEO satellites to ensure efficient

task scheduling while fully utilizing computing resources.

To address the issues mentioned above, this paper proposes a dynamic task offloading
method based on the Lyapunov method and the Hungarian algorithm. In particular, for
the computing offloading problem among satellites, the Lyapunov method is utilized
to convert the long-horizon queue stability-constrained offloading problem into a single
time-slot offloading optimization problem. Additionally, the problem is transformed
into an assignment problem and solved using the Hungarian algorithm, which has low
computational complexity and does not require any prior knowledge or multiple iterations
to obtain optimal solutions. This approach provides a valuable reference for dynamic
computing offloading among satellite constellations.

The contributions of this paper are summarized below:

• Consider a satellite edge computing scenario where the satellites in a constellation
receive varying task loads. Each mission can be offloaded to any other satellite in
the constellation for collaborative computing via an ISL. This problem has not been
extensively studied by scholars.

• A strategy for offloading using the Lyapunov and Hungarian algorithms is proposed.
The method is straightforward in principle, easy to implement, and has demonstrated
superior performance compared with other benchmark algorithms.

The remainder of this paper is organized as follows. Section 2 summarizes the related
work. In Section 3, we describe the system model and problem formulation. Additionally,
Section 4 presents the proposed algorithm. Simulation results and analysis are presented in
Section 5. Section 6 summarizes the paper.

2. Related Works

Dynamic task scheduling strategies for collaborative computing among multiple
satellites play an essential role in edge computing-enhanced LEO satellite networks. At
present, some scholars have carried out the research. Liu et al. [6] proposed a novel system
of task-oriented intelligent network architecture to deal with the problems arising in edge
computing-enhanced sky-ground-water integrated networks. Xie et al. [7] analyzed the
feasibility of MEC-enabled satellites-ground converged networks for processing tasks on
satellites. An architecture called STECN is proposed, which discusses the solutions and
technical challenges of using the resources of its heterogeneous edge computing clusters
for task processing. In the above literature, although the authors propose and emphasize
the importance and feasibility of task scheduling and resource allocation for MEC-enabled
satellite clusters, none of them elaborated on specific task scheduling strategy schemes.

Bradley et al. [8] proposed a model for orbital edge computing and described the
power and software optimization of the orbital edge. Cui et al. [9] proposed a joint
offloading and resource allocation scheme for satellite-assisted vehicle networking. Song
et al. [10] proposed a satellite MEC framework for terrestrial IoT to minimize the energy
consumption of IoT mobile devices. They also proposed a computational offloading and
resource allocation scheme. In the above works, each of the authors proposed suitable task
scheduling and resource allocation schemes; however, none of them included the strategy
of multi-satellite cooperative computing in the research model.
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Zhiyuan Ren et al. [11] proposed to form a satellite fog network using a small satellite
formation and designing a task scheduling strategy using the improved particle swarm
algorithm, which can reduce the task processing latency while meeting energy consumption
constraints. However, this paper only considers formation flying satellites, whose topology
will not change and has little reference value for task scheduling of highly dynamic LEO
satellite constellations.

Xiaobo Guo et al. [1] proposed a satellites collaborative computing method using
business graph drive in LEO satellite networks. In the paper, Guo combined the computing
resources of multiple satellites and ISLs resources to schedule the task to the satellites on
the transmission path for processing. However, the authors only considered the scheduling
of a single task and did not consider the case of multiple tasks arriving in sequence. Wang
Cheng et al. [12] proposed to use the steady-state matrix of time-expanded graphs to
represent the steady-state topology of dynamic LEO satellite networks. Additionally,
the author designed a diffusion algorithm based on the matrix to achieve optimal task
assignment for LEO satellite networks, which could efficiently complete the computational
tasks while meeting delay constraints. However, this paper only considered the scheduling
algorithm for a single-task scenario.

