
Citation: Tanabi, N.; Silva, A.M., Jr.;

Pessoa, M.A.O.; Tsuzuki, M.S.G.

Robust Algorithm Software for

NACA 4-Digit Airfoil Shape

Optimization Using the Adjoint

Method. Appl. Sci. 2023, 13, 4269.

https://doi.org/10.3390/

app13074269

Academic Editors: Kanstantsin

Miatliuk and Henrik Gordon

Petersen

Received: 27 December 2022

Revised: 24 March 2023

Accepted: 26 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Robust Algorithm Software for NACA 4-Digit Airfoil Shape
Optimization Using the Adjoint Method
Naser Tanabi , Agesinaldo Matos Silva, Jr. , Marcosiris Amorim Oliveira Pessoa
and Marcos Sales Guerra Tsuzuki *

Computational Geometry Laboratory, Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos,
Escola Politécnica da Universidade de São Paulo, São Paulo CEP 05508-030, Brazil
* Correspondence: mtsuzuki@usp.br; Tel.: +55-11-3091-5759

Abstract: Optimizing the aerodynamic shape of an airfoil is a critical concern in the aviation industry.
The introduction of flexible airfoils has allowed the shape of the airfoil to vary, depending on the flight
conditions. Therefore, in this study, we propose an algorithm that is capable of robustly optimizing
the shape of the airfoil based on variable parameters of the airfoil and flight conditions. The proposed
algorithm can be understood as an optimization method, which employs the adjoint method, a
powerful tool for estimating the sensitivity of the model output to the input in numerous studies.
From an aerodynamic perspective, the development of shape geometry is a crucial step in airfoil
development. The study used NACA-4 digit airfoils as input for the initial assumption and the
range of shape change. The optimal shape was found using the proposed algorithm by defining one
NACA profile as the initial value and another NACA profile as the limit for the optimized shape,
considering the aerodynamic coefficients and flight conditions. However, morphing airfoils have
certain deformation limitations. As an innovation in the algorithm, bounds were defined for the
shape change during optimization so that the result can be constructed within the capabilities of
the morphing wing. These bounds can be adjusted (depending on the capabilities of the airfoils).
To validate the proposed algorithm, the study compared it with a previous flow solver for the
same airfoil.

Keywords: gradient method; shape optimization; adjoint method

1. Introduction

Determining the geometric shape of an aircraft’s wings is crucial for optimizing its
aerodynamics and performance. Adjusting geometric constraints can improve various
aspects, such as aerodynamic performance, flight distance, and flight time. The first steps in
wing design involve defining the wing’s geometry and selecting an appropriate airfoil type
based on specific parameters. Special mission requirements may require designing and
manufacturing the necessary parts and equipment to meet different operating conditions.
The wing and airfoil are critical components, and numerical optimization techniques can
be divided into two main categories: gradient-free and gradient-based methods. When
dealing with large-scale aerodynamic optimization problems with multiple variables, the
adjoint method is the most effective approach, particularly when the number of design
variables exceeds 100 [1,2].

The focus of this paper is on robust aerodynamic shape optimization; we present an
algorithm that differs from other similar articles. While other articles rely on commercial
software or algorithms that do not consider flexible airfoil capabilities, this study takes
into account the airfoil’s global geometry instead of solely modifying the mesh points
of its boundary without regard to its flexibility. Building upon previous research by
Tanabi et al. [3], who utilized the pressure distribution around the airfoil to determine its
shape [3], this work uses design parameters and flight conditions to determine the airfoil’s
shape, which is a more adaptable and versatile approach.
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The primary objective of this study is to develop an algorithm that considers crit-
ical parameters, such as chord length, maximum thickness, and maximum camber, for
flexible NACA-4-digit airfoils. The algorithm employs a unique reverse design approach
to determine the shape of the NACA-4 digit airfoil based on the surrounding pressure
distribution. During each iteration of the algorithm, it checks if the pressure distribution
can generate NACA-4 digits while imposing constraints to ensure that the variables remain
within acceptable ranges.

In this study, we conducted a comprehensive review of relevant literature and clarified
the adjoint equation and optimization algorithm. The flow solver was validated by com-
paring its results to those obtained through numerical solutions. Finally, we present the
results of the multipurpose optimization approach applied to an airfoil in a given regime,
followed by a detailed discussion of the proposed algorithm’s performance.

