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Abstract: Underground goaves were left in many mining areas due to the continuous exploitation of
coal resources. These mining areas seriously affect the production safety of the mines and the safety of
life and property of the surrounding residents. Enormous safety hazards will be generated if the goaf
range is not accurately controlled. In this study, we proposed a method for the detection of goaves in
coal mines with a complex terrain by combining controlled source audio-frequency magnetotellurics
(CSAMT) and an activated-carbon method for radon measurement. The disadvantage of failing to
interpret goaf depth for the activated-carbon method for radon measurement was compensated by
the advantage of the capability of goaf-depth sounding for CSAMT. Subsequently, the reference for
CSAMT data was provided by the immunity of the activated-carbon method for radon measurement
to the influences of terrain, earth electricity, and EMF. On this basis, the proposed method was
employed to detect the goaf of Houjiagou Coal Mine in Liulin County, China, and obtained reliable
detection results. The feasibility of the comprehensive geophysical prospecting method in the
complex terrain was verified and it provides a new reference for the detection method of goaves with
other conditions.
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1. Introduction

Coal, the most extensively distributed fossil fuel globally with the richest reserves,
is hailed as the industrial grain. China is the largest producer of coal in the world. How-
ever, the continuous exploitation of coal resources has caused the formation of enormous
underground goaves in many coal production areas. During the high-speed economic
development in China, the goaf distribution in coal mines remained unclear owing to the
disorderly exploitation in many regions and the illegal exploitation in some coal mines due
to inefficient management [1,2]. Given the data deficiency, the mining conditions cannot
be mastered by coal mines in normal production. Consequently, if they encounter such
goaves, the mines will be susceptible to disastrous accidents. Therefore, prospecting goaves
has become a key safety work in the mining process. Goaves are prospected by many
methods such as the seismic method and electromagnetic and radon measurements [3–9],
but they have advantages and disadvantages that restrict their applicability to some extent.
Therefore, appropriate prospecting methods should be adopted under different geological
conditions, topographies, and landforms considering various factors such as cost.

In the 1950s, Cagniard introduced the magnetotelluric (MT) method for exploring
electromagnetism (EM) [10]. To acquire strong signals, Goldstein and Strangway put
forward controlled source audio-frequency magnetotellurics (CSAMT) [11]. CSAMT is
extensively applied to the prospection of groundwater, geotherm, electrical resistivity, and
minerals, manifesting that CSAMT is an effective geophysical prospecting method with a
great detection depth and high resolution [12–19]. It can also identify water accumulation
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in goaves. However, this method is susceptible to the static effect and near-field effect.
Moreover, the emission source may encounter interference from conductors near the
transmitting terminal, which easily affects the measurement accuracy in regions with
complicated topography and landform, as well as complicated working environments.

Radon (222Rn) is a daughter nuclide of radium (226Ra), which in turn comes from the
long-lived antecedent uranium (238U). Radon is present in the soil and is transported via
groundwater or carrier gases. Many researchers have developed theoretical models for the
transport of radon in soils. Based on these theoretical models, the detection of areas can be
achieved by measuring the concentration of radon in the soil [20–23]. Radon gas measure-
ment, an effective geophysical prospecting method [24], was widely applied to determine
faults, collapse columns, seal fire areas formed by the spontaneous combustion of coal, coal
mine goaves, geotherm, and gold ores with satisfactory effects achieved. Currently, the
commonly used radon measurement methods include the α-spectrometric method, 210Po
method, activated-carbon method, α-card method, etc. All these methods have advantages
and shortcomings. For example, although α-spectrometric method can measure radon
concentration quickly, it is sensitive to humidity and requires some purification time after
measuring high abnormal values. Furthermore, although the 210Po method can eliminate
the interference of other nuclides, the sample processing and measurement process is more
complicated and the error caused by a human is large. As for the α-card method, although
it is easy to operate and can be tested on-site, the dispersion of low concentration measure-
ment is large. Therefore, comparing the advantages and disadvantages of various methods,
the activated carbon method is more suitable for this experiment [25–27]. As early as 1957,
Miranda Jr. measured the radon concentration in the atmosphere by using activated carbon
as the adsorber. Afterward, the activated-carbon method for radon measurement swas
theoretically and experimentally explored by many scholars. In 1986, Lin et al. from China
investigated activated carbon for radon measurement [28]. This method is featured by
simplicity, convenience, fast operation, low cost, and immunity to the influences of terrain,
earth electricity, and electromagnetic field (EMF) [29]. However, it fails to interpret the
goaf depth.