Based on this problem, Min et al. [13] suggested using satellites to assist ground
users in computational offloading, where multiple satellites can directly connect to ground
users and provide offloading. However, due to orbital coverage issues, most satellites
in the actual satellite constellation cannot connect directly to ground users and must be
further offloaded through the inter-satellite link. Dong et al. [14] considered using the full
satellite constellation for offloading, considering the effects of multi-hop delay and energy
consumption. Li et al. [15] proposed offloading the computing tasks of ground users to the
over-the-top satellite. To address the unevenness of satellite network nodes, they proposed
transferring computational tasks on under-resourced satellite nodes to more resource-rich
nodes for collaborative processing through inter-satellite links, using a linear programming
approach to solve related problems. However, these authors only considered offloading
problems within a single time slot, and dynamic offloading strategies for satellite-ground
networks under multiple time slots have not been investigated.

Furthermore, Tao et al. [5] proposed to jointly study the collaborative computation and
resource allocation among LEO satellite networks. In the paper, the user tasks are selected
for Local computing or offloaded to the satellite for collaborative computing. Specifically,
the arrival of tasks was modeled as a Poisson process, and the task completion rate was
maximized under the delay constraint. However, the author only considered the metric of
task completion rate and did not consider the impact on task processing delay and energy
consumption. Besides that, the DQN algorithm uses an experience replay mechanism.
The interaction of the algorithm with the environment requires a large amount of memory
resources, which is not friendly to satellites with limited resources [16,17].

To address the shortcomings of the scenarios and algorithms in the aforementioned
studies, this paper proposes a multi-task, multi-time slots, multi-satellites offloading sce-
nario, and suggests a succinct and effective algorithm as the solution.

3. System Model and Problem Description
3.1. System Model

A typical architecture for satellite edge computing is first outlined, as shown in Figure 1.
In this configuration, the LEO satellites are equipped with edge computing servers, to
which computational tasks from ground users (e.g., ships, aircraft, monitoring devices, and
mobile communication devices) are uploaded. It enables the direct processing of received
tasks on the satellite nodes, without the need for traditional task transfer back to the ground
cloud center for computing. The satellites can communicate with the surrounding satellites
through ISLs. Meanwhile, in each time slot, information on the use of satellite resources and
the received tasks information is transmitted to the ground station through the backhaul
link. The ground station updates the offload decision in real time based on this information
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and sends it back to the satellite, taking into consideration the computing capabilities and
task load status of each satellite in the constellation.
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Figure 1. Satellites edge computing architecture.

The aforementioned scenario involves a constellation of N satellites orbiting the Earth
in a periodic manner, with each period being divided into multiple time slots of equal
duration τ. At every time slot, each satellite can receive new tasks, which are defined by
Ai(t) = {Di(t)}, where Di(t)(bit) represents the data amount of the task. Notably, the
amount of user demand may vary depending on the geographic region covered by each
satellite. For instance, in a given time slot, one satellite may be serving urban users, whereas
another satellite remains idle over the ocean. In this scenario, the urban satellite could
offload tasks to the idle ocean satellite for processing, effectively utilizing the constellation’s
computing resources to their full potential. To illustrate this, not all satellite k(k ∈ N) could
receive a task Ak(t) at each time slot. The number of satellites that will receive a new
task at each time slot, denoted by M(M ≤ N), and Di(t) follows a random distribution
with a certain range [λmin, λmax] and is independent and identically distributed. The tasks
received by each satellite can be offloaded to other satellite nodes via ISLs for assistance in
processing. A simple task offload schematic is employed to depict the scheduling process,
as shown in Figure 2.
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3.2. Task Queue Model

The decision vector is defined as o(t) = {o1(t), o2(t), · · · , oM(t)}, in which
oi(t) =

{
o1

i (t), o2
i (t), · · · , oN

i (t)
}

. ok
i (t) denotes the offload selection for time slot t, which

will be defined as

ok
i (t) ∈ {0, 1}, i ∈ {1, 2, · · · , M}, k ∈ {1, 2, · · · , N}. (1)

The new task, Ai(t), is assigned to the kth satellite when ok
i (t) = 1, k ∈ {1, 2, · · · , N}.