2. Bibliographic Review

The introduction of the gradient-based CFD method by Jameson [4] in 1988 marked
the first application of adjoint equations to transient flow [4]. They are also among the
most prominent developers of this method and have utilized adjoint equations in various
computational fluid dynamics test cases, including the optimization of aerodynamic shapes
for Eulerian flows that govern the Navier–Stokes equations. Lions was the first person to
use optimization to solve differential equations [5], while adjoint equations were originally
developed for shape optimization in fluid dynamics to solve a defined control problem [5,6].
The coupling of perturbation equations with this method was achieved by integrating the
Reynolds averaged Navier–Stokes (RANS) equations with the Spalart–Allmaras single
equation turbulence model [7,8]. Several researchers, including Giles et al. [9], utilized
the adjoint optimization method in fluid dynamics and Eulerian equations and conducted
significant research in this field [9,10]. Later, Giles and Pierce [11] used Green’s functions
for the adjoint equations [11]. To design an airfoil, they used the adjoint method under
incompressible non-viscous conditions in the far-field region [12], while Xie [13] used the
adjoint equations by considering the angle of attack based on the boundary conditions of
the distant region [13].

In the multi-objective optimization field, various types of research studies have been
conducted. Braibant and Fleury [14] presented a method for shape optimization utiliz-
ing B-splines, which are piecewise polynomial curves that can represent intricate shapes,
making them valuable in engineering designs [14]. Poles et al. [15] investigated the effect
of initial population sampling on the convergence of multi-objective genetic algorithms
(MOGAs) [15]. The authors conducted experiments using different techniques for initial
population sampling and evaluated their impact on the performance of MOGA. Addi-
tionally, they introduced a new evolutionary algorithm for multi-objective optimization,
MOGA-II, and tested its performance on single-objective optimization problems, compar-
ing it to two successful algorithms: differential evolution and a standard evolutionary
algorithm. Mariotti et al. [16] conducted experiments using particle image velocimetry
(PIV) and discovered that incorporating contoured cavities on the upper surface of the dif-
fuser helps to reduce the extent of the flow separation region, thus enhancing the diffuser’s
efficiency. They also presented a study that aimed to improve diffuser efficiency using
multiple local recirculation regions (MLRR) [17].

The Aerodynamic Shape Optimization Design Group is currently researching opti-
mization methods and developing new techniques and algorithms. In recent studies, they
have employed an adjoint-based solver to compute sensitivity derivatives. This approach
is demonstrated in two articles: Telidetzki et al. [18] used the B-Spline method to adjust
volume parameters, and calculated sensitivity derivatives using an adjoint equation solver
and a jet stream solver. This approach was used to obtain an optimized shape for the
NACA 0012 airfoil [18].

In a study by Amoignon et al. [19], three methods for the shape optimization of airfoils
were compared [19]. The first two methods used free-form deformation, and the third
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method used the radial basis function (RBF) coupled with the adjoint method. Sensitivity
derivatives were obtained using an adjoint-based solver with an unstable flow solver and a
finite difference method. The drag coefficients of the NACA 0012 and RAE 2822 airfoils were
reduced under free deformation conditions. In an article by Carrier et al. [20], the Bezier
curve technique was used to modify the shapes of the NACA 0012 and RAE 2822 airfoils for
shape optimization [20]. The sensitivity derivatives were calculated using a flow solver and
an adjoint solver. The conjugate gradient method was used as an optimization algorithm in
this study. Carrier et al. [20] achieved a considerable reduction in the pressure drop ratios
of NACA 0012 and RAE 2822 using this method [20].

Adjoint optimization has gained popularity, especially in modern industries. In a
study by Othmer et al. [21], the method was applied to analyze a transient flow through
2D and 3D ducts using a solver that combined a finite-volume method with continuous-
adjoint optimization. Another project was carried out in collaboration with Volkswagen
Automotive [22], where the group utilized adjoint equations to improve the aerodynamic
shape of various components such as cockpit air ducts, engine components, propulsion,
exhaust flow, and the car body. One particular area of interest was the flow around the
side mirrors, which involved modifying the mirror surfaces. In 2004, the adjoint method
was also used to investigate a multipurpose aerodynamic shape optimization method
with a slotted flap [23]. The study utilized a single and multipurpose algorithm and the
Newton–Krilov gradient-based method, with twelve moving points on the surface of an
airfoil and eight points on the surface of the flap.