The disadvantage (i.e., failure to interpret goaf depth) of the activated-carbon method
for radon measurement was compensated by the advantage of CSAMT (i.e., the capability
of goaf-depth sounding). Subsequently, the reference for CSAMT data was provided by
the immunity of the activated-carbon method for radon measurement to the influences of
terrain, earth electricity, and EMF. In the present study, the advantages of both methods
were integrated at a theoretical level to accurately monitor the goaf situation.

2. Topography and Landform of the Study Area

The study area is located in the Luliang mountainous area in Shanxi Province, China
(Figure 1). As cracks occurred in some of the houses in the nearby residential area, the
location of the former mining near the residential area was designated as the study area
in order to investigate whether the house cracks in the houses were caused by the goaf.
The study area is about 320 m in length from north to south and 340 m in width from
east to west, covering an area of about 0.11 km2. In total, 17 measurement lines with
286 measurement points are laid out in the study area, and the study points laid out by
the CSAMT method and the activated-carbon method for radon measurement method
overlap completely.

It is a typical erosional landform of the Loess Plateau. The ground surface is intensely
cut, with rolling loess ridges and densely distributed narrow gullies, most of which present
a “V” shape. The gullies are alternatively distributed with loess ridges, hills, and walls.
Moreover, micro-geomorphologic landscapes such as cliffs, residual loess columns, and
sinkholes are commonly observed (Figure 2).
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stone; and siltstone. The lithology of the Neogene Pliocene series (N2) comprises brownish 
red clay and mild clay [thickness = 0–65.00 m (average thickness = 25.00 m)] containing 
calcareous concretions and presenting angular unconformity contact with the underlying 
bedrock. The Quaternary middle Pleistocene series (Q2) comprises yellow sand loam, 
which is soft and fine, with the development of vertical joints. The Quaternary upper 
Pleistocene series (Q3) is made of light red and reddish yellow loam, in which vertical 
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Figure 2. The complex terrain of the study area. 1© Landforms on the northwest side of the study
area. 2© Landforms on the northeast side of the study area. 3© Landforms on the southeastern side of
the study area.

A large gully exists in the west of this area, the exposed rock stratum is the upper
Permian Shangshihezi Formation (P2s), and the lithology is a greyish white–yellow green
sandstone intermingled with grey, grey–green, and red violet mudstone; sandy mudstone;
and siltstone. The lithology of the Neogene Pliocene series (N2) comprises brownish
red clay and mild clay [thickness = 0–65.00 m (average thickness = 25.00 m)] containing
calcareous concretions and presenting angular unconformity contact with the underlying
bedrock. The Quaternary middle Pleistocene series (Q2) comprises yellow sand loam,
which is soft and fine, with the development of vertical joints. The Quaternary upper
Pleistocene series (Q3) is made of light red and reddish yellow loam, in which vertical
joints are also developed.
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3. Methodology
3.1. Controlled Source Audio-Frequency Magnetotellurics for Goaf Detection
3.1.1. Principle of Controlled Source Audio-Frequency Magnetotellurics

Based on the different skin depths of electromagnetic waves with different frequencies
in the underground propagation, the controlled source audio-frequency magnetotellurics
(CSAMT) method can obtain geoelectric parameters at a depth corresponding to the fre-
quency of each EMF by measuring the EMF intensity, thereby reaching the goal of depth
sounding [30].

CSAMT is a frequency–domain electromagnetic depth-sounding method. By taking
the finite length ground electric dipole as the field source, the electric- and magnetic-field
parameters can be simultaneously observed at a certain distance from the dipole center,
the Cagniard resistivity and impedance phase can be calculated, and the geological objects
can be detected at different burial depths. The EMF components measured by CSAMT and
the coordinate system are displayed in Figure 3. The CSAMT-based scalar measurement
was realized using the power from an electric dipole source, and the observation point was
located in the sector area formed by 30◦ angles at two sides of the middle perpendicular to
the electric dipole source (Figure 4) [31].
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3.1.2. Data Collection and Processing