Furthermore, the task will remain in the ith satellite for processing without being offloaded
when ok

i (t) = 1, i = k. At time slot t, the quantity of data offloaded to the kth satellite is
represented by the following equation

Dk(t) = ∑M
i=1 ok

i (t) ∗ Di(t), i ∈ {1, 2, · · · , M}, k ∈ {1, 2, · · · , N}. (2)

Specifically, to indicate that each task can only be offloaded to one satellite, we define

∑N
k=1 ok

i (t) = 1, i ∈ {1, 2, · · · , M}, k ∈ {1, 2, · · · , N}. (3)

Furthermore, each satellite can only receive one task at a time slot. It is expressed as

∑N
i=1 ok

i (t) = 1, i ∈ {1, 2, · · · , M}, k ∈ {1, 2, · · · , N}. (4)

The computational capacity of the satellite is denoted as Ck(t) (bit/s). This denotes
the processing capacity of the kth satellite, measured in terms of the amount of data it can
handle per unit time.

Then, at time slot t, the amount of data in the kth satellite’s task queue can be expressed
as Qk(t + 1) and is given by the following expression

Qk(t + 1) = max[Qk(t)− Ck(t) ∗ τ + Dk(t), 0], k ∈ {1, 2, · · · , N}. (5)

Here, Qk(0) is initialized as zero for all k ∈ {1, 2, · · · , N}. Finally, we define the task
queue stability requirement of the system [18] as follows:

lim
T→∞

1
T ∑T−1

t=0 E[Qk(t)] ≤ 0, k ∈ {1, 2, · · · , N}. (6)

3.3. Offloading Model

In this section, we will examine the impact of task offloading on both latency and
energy consumption. Latency consists of four components: transmission latency, waiting
latency, computation latency, and return latency. Typically, the return latency is negligible
as the results are relatively small after computation. Energy consumption is comprised of
two components: transmission energy and computational energy.

For the kth satellite, if there are tasks offloaded at time slot t, the transmission latency
can be calculated as follows:

Ttrans
k (t) = ∑M

i=1 ok
i (t) ∗

Di(t)
B
∗ Hopk

i (t), (7)

in which B represents the bandwidth of the ISL, and Hopk
i (t) denotes the shortest hop

from the ith satellite to the kth satellite at time slot t. It should be noted that, unlike
fixed terrestrial networks, satellites move at high speeds, causing their topology to vary at
different time slots. Therefore, the shortest hop between two satellites may vary at different
time slots. However, the changing topology can be represented by a connection matrix [1],
which allows us to obtain the shortest hop between any two satellites at any given time
slot.
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To prevent tasks from being split due to changes in the topology of the satellite
network, we assume that the transmission time for a single hop does not exceed the length
of a time slot τ [18]. The propagation time for data is very short as the signal travels
through space at the speed of light. Therefore, we ignore the propagation time to simplify
the analysis.

The energy consumption associated with offloading to the kth satellite is defined as

Etrans
k (t) = Ttrans

k (t) ∗ Ptrans, (8)

in which, Ptrans (J/s) is the transmission power of satellites.

Tcom
k (t) =

∑M
i=1 ok

i (t) ∗ Di(t)
Ck(t)

, i ∈ {1, 2, · · · , M}. (9)

The computational latency is defined as
And the computational energy consumption can be expressed as

Ecom
k (t) = Tcom

k (t) ∗ Pcom
k , (10)

in which, Pcom
k (J/s) is the computing power of the kth satellite. Furthermore, the waiting

time for a task in the queue is defined as

Twait
k (t) =

Qk(t)
Ck(t)

. (11)

Therefore, for the kth satellite, the latency at time slot t can be expressed as

Tk(t) = Ttrans
k (t) + Twait

k (t) + Tcom
k (t). (12)

And the energy consumption is presented as

Ek(t) = Etrans
k (t) + Ecom

k (t). (13)

3.4. Probelm Formulation

The optimization objective of this paper is to reduce the average weighted sum of
latency and energy consumption over a long period of task offloading, while ensuring that
the system queue is stable.