In a study by Schramm et al. [24], an adjoint optimization algorithm was employed
using the finite difference method to optimize the shape of the front edge (leading edge
flaps) of a slotted airfoil, resulting in improved aerodynamic coefficients. Furthermore,
the optimized shape was experimentally validated in a wind tunnel. In a separate study,
Rashad and Zingg [25] utilized the discrete adjoint method to optimize the aerodynamic
shape of an airfoil by simulating natural laminar flow, which included a transient turbulent
current under the RANS method. The adjoint method has become a prevalent tool for
shape optimization; Elham and van Tooren [26] used this technique in OpenFoam software
to optimize the shape of an airfoil [26].

3. Methodology

This section presents the proposed algorithm, which consists of several components.
First, the NACA four-digit airfoil is introduced. Then, the basic concepts of the adjoint
equation are explained, taking into account the flow field, the boundary geometry, and
the cost function. The algorithm developed can handle both viscous and non-viscous
flows, and in this section, the adjoint equation for viscous flow is described. Finally, the
optimization algorithm is presented.

3.1. Geometry Generation of the NACA Four-Digit Airfoil

The NACA airfoil was initially developed for aircraft, but it has also found applications
in wind turbines. In the literature, the four- and five-digit types of NACA (National
Advisory Committee for Aeronautics) have been extensively investigated. The coordinates
of the airfoil (x, y) in a plane (xy) are not dimensionless with respect to the chord. Airfoils
with NACA four-digit designations have piecewise parabolic mean camber lines yc and
thickness distributions yt that are consistent across designs. The thickness distribution is
given by

yt = ±5tc
(

0.2969
√

x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4
)

(1)

where t is the thickness ratio and c is the chord length of the airfoil. The mean camber line
yc comprises two sections, which are defined by different parabolic curves, as in
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yc =

{ m
p2 (2px− x2) 0 ≤ x < p

m
(1−p)2 ((1− 2p) + 2px− x2) p ≤ x ≤ 1,

(2)

where p is the maximum camber position along the chord length and m is the camber
ratio. In other words, the complete set of the coordinates (x, y) of the NACA airfoil can be
described by two curves, i.e., the upper and lower surfaces, which are defined by

yupper = yc + yt cos(θ)
xupper = x− yt sin(θ)
ylower = yc − yt cos(θ)
xlower = x + yt sin(θ),

(3)

where,

θ = tan−1 dyc

dx
. (4)

To summarize, the first digit of a NACA airfoil indicates the maximum mean camber, the
second digit indicates the position of the maximum camber, and the last two digits indicate
the maximum thickness. The NACA4418 airfoil selected as an initial condition for the
optimization process described in the following is an asymmetric airfoil with a maximum
mean camber of 4% located at a distance of 0.4c and a maximum thickness of 18%, which is
t = 0.18.

3.2. Adjoint Equation

The progress made in design procedures relies on the cost function (I). Parameters
such as the pressure distribution on an object or the lift-to-drag ratio in reverse problems
may be used to evaluate the cost function. When dealing with the flow around aerodynamic
structures or wings, the cost function (I) represents aerodynamic features and involves the
flow field w and the boundary geometry F . Therefore, the cost function may be viewed as
a function of these two variables.

I = I(w,F ). (5)

As a result, modifying the boundaryF can cause a corresponding alteration in the cost function

δI =
[

∂I
∂w

]T
δw +

[
∂I
∂F

]T
δF . (6)

The initial term pertains to alterations in the cost function with the flow variables, whereas
the subsequent term pertains to modifications in boundary geometry variables. When
using control theory, flow field equations should not generate multiple solutions, ensuring
the removal of δw from Equation (6). If we denote the flow equations as R, their general
forms can be categorized into two types, based on the flow and geometric variables

R = R(w,F ). (7)

As a result, modifying the boundary F leads to

δR =

[
∂R
∂w

]
δw +

[
∂R
∂F

]
δF = 0. (8)

