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Abstract: Unfettered agricultural activities have severely degraded vast areas of grasslands over the
last decade. To rehabilitate and restore the productivity in affected grasslands, rangeland manage-
ment practices still institute vast nitrogen-based fertilization regimes. However, excessive fertilization
can often have damaging environmental effects. Over-fertilization can lead to nitrogen saturation.
Although early indicators of nitrogen saturation have been documented, research detailing the
near-real-time nitrogen saturation status of grasslands is required to better facilitate management
protocols and optimize biomass production within degraded grasslands. Hence, the aim of this
study was to discriminate nitrogen-saturated tropical grasses grown under a diverse fertilization
treatment trial, using Worldview-3 satellite imagery and decision tree techniques. To accomplish this,
nitrogen-saturated plots were first identified through specific physiological-based criteria. Thereafter,
Worldview-3 satellite imagery (400–1040 nm) and decision tree techniques were applied to discrimi-
nate between nitrogen-saturated and -unsaturated grassland plots. The results showed net nitrate
(NO3

−-N) concentrations and net pH levels to be significantly different (α = 0.05) between saturated
and non-saturated plots. Moreover, the random forest model (overall accuracy of 91%) demon-
strated a greater ability to classify saturated plots as opposed to the classification and regression
tree method (overall accuracy of 79%). The most important variables for classifying saturated plots
were identified as: the Red-Edge (705–745 nm), Coastal (400–450 nm), Near-Infrared 3 (838–950 nm),
Soil-Adjusted Vegetation Index (SAVI) and the Normalized Difference Vegetation Index 3 (NDVI3).
These results provide a framework to assist rangeland managers in identifying grasslands within
the initial stages of nitrogen saturation. This will enable fertilization treatments to be adjusted in
near-real-time according to ecosystem demand and thereby maintain the health and longevity of
Southern African grasslands.

Keywords: nitrogen; nitrogen saturation; rangeland management; random forest; Worldview-3

1. Introduction

Grasslands are a major vegetation type that span across the Earth’s terrestrial sur-
face [1]. These ecosystems are often dynamic and intricate environments that sustain a
host of ecosystem goods and services [2], such as the grazing of livestock, the provision of
traditional medicinal plants, the regulation of climate, and the purification of water [3,4].
In South Africa, the financial appraisal of the ecosystem goods and services provided
by grasslands are in excess of ZAR 9 billion [5]. However, unsustainable anthropogenic
activities (e.g., overgrazing and intensive agriculture) have caused severe degradation to
these environments [6,7]. To rehabilitate degraded grasslands, as well as maintain the
soil nutrient profile, nitrogen-based fertilization regimes are extensively implemented
by grassland stakeholders [8,9]. Nitrogen is the primary constituent of chlorophyll and
plant enzymes and is, thus, often the limiting factor of net primary productivity within
terrestrial ecosystems [10–14]. As such, nitrogen regularly forms the basis of fertilizer
compounds [13,15]. Subsequently, the use of nitrogen-based fertilizers has been proven to
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augment biomass productivity within previously degraded grasslands [9]. However, their
excessive use can often have detrimental environmental consequences [13,14,16–18].

The nitrogen cycle is a delicately balanced and highly complex feedback system; how-
ever, the continued introduction of anthropogenic nitrogen has adversely altered its natural
state [19,20]. Several studies have emphasised the detrimental impacts associated with
excess anthropogenic nitrogen application [18,21–23]. These impacts are often preluded by
increases in both foliar nitrogen and soil nitrate concentrations [24,25]. Thereafter, unregu-
lated anthropogenic nitrogen deposition results in the available nitrogen pool exceeding
the demand of both plants and microbes, causing the ecosystem to reach a state of nitrogen
saturation [16,24,25]. This may cause stunted growth, increased mortality, and a reduction
in overall species diversity [20,26]. The culmination of these effects along with the lack of
proper grassland management practises such as overgrazing [27], could greatly alter many
sensitive ecosystems [24,25,28].

The factors, processes and effects concerning nitrogen saturation have been exten-
sively studied for a variety of ecosystems, including grasslands [13,16,28–31]. Funda-
mentally, unregulated nitrogen enrichment significantly alters the soil physiochemical
environment [18,28]. This results in nitrate (NO3

−-N) and ammonium (NH4
+-N) supplies

exceeding both plant and microbial demand [29]. Thereafter, the process of nitrification
occurs, as excess ammonium is converted into nitrate [32]. The ensuing high nitrate con-
centrations coupled with climatic factors (i.e., rainfall) cause negatively charged NO3

−

cations to leach [30]. This in turn causes the soil to acidify as pH levels decrease [33]. Sub-
sequently, both soil acidification and the accumulation of negatively charged NO3

− cations
result in the attraction and leaching of positively charged calcium (Ca2

+) and magnesium
(Mg2

+) anions into ground water [13,16,34]. As such, characterising the initial stages of
nitrogen saturation is crucial in preventing the negative consequences associated with
over-fertilization. Aber et al. [16], in their study of nitrogen saturation in northern forest
ecosystems, documented several initial indicators of nitrogen saturation. These indicators
included elevated concentrations of soil nitrate, increased soil acidity, and the increased
leaching of minerals [16]. In this context, research documenting the present nitrogen status
of grasslands, as well as early indicators of nitrogen saturation in near-real-time are required
to facilitate management protocols and optimize biomass production within degraded
grasslands, whilst avoiding any possible adverse effects [13].