We define the cost function of offloading tasks to the kth satellite in time slot t as
Cost = Tk(t) + β ∗ Ek(t), where β represents the weight assigned to energy consumption,
reflecting its relative importance in the optimization problem. The optimization objective
function can be defined as follows

P1 : min lim
T→∞

1
T ∑T−1

t=0 ∑N
k=1 Cost.

s.t.(1)(3)(4)(6)
(14)

4. Task Offload Optimization Algorithm
4.1. Probelm Conversion

Long-term constraints and optimization objectives pose significant challenges to solv-
ing the optimization problem P1, primarily because obtaining task information for future
time slots is challenging. P1 can be characterized as a Markov decision process (MDP),
which conventional MDP methods such as reinforcement learning can potentially address.
However, the general MDP algorithm is highly complex, rendering it unsuitable for real-
time communication requirements. Furthermore, the MDP algorithm requires storing the
optimal action for each state, which can significantly occupy satellite storage space.

The Lyapunov optimization method is a promising online optimization approach that
does not require a priori knowledge of statistical and future data [19]. One such approach
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is the Lyapunov-optimized dynamic task offloading strategy, which has been proposed by
Dai et al. in their paper [20]. This approach optimizes the task offloading decision based on
the Lyapunov optimization technique, which can effectively balance the trade-off between
system stability and task completion time. Other recent studies in the field of mobile edge
computing include the joint task offloading and resource allocation approach proposed by
Jiang et al. [21]. The Lyapunov method can convert the optimization of long-term objectives
into solving the minimal value for each time slot, based on theoretical principles.

First, we define the virtual task queues vector in the satellite constellation as

θ(t) , [Q1(t), Q2(t), · · · , QN(t)]. (15)

The Lyapunov function can be expressed as

L(θ(t)) ,
1
2 ∑N

k=1 Qk(t)
2. (16)

The Lyapunov drift is defined as

∆(θ(t)) = L(θ(t + 1))− L(θ(t)), (17)

which shows the variation in the system queue between two time slots. Analyze the ∆(θ(t)) as

∆(θ(t)) = L(θ(t + 1))− L(θ(t))

= 1
2 ∑N

k=1 Qk(t + 1)2 − 1
2 ∑N

k=1 Qk(t)
2

≤ 1
2

(
∑N

k=1(Qk(t)− Ck(t) ∗ τ + Dk(t))
2 −∑N

k=1 Qk(t)
2
)

= 1
2

(
∑N

k=1 Qk(t)
2 + 2 ∗∑N

k=1 Qk(t) ∗ (Dk(t)− Ck(t) ∗ τ) + ∑N
k=1((Dk(t)− Ck(t) ∗ τ)2 −∑N

k=1 Qk(t)
2
)

= ∑N
k=1 Qk(t) ∗ (Dk(t)− Ck(t) ∗ τ) + 1

2 ∑N
k=1((Dk(t)− Ck(t) ∗ τ)2

≤ ∑N
k=1 Qk(t) ∗ (Dk(t)− Ck(t) ∗ τ) + 1

2 ∑N
k=1 Dk(t)

2 + (Ck(t) ∗ τ)2

≤ δ + ∑N
k=1 Qk(t) ∗ (Dk(t)− Ck(t) ∗ τ)

(18)

As Dk(t) conforms to a random distribution with upper bound λmax and Ck(t) is the
satellite CPU’s computing capacity, 1

2 ∑N
k=1 Dk(t)

2 + (Ck(t) ∗ τ)2 must have an exact max
value δ at time slot t. Furthermore, we add up the ∑N

k=1(Tk(t) + β ∗ Ek(t)) of each time slot
to obtain

∆(θ(t)) + V ∑N
k=1(Tk(t) + β ∗ Ek(t)) ≤ δ + ∑N

k=1 Qk(t) ∗ (Dk(t)− Ck(t) ∗ τ) + V ∑N
k=1(Tk(t) + β ∗ Ek(t)), (19)

in which V represents the weight to adjust the importance of the two metrics. The right half
of the equation is called the drift plus penalty function. Summarize (19), and we can obtain

lim
T→∞

1
T (∑

T−1
t=0 ∆(θ(t)) + V ∑N

k=1(Tk(t) + β ∗ Ek(t)))