When applying the finite difference method, one can obtain δw from Equation (8) and insert
it into Equation (6). However, this approach is not practical in complex and multivariate
problems, such as fluid flow fields, and can lead to issues with convergence and obtaining
the correct solution. The adjoint method offers an alternative solution by removing δw-
dependent terms from Equation (6). This can be achieved by defining the Lagrangian
coefficients ψ and assuming that δR = 0. Then, δI can be expressed as
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δI = δI − ψTδR

δI =
[

∂I
∂w

]T
δw +

[
∂I
∂F

]T
δF

− ψT
([

∂R
∂w

]
δw +

[
∂R
∂F

]
δF
). (9)

The above sentences can be rearranged as

δI =

([
∂I
∂w

]T
− ψT

[
∂R
∂w

])
δw

+

([
∂I
∂F

]T
− ψT

[
∂R
∂F

])
δF .

(10)

The arbitrariness of the Lagrangian coefficients ψ allows for the first component of
Equation (10) to be zeroed, as [

∂I
∂w

]T
− ψT

[
∂R
∂w

]
= 0. (11)

By eliminating the dependencies of the changes of the cost function δI on the flow variable
δw, only the geometric boundary variable remains. Equation (11) is referred to as the adjoint
equation, where the Lagrangian coefficients ψ are the unknowns. When this equation is
applied to Equation (10), G, the gradient of the cost function (with respect to the boundary
geometric variables) is obtained as follows

G =
δI
δF =

[
∂I
∂F

]T
− ψT

[
∂R
∂F

]
. (12)

3.3. Adjoint Equation for Viscous Flow

The equation that describes the overall flow in a domain Ω can be stated as

∂w
∂t

+
∂ fi
∂xi

=
∂ fvi
∂xi

in Ω. (13)

The vector w corresponds to the state variables, and fi and fvi are the viscous flux and
non-viscous flows for a given dimension xi, respectively. In the case of a two-dimensional
flow field that is defined by x1 = x, x2 = y, f1 = f , and f2 = g, the resulting expression is
obtained as

∂w
∂t

+
∂ f
∂x

+
∂g
∂y

=
∂ fv

∂x
+

∂gv

∂y
in Ω, (14)

where the vectors g and gv correspond to the viscous and non-viscous fluxes in the y
directions, and they are defined as follows

w =


ρ

ρu
ρv
ρE

, f =


ρu

ρu2 + p
ρuv
ρuH

, g =


ρv

ρvu
ρv2 + p

ρvH

,

fv =


0

σxx
σyx

uσxx + vσxy + k ∂T
∂x

, gv =


0

σxy
σyy

uσxy + vσyy + k ∂T
∂y

.

(15)
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The steady-state non-viscous flow equation by neglecting the viscous sentences of
Equation (14) can be written as

R =
∂ f
∂x

+
∂g
∂y

= 0 in Ω. (16)

The relationship can be defined as R and can be substituted for the adjoint Equation (11),
resulting in [

∂I
∂w

]T
− ψT

[
∂R
∂w

]
= 0 in Ω,

⇒
[

∂I
∂w

]T
− ψT

[
∂

∂w

(
∂ f
∂x

+
∂g
∂y

)]
= 0 in Ω,

⇒
[

∂I
∂w

]T
− ψT

[
∂

∂x

(
∂ f
∂w

)
+

∂

∂y

(
∂g
∂w

)]
= 0 in Ω.

(17)

Integrating the volume will yield

∫
Ω

[
∂I
∂w

]T
−
∫

Ω
ψT
[

∂

∂x

(
∂ f
∂w

)
+

∂

∂y

(
∂g
∂w

)]
dΩ = 0 in Ω. (18)

The second integral, using the partial integrals, is as follows∫
Ω

ψT
[

∂

∂x

(
∂ f
∂w

)
+

∂

∂y

(
∂g
∂w

)]
dΩ =∫

B
ψT
(

∂ f
∂w

nx +
∂g
∂w

ny

)
dB−

∫
Ω

(
∂ψT

∂x
∂ f
∂w

+
∂ψT

∂y
∂g
∂w

)
dΩ.