The surveying work was implemented using a V8 multi-function receiver system
produced by Canadian Phoenix Corporation. The transmitter used was a TXU-30 high-
power transmitter also produced by this corporation. The schematic of the measuring
device is shown in Figure 5. The supply voltage and supply current were selected as 600 V
and 14 A, respectively. The transmitting–receiving distance was the key to achieving high-
quality data. The presently developed CSAMT 2D inversion software such as SCS2D used
in this study took the receiving far-field data of EMF as the precondition. If the transmitting-
receiving distance was too small, near-field data were received, which cannot reflect the
characteristics of frequency sounding. Conversely, if the transmitting–receiving distance
was too large, the signal was too weak to suppress local noise and was accompanied by a
degradation in data quality. The transmitting–receiving distance was taken as R = 7.8 km
according to the range of exploration area and actual objective conditions, and this distance
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satisfied the estimated far-field conditions. To improve data quality, multiple-stacking
technology was used in the surveying process, and repeated observation was conducted in
the seriously interfered zone.
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Through data preprocessing, the various noises in the CSAMT data such as instrument
noise, natural electromagnetic noise, human noise, geological noise, and non-plane-wave
triggered curvilinear distortion were eliminated, suppressed, or calibrated as the study
area is in the vicinity of residential areas, where human noise has the strongest potential
influence on measurement errors. The processing methods include data editing, filter-
ing, static-displacement calibration, and transition-zone calibration. In formal processing,
data with large deviations and evident distortion at the measuring point were firstly
smoothened by multipoint smooth filtering. Subsequently, the near-field influence was
analyzed, followed by the near-field calibration of the curves with near-field additional
effects. Afterward, static–displacement calibration, modeling, and inversion were per-
formed. In the end, the 2D inversion results were interpreted and inferred by combining
the geological data.

3.1.3. 2D Inversion

(1) Profile interpretation of apparent resistivity obtained through inversion

After processing the acquired data, 2D inversion was conducted, and the following
three representative survey lines were taken, for example, and interpreted.

a Survey line L2

As observed from the transverse direction of the apparent resistivity contour line on
the cross-sectional diagram (Figure 6), the apparent resistivity along the survey line at the
morphological position of the coal seam was relatively stable, without obvious cascade
changes. We inferred that it was stable along the survey line of the coal seam, and no
apparent anomaly existed in electrical properties. The goaf and water accumulation in it
were not interpreted.
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b Survey line L4

From the transverse direction of the apparent resistivity contour line on the cross-
sectional diagram (Figure 7), an obvious high-resistivity anomaly appeared within points
1000–1040 and points 1094–1193 on the line distributed along the coal seam. The apparent
resistivity was higher than 200 Ω·m, which was inferred as the reflection of the anomaly in
the coal goaf. Moreover, an obvious low-resistivity anomaly was presented within points
1041–1093, and the apparent resistivity was lower than 150 Ω·m, which was deemed as the
reflection of the low-resistivity anomaly caused by the water accumulation in the goaf at
the low-lying part of the formation.
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c Survey line L10

As observed from the transverse direction of the apparent resistivity contour line
on the cross-sectional diagram (Figure 8), an evident low-resistivity anomaly appeared
within points 1052–1225 on the line distributed along the coal seam, and the apparent
resistivity was lower than 150 Ω·m. This finding was considered as the reflection of the
low-resistivity anomaly triggered by the water accumulation in the goaf at the low-lying
part of the formation. An obvious high-resistivity anomaly was presented within points
1253–1326, and the apparent resistivity was higher than 200 Ω·m, which was inferred as the
reflection of the anomaly in the coal goaf without water accumulation. Points 1225–1253
were located between the water accumulation area and the goaf, which was inferred as the
transition zone from the water accumulation area to the non-water-accumulation area in
the goaf.
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The above profile analysis of the three survey lines covered the reflection characteristics
of the resistivity of all the survey lines in the exploration area for the electrical properties at
the corresponding horizon, so the survey lines were representative. No unnecessary details
were given to other survey lines.