= lim
T→∞

(
L(θ(t))

T + V
T ∑T−1

t=0 ∑N
k=1(Tk(t) + β ∗ Ek(t))

)
= lim

T→∞

L(θ(t))
T + lim

T→∞
V
T ∑T−1

t=0 ∑N
k=1 Cost.

(20)

Hence, the long-term optimization problem P1 is transformed into finding the offload-
ing strategy for each time slot that minimizes the drift plus penalty function within that
time slot. The objective function P1 is converted to

P2 : min
O(t),tεT

E
[
δ + ∑N

k=1 Qk(t) ∗ (Dk(t)− Ck(t) ∗ τ) + V ∑N
k=1(Tk(t) + β ∗ Ek(t))

]
.

s.t.(1)(3)(4)#
(21)
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Once P2 is determined for all time slots, the solution for P1 can be obtained. The opti-
mal offloading strategy for each time slot can be computed based solely on the offloading
decisions made during that time slot, without the need to consider offloading decisions
made in other time slots. This greatly simplifies the optimization problem P1. The drift-
plus-penalty algorithm is able to guarantee that the long-term constraint of a stable queue
holds constantly, and similar proofs have been provided and will not be repeated in this
paper [22,23]. Since the task queue of the LEO satellite satisfies boundedness assumptions,
the proposed algorithm can achieve solutions that are arbitrarily close to optimal by setting
V to a sufficiently large value while maintaining mean rate stable with O(V) for the virtual
task queue [19].

4.2. Offloading Algorithm Based on The Hungarian Method

It is evident that for the transformed optimization objective P2, the offloading decisions
for each time slot are sufficient to determine P2 for that slot. Assuming that in cases
where only a subset of the satellites in the constellation receives a new task at this time
slot (M < N), a virtual task Al(t) = {0} is assigned to the remaining satellites. Specifically,
in a specific time slot, the offloading decision o(t) is defined as an N × N matrix, which is
shown as

o =

 o1
1 · · · oN

1
...

. . .
...

o1
N · · · oN

N

. (22)

It is supposed to find a specific offloading strategy π ∈ S to minimize P2, in which S
is the set of all feasible solutions. Combined with constraints (1) (3) (4), the optimization
problem P2 can be defined as a classic assignment problem [24]. The Hungarian method is
a widely adopted approach for solving this type of problem [24]. Referring to the offloading
matrix o, we define a cost matrix of the same size as

L =

 L1
1 · · · LN

1
...

. . .
...

L1
N · · · LN

N

. (23)

Lj
i ∈ L, i, j ∈ {1, 2, · · · , N} represents the value of objective function if task Ai is

offloaded to the jth satellite, which is calculated by Lj
i = Qj(t) ∗

(
Dj(t)− Cj(t) ∗ τ

)
+ V ∗

(Tj(t) + β ∗ Ej(t)). The Hungarian method can solve the best matching that minimizes P2,
i.e., the optimal solution of the problem by certain transformation. The detailed steps are
shown below

1. For each row in the matrix L, identify its minimum entry and subtract it from all
entries in that row;

2. For all entries Lj
i equal to 0, mark them as starred zeros, provided that there are no

existing starred zeros in the same row or column;
3. Cover each column that contains a starred zero. If all columns are covered, proceed to

Step 7;
4. Repeat the following procedure until all zeros in the matrix are covered: Find an

uncovered zero and prime it. If there are no starred zeros in the same row as the
primed zero, proceed to Step 5. Otherwise, cover this row and uncover the column
containing the starred zero;

5. Continue to construct a series of alternating primed and starred zeros until no addi-
tional uncovered zeros can be found. Then, proceed to Step 6;

6. Locate the smallest entry among all uncovered entries in the matrix. Subtract this
entry from all uncovered entries, and add it to all entries that are covered twice.
Return to Step 4;
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7. The algorithm terminates when all entries in the matrix are covered. The set of
assignments corresponding to the starred zeros constitutes the optimal solution to the
assignment problem.