(19)

The first volume integral of Equation (19) will also be commutable in the form of a cost
function. For example, it assumes that the cost function for achieving the optimal pressure
on the solid boundary (inverse problem) is defined as

I =
1
2

∫
B
(pdis − pdis∗)

2dB. (20)

In this case, since this cost function is defined on boundary B, its volume integral will be
zero, as ∫

Ω

[
∂I
∂w

]T
= 0 in Ω. (21)

After substituting Equations (21) and (19) into the integral adjoint Equation (18), the result-
ing expression is obtained as

∫
B

ψT
(

∂ f
∂w

nx +
∂g
∂w

ny

)
dB−

∫
Ω

(
∂ψT

∂x
∂ f
∂w

+
∂ψT

∂y
∂g
∂w

)
dΩ = 0. (22)

The condition for this equation to be zero is that the integers of each integral are zero,
separately, as

∂ψT

∂x
∂ f
∂w

+
∂ψT

∂y
∂g
∂w

= 0 in Ω, (23)

ψT
(

∂ f
∂w

nx +
∂g
∂w

ny

)
= 0 in B. (24)

The adjoint Equation (23) is formulated for the entire field with boundary conditions that
satisfy Equation (24). To solve the adjoint Equation (23), an artificial term can be added to
transform the equation into a time-dependent equation, as
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∂ψT

∂t
+

∂ψT

∂x
∂ f
∂w

+
∂ψT

∂y
∂g
∂w

= 0 in Ω. (25)

3.4. Optimization Algorithm

Based on the discussion of the adjoint equation formation for a fluid problem, the
optimization algorithm can be conceptualized in the following manner:

• Step 1: The initial step involves defining the initial parameters for the algorithm,
which initiates the primary optimization loop.

• Step 2: The flow field equations are solved to obtain a reliable solution. AUSM+ [27]
was employed to compute the flow field variables that will be utilized in subse-
quent steps.

• Step 3: The adjoint equation is formulated and solved by the algorithm. The algorithm
reconstructs the adjoint equation using the flow field variables.

• Step 4: The boundary geometry is deformed in the direction of the maximum steepest
descent, adhering to the NACA standard. After observing the trend of movement of the
boundary geometry, the shape of the airfoil is altered to approach the optimal condition.

• The field mesh is reproduced, and the algorithm returns to Step 1 to attain the
minimum-cost function. In each iteration, the shape undergoes modifications, and a
new mesh is produced at the field boundary.

The loop of the algorithm aimed at achieving the optimized shape is depicted in
Figure 1. To identify the path of deformation, the relation given by Equation (12) can be
employed to enhance the form, as

δF = −λG, (26)

where λ is the step size. The following equation provides the search direction toward the
optimal value using the steepest descent method

S = −G (27)

Determining the step size is also necessary to move in this direction

λ =
eb ln 10

ea ln 10 = e(b−a) ln 10, (28)

where a and b are the results of

a =

{
2 if S = 0
log |S| if S 6= 0

, b =

{
−2 if F = 0
log |F | if F 6= 0

. (29)

To maximize the ratio of the lift-to-drag coefficient, one can combine the objective functions
of maximizing the lift coefficient and minimizing the drag coefficient. For this purpose, the
coefficients of the general objective function must be calculated as

I =


(

1− Cl
Clmax

)2
if Cd ≤ Cdmin

1
2

(
1− Cl

Clmax

)2
+ 1

2

(
1− Cd

Cdmin

)2
if Cd > Cdmin

, (30)

where Cdmin is the target value of the drag coefficient and Clmax is the target value of the
lift coefficient. As a result, the objective function changes, as

δI =

−2
(

1− Cl
Clmax

)
δCl

Clmax
if Cd ≤ Cdmin

−
(

1− Cl
Clmax

)
δCl

Clmax
−
(

1− Cd
Cdmin

)
δCd

Cdmin
if Cd > Cdmin

. (31)
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Figure 1. The algorithmic flowchart for the shape optimization procedure involves solving the flow
field equations, formulating and solving the adjoint equations, computing the converged adjoint
variables, and determining the optimization direction based on the adjoint solver variables.