The use of traditional laboratory-based methods for measuring both plant (such as the
Kjeldahl digestion method) and soil nitrogen concentrations (both soil inorganic nitrogen
content and soil fertility tests) are often complex, expensive and impractical over large
swaths [10,28,35,36]. Nevertheless, the use of remotely sensed data provides a more feasible
solution in characterising the nitrogen saturation status of tropical grasslands [7]. The
ability of remote sensing technology to assess foliar biochemical concentrations, such
as nitrogen and chlorophyll, have been widely researched within the remote sensing
academic community [10,28,37–41]. Hyperspectral remote sensing, which utilizes many
narrow contiguous spectral bands, has been widely utilized to assess the nutritional status
of vegetation [7,39,42–44]. However, its practical application has often been restricted
by its excessive costs, high degree of multicollinearity and related processing, and its
unavailability within developing regions [45,46].

Nonetheless, the current generation of multispectral sensors, such as Worldview-3,
which have improved spectral and spatial configurations, could provide a more practical
alternative [45–47]. As such, research documenting the ability of multispectral sensors in
assessing vegetative nutrient condition has grown in recent years [44,47–49]. For instance,
Boegh et al. [50] used airborne multispectral data (457.8–778.8 nm) to effectively quantify
Leaf Area Index (R2 = 0.77) and nitrogen concentrations (R2 = 0.78) within an agricultural
area in Denmark, whilst in a later study, Ramoelo et al. [51] utilized the RapidEye sensor
(440–850 nm) to map foliar (R2 = 0.48) and canopy (R2 = 0.64) nitrogen at a regional scale
within a savanna rangeland. In a following study, Ramoelo et al. [47] applied Worldview-
2 imagery (400–1040 nm) and Random Forest (RF) techniques to successfully map leaf
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nitrogen (R2 = 0.81) and aboveground biomass (R2 = 0.90) within a South African rangeland.
To improve nutrient model estimates and to handle the complex relationships between
response and predictor variables, Ramoelo et al. [47] and other studies often employed
machine learning models, such as RF [52,53]. For example, both Adjorlolo et al. [54] and
Mutanga et al. [55] used RF and Worldview-2 data to successfully estimate grassland
nutrients within the Drakensburg mountain range of South Africa, whilst in a more recent
study, Singh et al. [49] applied RapidEye imagery (440–850 nm) and RF techniques to map
key grassland nutrients (i.e., neutral detergent fibre, acid detergent fibre, and lignin) within
KwaZulu-Natal, South Africa. Meanwhile, in the Tibetan region of China, Gao et al. [56]
used a multi-factor machine learning algorithm to model Alpine grassland forage quality
(R2 = 0.67). Thereafter, in a related study, Gao et al. [57] used Sentinel-2 imagery and an
RF algorithm to map forage nitrogen and phosphorus ratios within the same grassland
ecosystem. Despite such contributions towards this research domain, to our understanding,
no study has attempted to characterize nutrient saturation levels within tropical grasslands
and its impact on plant growth using remotely sensed data.

In consideration of this, this study aims to characterize tropical grassland plots under
the initial stages of nitrogen saturation using high resolution multispectral imagery and
decision tree techniques. It is hypothesized that the use of high-resolution multispectral
imagery and decision tree techniques can accurately detect nitrogen saturation in tropical
grasslands plots subjected to diverse fertilization treatments. To accomplish this objec-
tive, the study firstly differentiated nitrogen-saturated plots using specific physiological
criteria identified by Aber et al. [16]. Thereafter, 8-band Worldview-3 satellite imagery
(400–1040 nm) and decision tree techniques were used to discriminate between nitrogen-
saturated and -unsaturated grassland plots and assess their influence on plant growth.

2. Materials and Methods
2.1. Study Area

The study took place within the Ukulinga Research Farm (29◦39′45.68′′ S; 30◦24′17.93′′ E)
in KwaZulu-Natal, South Africa (Figure 1). The farm houses a long-term grassland fer-
tilization trial that was established by J.D Scott in 1950 [58]. The underlying geology of
the site comprises mainly of Shale rock, upon which, infertile Westleigh form soils are
found [59]. Several grass species, namely, Themeda triandra (Red grass), Heteropogon con-
tortus (Black speargrass), Eragrostis plana (Cane grass), Panicum maximum (Guinea grass),
Setaria nigrirostris (Black-seed bristle grass), and Tristachya leucothrix (Trident grass) are
found along the site [58,59]. The site itself experiences the majority of its annual rainfall
(694 mm) during the grass-growing season of October to April [46].
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Figure 1. Location of the study area within the Ukulinga research farm, near Pietermaritzburg,
South Africa.