(2) Bedding-section interpretation of the apparent resistivity obtained through inversion

The blue–green–yellow–red transition displayed on the section map denoted the
change in apparent resistivity from low to high, as shown in Figure 9. According to the
overall change laws of apparent resistivity, the range encircled by the blue dotted line in
the bedding section map of apparent resistivity represented the water accumulation in the
goaf and that encircled by the red dotted line was the goaf. The non-encircled area was the
unexploited range.
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By combining the known data, one low-resistivity anomaly zone and one high-
resistivity anomaly zone were inferred from the coal seam through the CSAMT method.
Analysis revealed that the low-resistivity anomaly zone was caused by the water accu-
mulation in the goaf or the water enrichment at rock strata, so we inferred that it was the
water accumulation anomaly zone in the goaf. Due to the restriction of known data, the
high-resistivity anomaly zone was inferred as the goaf anomaly zone.
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3.2. Activated-Carbon Method for Radon Measurement
3.2.1. Principle of Activated-Carbon Method for Radon Measurement

Radon is the progeny of the uranium series and is the only inert gas and the progeny of
interest because it can be migrated from the deep underground part to the ground surface,
and it can display information on all kinds of changes in the deep formation. Radon is
the intermediate product of radium decay, and its progenies 214Pb and 210Bi were the
irradiators of γ rays.

The activated-carbon radon detector identified the existence of radon by detecting
the intensity of γ rays of radon progenies in soil. To be specific, the γ rays irradiated the
Na1 (T1) scintillator in the detector, thereby generating photoelectric signals, which turned
into weak electrical signals by using a photomultiplier. The pulses deemed acceptable by a
single-chip computer formed through a preamplifier, main amplifier, and pulse-shaping
circuit. The number of pulses within the unit of time reflected the intensity of the γ rays.
The radon anomaly data were obtained by measuring the γ rays at different places, thereby
laying a foundation for analyzing the underground geological conditions in work areas [32].

The activated-carbon method for radon measurement is a static and accumulative
radon-measurement method. To specify its principle, the activated-carbon adsorber was
buried underground for a period of time, and then the adsorber was taken out and placed in
an instrument (activated-carbon radon detector) to measure the intensity of γ rays radiated
by the decay progenies of radon. Thus, the radon-gas concentration can be determined.
The radon emanation elements migrated into the goaf and gathered in it, and then a radon
anomaly area corresponding with the goaf morphology formed on the ground surface.
Therefore, the position and range of the goaf in a coal mine can be inferred by measuring
the radon-element concentration on the ground surface (i.e., measuring the intensity of
rays released by radon and its decay progenies).

3.2.2. Data Acquisition and Processing

The instrument used was an HD-2003 activated-carbon radon detector. In the field
survey, the used activated carbon was baked and dried. After cooling, the activated carbon
was placed in a sampler according to an appropriate standard, a silicon stopper was used
to evade the influence of underground moisture, and then the sample was sealed for later
use. Next, the filled sampler was placed in a test pit with its mouth down, as shown in
Figure 10. The sampler and gas-collection cup were stabilized and fixed, the plastic cloth
was covered on them, and the pit mouth was sealed. When the cup was buried until the
preset time (at least 5 days) was reached, the sampler was taken out, and the sampling time
and the climate were carefully filled. Afterwards, the sampler was placed in the tested and
calibrated activated-carbon radon detector, and then the line number and point number of
each sampler were recorded.
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In the radon measurement with activated carbon, the amount of radon adsorbed by
activated carbon was influenced by the temperature, humidity, activated carbon adsorber,
radon detector, burial depth, and burying time. The radon data measured by activated
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carbon were preprocessed from the following six aspects: standardization, normalization,
instrument calibration, correction of measured intensity of γ rays, calibration of shallow
factors, and uniform smoothing.

3.2.3. Data Interpretation

(1) Profile interpretation of radon values

Through data correction and uniform smoothing, the radon value profile map and
radon anomaly plane graph of each survey line were formed. Apparently, the radon
value was aggregated in the goaf, and a radon anomaly zone corresponding with the goaf
morphology formed on the ground surface. Taking three survey lines, for example, the
CSAMT profiles were combined in the analytical investigation based on geological data
and field investigation as follows:

a Survey line L2

The profile map (Figure 11) of radon measurement by activated carbon shows that
the radon anomaly was obvious. The maximum radon anomaly was 2495.08 Bq/L, and
most radon values within points 1160–1320 were smaller than 2000 Bq/L, whereas those at
points 1000–1140 were greater than 2000 Bq/L, manifesting the evident radon anomaly. By
comprehensive analysis, point 1140 was delimited as the goaf boundary.
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b Survey line L6

From the profile map of radon measurement by activated carbon (Figure 12), the radon
anomaly was apparent, the maximum radon anomaly was 3105.37 Bq/L, and most radon
values within points 1000–1100 and 1160–1200 were greater than 2000 Bq/L. Meanwhile,
those within points 1200–1340 were smaller than 2000 Bq/L, so the radon values were
relatively concentrated and stable. Through comprehensive analysis that combined CSAMT
profiles, geological data, and field investigation, points 1100, 1160, and 1200 were delimited
as the goaf boundaries.
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c Survey line L10