In the optimization process, limitations are set by taking into account the varying
abilities of morphing airfoils compared to other airfoils. The range of changes allowed
in the determining components of the flap geometry during the optimization path are
presented in Table 1.
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Table 1. The range of changes allowed in the determining components of the flap geometry during
the optimization process

Parameter Symbol Ratio

Airfoil Thickness t 0.1 c ∼ 0.4 c
Airfoil Maximum Camber m 0%∼9.5%

Airfoil Maximum Camber Position p 0.1∼0.9

4. Results

The study case was chosen to assess the accuracy of the proposed algorithm in transient
and high-speed flows. The optimization was performed under viscous flow conditions. The
adjoint sensibility for 10 different grid generations in one optimization loop, the parameter
change rate limitation, the grid convergence analysis for three grid generations by the
Roache method, and the results of the multipurpose optimization algorithm are presented.

4.1. Study Case Selection

In a previous study, Tanabi et al. [3] evaluated an algorithm under laminar flow
conditions [3]. The authors of the current study selected a different sample to evaluate the
proposed algorithm under non-viscous conditions. They investigated the performance in
transient flow by simulating the flow around a NACA 0012 airfoil with free-flow conditions
of M = 0.85 and α = 1◦. These parameters were chosen to assess the accuracy of the
proposed algorithm in transient and high-speed flows. The simulation used a circular grid
with dimensions of 100× 70.

A circular grid with dimensions of 100× 70 was used to simulate the flow around the
airfoil. Figure 2a,b show the lines of the pressure coefficient and Mach number, respectively.
The simulation accurately predicted the two shock waves on the surface and below the
surface, with an even lower surface shock wave captured, possibly due to the finer size of
the grid compared to that used by Liou and Steffen Jr. [28]. The study compared the results
of two solver methods, Roe and AUSM, for the pressure coefficient on the airfoil surface
shown in Figure 2c, with the numerical results obtained in previous research.

4.2. Adjoint Sensitivity and Parameter Changing Range

To validate the adjoint sensitivity, the same input used in the example presented in
the paper was applied to different grid conditions. The behavior of the adjoint sensitivity
was observed in 10 different runs, which produced similar results as shown in Figure 3.
However, additional discussion on this topic may divert the attention from the primary
focus of the paper and overwhelm one with additional information. Therefore, we did not
address this topic in the paper.

In the optimization process, constraints are established based on the morphing capa-
bilities of the airfoils, which may vary from other types of airfoils. The allowable ranges
for modifications to the determining components of the flap geometry in the optimization
process are outlined in Table 2.

Table 2. The range of changes permitted in the determination of the components of the flap geometry
in the optimization path.

Parameter Symbol Ratio

Airfoil Thickness t 0.1 c∼0.4 c
Airfoil Maximum Camber m 0%∼9.5%

Airfoil Maximum Camber Position p 0.1∼0.9
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Figure 2. (a) The Mach lines around the NACA 0012 airfoil under nonlinear flow conditions at
M = 0.8 and α = 1◦ are presented. (b) Nonlinear pressure coefficient lines are shown around the
same airfoil under the same flow conditions. (c) The pressure distribution on the surface of the NACA
0012 airfoil is presented for non-viscous flow at M = 0.8 and α = 1◦, and the results are compared to
the numerical results obtained by Liou and Steffen Jr. [28].

4.3. Grid Convergence Analysis

The order of convergence can be determined using the method proposed by Roache [29],
based on the results obtained from testing the developed algorithm with different mesh
generations. Figure 4 illustrates the residual of the adjoint variable for the main loop with
2400 iterations using 3 different mesh numbers of 50× 35, 100× 70, and 200× 140. The
method provides the means to calculate the order of convergence using

pGCI = ln
(

f3 − f2

f2 − f1

)
/ ln(r), (32)

where r is the constant grid refinement ratio, and f1, f2, and f3 are the lowest residuals of the
adjoint variables from cases 1, 2, and 3, respectively. For these test cases, the grid refinement
ratio was r = 2 and the resulting lowest logarithmic residuals were log ( f1) = −3.931,
log ( f2) = −3.810, and log ( f3) = −3.796. The order of convergence of pGCI = 2.848 was
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obtained for the analyzed data. The method provides the grid convergence index for a
given relative difference between two cases using the following expression

GCI =
FS · |ε|

rpGCI − 1
× 100 (33)

where ε is the relative error between two test cases as in εi,j =
(

f j − fi
)
/ fi and FS is the

safety factor. Since three grids were used to estimate pGCI , a safety factor of FS = 1.25 was
used. The resulting CGI between Case 1 and 2 was GCI1,2 = 0.6566 and between Case 2
and 3 was GCI2,3 = 4.8875.