According to the obtained optimal solution, then the optimization objective P2 can
be solved. The optimal solution for P2 across all time slots is computed, followed by
obtaining the optimal solution for P1. The procedure of the dynamic offloading algorithm
that employs Lyapunov optimization and the Hungarian algorithm (DOALH) is shown in
Algorithm 1.

Algorithm 1 The DOALH algorithm

Input: System parameter Hop, A(t), C(t), B, Ptrans, Pcom, T
Algorithm

1. Obtain the optimization objective function based on P1;

2. Convert the objective function to P2 utilizing Lyapunov optimization;

3. For t < T:

Using the Hungarian algorithm to determine the optimal offloading strategy in the specific
time slot;

4. Counting the optimal solutions for all T time slots;

Output: The minimum mean value of Cost in T time slots

The complexity of the DOALH algorithm is TO
(

N2).
5. Simulation and Analysis
5.1. Parameters Setting

The system has been constructed using the Iridium Next constellation [25]. To establish
the specific simulation parameters of the DOALH algorithm, we referred to existing stud-
ies [1,11] and outlined them in Table 1. To validate the efficacy of the proposed algorithm,
we present the following alternative approaches for comparison:

1. Local Computing (Local): All tasks are processed solely within the receiving satellite,
without any computational offloading.

2. Greedy Offloading (Greedy): In each time slot, the task with the highest number of
pending tasks is offloaded to the satellite with the lowest task queue for processing.

3. DQN Offloading (DQN): In a similar study, the authors modeled the computational
offloading process as an MDP and used Deep Q-Networks (DQN) to determine the
optimal offloading strategy. The reward function is set as P2 [5].

Table 1. System parameters.

Satellites computational capacity Ck (Mb/s) [10, 12]

Number of satellites in the constellation N 6 × 11

The bound of random
distribution [λmin, λmax](Mb)

[10, 15]

Satellites transmission power Ptrans (J/s) 400

Satellites computational power Pcom (J/s) [100, 200]

Length of one time slot τ (s) 10

Simulation time slots T 360
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5.2. Simulation Analysis