As observed from the profile map of radon measurement by activated carbon (Figure 13),
the radon anomaly was evident, the maximum radon anomaly was 3246.89 Bq/L, and
most radon values within points 1000–1300 were greater than 2000 Bq/L. The radon values
significantly fluctuated, indicating an obvious radon anomaly. Through a comprehensive
analysis based on the CSAMT profiles, geological data, and field investigation, point 1300
was delimited as the goaf boundary.
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(2) Plane interpretation of radon anomaly

By combining the contour lines of radon values measured by the activated-carbon
method and the following interpretation result map, the radon anomaly was found to have
a blocky shape with favorable continuity, as shown in Figure 14. The radon values greatly
changed in the middle and northwest parts of the exploration area, and the maximum radon
concentration was 3962.3 Bq/L which was interpreted as a radon anomaly zone. Moreover,
the ground-surface fissures may have already been connected to the underground goaf
to some extent without a gas storage function, so low values appeared in a small block in
this section. Comprehensive speculation and analysis revealed that the anomaly zone was
largely identical to the goaf range inferred by CSAMT, and the goaf was inferred as the
radon anomaly zone.
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4. Discussion and Conclusions

The study area is located in the Luliang mountainous area in Shanxi Province. Al-
though the complex topography and geomorphology bring certain difficulties to the explo-
ration of the goaf, the results of this study show that the application of combining CSAMT
and the activated-carbon method for radon measurement for the detection of the goaf
was successful.

CSAMT integrates the merits of great detection depth, high resolution, and capability
to identify the water accumulation status in the goaf. However, it is easily affected by
the static effect and near-field effect. The conductors near the transmitting terminal may
interfere with the emission source, which can very easily affect the measurement accuracy
in regions with complicated topography, landform, and working environments. However,
the activated-carbon method for radon measurement is not influenced by the terrain, earth
electricity, or EMF. Nevertheless, this method fails to interpret the goaf depth. Accordingly,
the two methods can exploit each other for reference to compensate for their disadvantages.

In this field survey work, the CSAMT and activated-carbon method for radon mea-
surement were combined into a comprehensive geophysical prospecting method to study
the underground goaf situation in a mining area. First, CSAMT was used to probe the
depth sounding in the goaf. One low-resistivity anomaly zone and one high-resistivity
anomaly zone were discovered, where the latter was inferred as the goaf anomaly zone and
the former formed through the water accumulation in the goaf or the water enrichment at
roc strata, thereby being inferred as the water accumulation anomaly zone in the goaf. The
activated-carbon method for radon measurement was then used to infer the position and
range of the underground goaf. With the CSAMT prospecting results combined, the goaf
was inferred to be the radon-value anomaly zone. The prospecting results obtained by the
two methods were combined to complete the geophysical prospecting of the underground
goaf in this mining area.

In the end, the known data, field geological investigation, CSAMT, and activated-
carbon method for radon measurement were integrated for a comprehensive interpretation,
thereby completing the goaf interpretation in the exploration area, which was then verified
through drill holes, as shown in Figure 15. The results show that the boundaries of the goaf
range detected by the two exploration methods do not coincide exactly. This means that if
one exploration method is used for exploration, the results do not mean that the goaf area
has been fully discovered. This also confirms that each geophysical exploration method
has its own advantages and disadvantages. Synthesizing the advantages of each method to
avoid its disadvantages will make its detection results more referenced.
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Since the goaf area detected by the two methods does not completely coincide, it
cannot be proved that the goaf area range is 100% identified. In theory, the more detection
methods used, the more accurate the results obtained are. However, it is necessary to take
into account the burden of time, economy, labor, and other expenses as well as the fact
that the comprehensive detection scheme of multiple methods is difficult to implement,
and the detection accuracy of these two methods is enough to meet the needs of most
engineering projects.

The actual results manifested that the comprehensive geophysical prospecting method
integrating CSAMT and the activated-carbon method for radon measurement can indeed
complete the prospecting work economically, rapidly, and accurately. This comprehensive
prospecting method also experienced a minor influence from various factors such as topog-
raphy, landform, and geological conditions. Therefore, it has great reference significance in
practical engineering explorations.
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