To confirm the accuracy of the solution, the following relationship can be used with
the three grids

GCI3,2

rp × GCI2,1
≈ 1. (34)

In our case, it is 1.0337 ≈ 1.

Figure 3. The residual of adjoint variables was calculated for 10 runs under the same mesh conditions,
using the same input data as the example in the paper. These calculations were performed within a
single loop consisting of 2400 iterations.������������		�
� ��������������

������������������������ !"#�������##��$���%��%%���&������������������ ���
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Figure 4. The residual of adjoint variables was calculated for three different mesh conditions using
the same input data as the example presented in the Multipurpose Optimization section. A single
loop consisting of 2400 iterations was used for the calculation.
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4.4. Multipurpose Optimization of Airfoil

The optimization process involves selecting the NACA4418 airfoil as the primary
airfoil and using it to determine the final shape of the airfoil by minimizing the total drag
coefficient and maximizing the lift coefficient based on design parameters and the primary
airfoil’s shape. Optimization is performed under viscous flow conditions as specified in
Table 3. The profile design variables include the maximum thickness, maximum camber,
and maximum camber position, and their values are adjusted to achieve the intended
purpose and obtain the final shape of the profile. The lift and drag values are deliberately
chosen in such a way that they cannot be achieved under the defined flight conditions. The
purpose of this work is to show the ability of the algorithm in defining the design limits of
the shape of the airfoil. which moves toward optimizing the shape as much as possible;
after reaching the defined design limits, it continues to optimize so that it can display the
most ideal and closest possible shape to the output, according to the optimization goals.

Table 3. The flow conditions utilized in the proposed multipurpose shape optimization for the
NACA4418 airfoil.

Parameter Symbol Ratio

Mach Number M 0.72
Reynolds Number Re 3000

Angle of Attack α 2.8◦

Target Lift Coefficient Clmax 0.45
Target Drag Coefficient Cdmin 0.12

Table 4 indicates that although the airfoil thickness and maximum camber decreased,
and the camber location changed toward the end of the airfoil, only the drag coefficient was
optimized. Therefore, it is not possible to design an airfoil that optimizes both conditions to
meet them simultaneously under the specified flow conditions. In Figure 5, the convergence
of the cost function, lift-to-drag ratio, and aerodynamic coefficients is illustrated. The graphs
show that all parameters have converged to an acceptable value after 20 iterations. The
aerodynamic coefficients shown in the figures include the viscous drag coefficient Cdv, the
pressure drag coefficient Cdp, the lift coefficient Cl , the total drag coefficient Cd, and the
lift-to-drag ratio Cl/Cd. Although both optimization goals were not achieved, the changes
in all design parameters and aerodynamic coefficients have become insignificant.

Table 4. The initial and final values of the components that determine the airfoil geometry and
aerodynamic coefficients were optimized to achieve maximum lift and minimum drag coefficients.

Parameter Symbol Initial Value Final Value

Maximum Thickness t 0.180 c 0.143 c
Maximum Camber m 4.000% 3.986%

Maximum Camber position p 0.400 0.397
Lift Coefficient Cl 0.101 0.398

Pressure Drag Coefficient Cdp 0.150 0.083
Viscous Drag Coefficient Cdv 0.030 0.037

Total Drag Coefficient Cd 0.179 0.120
Lift-to-Drag Ratio Cl/Cd 0.564 3.328

The authors deliberately chose input values for maximum lift and minimum drag
coefficients that were unattainable due to design limitations to evaluate the algorithm’s
performance. The results show that the algorithm increases the lift-to-drag ratio by reaching
the maximum lift target value while minimizing drag, but both goals cannot be achieved
simultaneously due to design constraints. Figure 6 illustrates that after fifteen cycles, the
maximum thickness t, the bend location m, and the maximum bend p exhibit insignifi-
cant changes.
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Figure 5. The figures illustrate various aspects of the optimization process of the multipurpose lift-to-
drag ratio algorithm. (a) Changes in the cost function during the optimization process. (b) Represents
the lift-to-drag ratio Cl/Cd obtained after applying the algorithm. (c) Shows variations in the
pressure drag coefficient Cdp, the viscous drag coefficient Cdv, and the total drag coefficient Cd
during the optimization process. Finally, (d) displays the changes in the lift coefficient Cl during the
optimization process.