As we have previously analyzed, the value of V has a crucial impact on both the task
queue length and the performance of the algorithm. As shown in Figure 3, M = 50,β =
0.1, B = 500(Mb/s) (a) Average task queue length per satellite vs. V of DOALH algorithm;
(b) Average task queue length per satellite vs. different algorithms. Figure 3a, when the
value of V is small, the queue can be kept stable directly. However, when the value of V
is large, the queue grows gradually and eventually converges to an approximately stable
state. The stable length of the queue convergence is positively related to the value of V. As
Figure 3b reveals, among the different algorithms, the DOALH algorithm guarantees the
optimal solution for P2 at each time slot, resulting in the shortest average queue length. The
DQN algorithm adopts P2 as the reward function, which also guarantees the convergence
of the queue to a lower value. The Greedy algorithm also results in a shorter queue
length compared with the Local algorithm due to its greedy strategy. The Local algorithm
generates a large queue buildup because it only considers Local processing and does not
make rational use of other available satellite resources.
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According to Figure 4, the Greedy algorithm attains the highest average cost, pri-
marily because it solely focuses on achieving an improved balance in the queue without
considering the costs associated with delay and energy consumption resulting from ISL
transmission. The Local and Greedy algorithms are simpler and are not impacted by
the value of V, enabling them to maintain a consistent trend. However, both the DQN
algorithm and the DOALH algorithm exhibit a substantial decreasing trend as the value
of V increases. Eventually, they converge to a stable value. This phenomenon can be
attributed to the fact that as the value of V increases, the algorithm places more emphasis
on minimizing the Cost incurred by the task, which allows it to achieve a more optimal
solution. The simulation results align with the preceding analysis of the algorithm. Thus,
V should be chosen for a good trade-off between the overall Cost and the required task
queue length.
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Furthermore, we need to investigate the impact of the energy consumption weight
β on performance. A larger β results in a higher weight of energy consumption. As
demonstrated in Figure 5, the Cost clearly increases as β increases. The algorithms exhibit
linear growth, albeit with varying slopes, which correspond to the energy consumption
per time slot of offloading strategies. The Greedy algorithm aims to balance the queue by
offloading more tasks to other satellites, resulting in the highest energy consumption for
offloading strategies. On the other hand, the DOLAH algorithm is capable of maintaining
the lowest Cost.
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Next, we investigate the correlation between Cost and the number of satellites that
receive tasks during each time slot M. The value of M reflects the operational workload of
the satellite constellation, where a larger value indicates that more tasks are assigned to
satellites during each time slot, resulting in fewer idle satellites and computing resources
in orbit. As depicted in Figure 6, the Cost increases as M increases. This is due to the
longer queue length of tasks with more tasks received in the constellation. With limited
computational resources available to assist in processing, tasks require more waiting time.
The DOALH algorithm always achieves optimal cost by ensuring that all satellite resources
are fully utilized, regardless of the value of M.
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The bandwidth of the ISL has a significant impact on the computational offload. In
order to simulate both conventional band communication rates and possible future laser
communication rates, the bandwidth was set between 100 Mb/s and 1000 Mb/s. This
allows for an accurate assessment of the transmission capabilities of the link in relation to
the offloading Cost. The Local algorithm has remained largely unchanged, as it excludes
the possibility of offloading tasks to other satellites for computational assistance. Changes
in the bandwidth of ISLs do not have an impact on this algorithm. However, the other
three algorithms have undergone various modifications. Specifically, the Greedy algorithm
changes most significantly because it prioritizes offloading tasks to the satellite with the
smallest queue for processing. Additionally, the DOALH algorithm still performs best, as
depicted in Figure 7.
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It is important to note that while the DQN algorithm showed some level of perfor-
mance, it was not outstanding in comparison with the DOALH algorithm. Throughout
the simulation, we made several parameter modifications to observe its performance, but
it still fell short of the DOALH algorithm. Reinforcement learning algorithms typically
require a large amount of historical data for training and a long training time to converge
to a better solution. Additionally, their performance heavily depends on the algorithm pa-
rameter settings, making it challenging to implement in practical engineering applications.
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The DOALH algorithm, on the other hand, can quickly obtain optimal solutions without
requiring any of the aforementioned information. As a result, it holds significant reference
value for practical engineering applications.

6. Conclusions

We propose an offloading strategy for the dynamic task allocation problem in satellite
constellations, utilizing a combination of Lyapunov and Hungarian algorithms. Firstly,
we construct a dynamic model for task offloading among satellites and formulate an
optimization problem that minimizes the average delay and energy consumption with a
long-term constraint on the task queue length. To solve this problem, we employ Lyapunov
optimization to convert the long-term optimization objective into an assignment problem
within a single time slot. The Hungarian algorithm is then utilized to solve the resulting
assignment problem. We validate the effectiveness of our algorithm through experimental
simulations, investigating the impact of various parameters. Our results demonstrate the
efficacy of our proposed approach.

7. Future Work

This paper provides some insights into the future deployment of satellite-based In-
ternet services for terrestrial users. However, the offloading model proposed in this study
remains relatively simplistic. Future research should aim to address the complexities
introduced by the heterogeneity of satellite computing resources and communication capa-
bilities, as well as the more uneven frequency of task generation. At the same time, this
paper focuses solely on simulating the architecture of the Iridium NEXT constellation, and
thus the impact of traditional satellite constellations on the proposed offloading strategy is
explored. However, the potential impact of emerging giant constellations, such as Starlink,
has yet to be studied. These factors are likely to further complicate the task offloading
problem, and warrant further study.
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