Figure 6. The variations in the airfoil design parameters when applying the multipurpose lift-to-ratio
optimization algorithm are shown, including the maximum thickness t, the location of the bend m,
and the maximum bend p.
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The modifications in the pressure coefficient Cp around the airfoil generated by the
multipurpose optimization algorithm are shown in Figure 7. The lift coefficient is repre-
sented by the enclosed area in this shape. When comparing the distribution of the initial
and final airfoil pressure coefficients surrounding the airfoil, it can be seen that the lift
coefficient has increased. The shape of the airfoil deformation in the pattern to reach the
final shape is illustrated in Figure 8. The algorithm attenuates the thickness until near the
design limit (to reach the maximum lift coefficient). After that, it changes other design
parameters, such as the maximum camber and position, to achieve the defined goal. The
Mach contour around the airfoil is presented in Figure 9. There was a shock in the middle
of the airfoil in the initial shape; after optimizing the shape, the shock appeared. The
streamlines around the airfoil in the initial and final conditions are shown in Figure 10. The
eddies were reduced after optimization, and the separation rate decreased in the airfoil tail,
which is evident in the streamlines in the airfoil tail.

Figure 7. The proposed multipurpose optimization algorithm generated modifications in the pressure
coefficient Cp around the airfoil.

Figure 8. The proposed multipurpose optimization algorithm generated modifications in the geome-
try of the airfoil curve.
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Figure 9. The Mach number contour around an airfoil was examined under the initial and final
conditions of the proposed multipurpose optimization algorithm.

Figure 10. The streamlines around the airfoil were observed in both the initial and final conditions of
the multipurpose optimization.

5. Conclusions

This paper presents an airfoil shape optimization method based on the adjoint ap-
proach. The non-viscous flow computations were carried out using Euler equations, while
Navier–Stokes equations were used for viscous flow calculations. The AUSM+ scheme
was utilized to calculate the flow coefficients. The adjoint method was used to apply
the optimization equations to the flow equations, resulting in an algorithm for airfoil
shape improvement.

As an innovation, multi-objective optimization was performed to evaluate the software
performance, in which the lift and drag coefficients were determined as optimization goals.
In the issue mentioned above, viscous flow was used. The airfoil design parameters were
considered as the maximum thickness, maximum camber, and maximum camber position.

In the multi-objective optimization problem, it was observed that the total drag coeffi-
cient achieved the set value; however, the final lift coefficient had a significant difference
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from the set value. The outcome suggests that both sets of target values could not be
achieved simultaneously under the flow conditions mentioned in the problem. Hence, it is
not possible to find every coefficient value under a single flight condition. Consequently,
to produce specific lift or drag coefficients, one must modify both the airfoil shape and
flow conditions.
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Nomenclature

α Angle of Attack
λ Step Size of Steepest Descent
B Airfoil’s Boundary Geometry
F Boundary Geometric Variables of Cost Function
G Gradient of the Cost Function
S Search Direction of Steepest Descent Method
Ω Open Domain
ψ Lagrangian Coefficient
ε Relative Error
a Direction-based Step Size Coefficient
b Geometry-based Step Size Coefficient
c Chord Length
Cdp Pressure Drag Coefficient
Cdv Viscous Drag Coefficient
Cd Total Drag Coefficient
Cl Lift Coefficient
Cdmin Target Drag Coefficient
Clmax Target Lift Coefficient
f Viscous Flux
FS Factor of Safety
fv Non-viscous Flux
GCI Grid Convergence Index
I Cost Function
M Mach Number
m Maximum Camber
nx X-component of Normal to B
ny Y-component of Normal to B
p Maximum Camber Position
pdis∗ Target Pressure Distribution on Airfoil
pdis Pressure Distribution on Airfoil
pGCI Order of Convergence
R Flow Equations
r Grid Refinement Ratio
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Re Reynolds Number
t Maximum Thickness
w Flow variables of Cost Function
yc Mean Camber Line
yt Thickness distribution
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