2.2. Experimental Design

Seventy eight 3 m × 3 m grassland plots were arranged in a randomized block
design [28,46] and treated with distinct levels of ammonium nitrate (NH4NO3) and am-
monium sulphate ((NH4)2SO4) fertilizers [59]. These fertilizers were applied twice yearly
at variable concentrations. More specifically, ammonium nitrate (NH4NO3) was applied
at 21.0 g/m2, 42.1 g/m2, and 63.2 g/m2, and the ammonium sulphate ((NH4)2SO4) was
applied at 33.6 g/m2, 67.2 g/m2, and 100.8 g/m2. This enabled plots to experience nitro-
gen concentrations that ranged from 0% (control) to 80%, which would effectively induce
nitrogen saturation within the highly fertilized grassland plots [28]. Moreover, to ensure
nitrogen was the primary limiting factor, phosphate, lime, and potassium chloride were
applied. The super phosphate was applied at 33.6 g/m2 per year and the dolomitic lime
was applied at 225 g/m2 at five-year intervals, whilst the potassium chloride was applied
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twice at 13.9 g/m2. Fertilization took place in October 2016 (prior to seed germination) and
again in December 2016 (during the boot growth stage).

2.3. Characterization of Saturated Nitrogen Plots

Several studies have shown that nitrogen availability can be categorized into distinct
stages of ecosystem response [16,60,61]. The first stage is documented as the ‘pre-treatment
stage’, prior to any fertilization. Thereafter, the second stage of ‘nitrogen loading’ is charac-
terised by increased nitrogen deposition, during which, ecosystem production responds
positively to increased fertilization. Later, the third stage of ‘early nitrogen saturation’ is
realised, as the ecosystem approaches initial nitrogen saturation; however, the associated
negative effects are often subtle. Aber et al. [16] documented several early indicators of
nitrogen saturation. These include (1) elevated soil nitrate concentrations, (2) increased
soil acidity, and (3) increased mineral cation leaching. The last stage—Stage 4—is docu-
mented as ‘late nitrogen saturation’, where significant levels of nitrogen saturation cause
major ecosystem impacts. This considerably affects plant growth and species composi-
tion [16]. As such, detecting nitrogen saturation timeously within grasslands is crucial in
maintaining optimal grassland health and longevity. Subsequently, this study explored
stages 1 (pre-treatment) and 3 (early nitrogen saturation) to characterize grassland plots,
which exhibited the initial signs of possible nitrogen saturation. Thus, a specific set of
physiological criteria was used to characterize plots within the initial stages of nitrogen
saturation. These criteria were centred around the early indicators of nitrogen saturation
documented by Aber et al. [16]. More precisely, grassland plots had to fulfil the entire
set of physiological-based criteria to be considered nitrogen-saturated (Figure 2). In this
regard, plots had to demonstrate a notable increase in nitrate (NO3

−-N) levels, a reduction
in pH levels, and a reduction in either calcium and magnesium levels between stages 1
and 3. The resultant net changes for each of these variables across the growing season
were calculated as the difference between stage 3 and stage 1. The nitrogen enrichment
factor, which details the difference in nitrogen abundance between the substrate (i.e., soil
nitrogen) and the product (i.e., foliar nitrogen) was also calculated using the equation below
(Equation (1)) [62].

Nitrogen Enrichment Factor = NLea f − NSoil (1)

Figure 2. Flow diagram showing the physiological criteria used to identify grassland plots undergoing
the initial stages of nitrogen saturation, as characterized by Aber et al. [16].
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2.4. Field Data Collection

Sampling was first conducted prior to fertilization in October 2016 (Stage 1), and again
in April 2017 (Stage 3). A 1 m × 1 m quadrant was randomly placed within each plot
and used to collect soil cores [28]. Soil samples were collected at two particular depths.
Specifically, soil samples were collected at 0–10 cm for inorganic nitrogen content and at
10–20 cm for soil fertility (n = 78). Samples were stowed in separate sealed plastic bags and
taken to the Cedara Agricultural College for specific testing [63]. Nitrate (NO3

−-N) and
ammonium (NH4

+-N) concentrations were determined using the ultraviolet spectrophoto-
metric screening method and measured as mg/L [28,33]. Soil pH was determined through a
glass electrode and a 1:2.5 mixed solution of soil and deionized water [28,33]. Next, calcium
(Ca2

+) and magnesium (Mg2
+) concentrations were extracted with a 0.1 mol/L solution of

barium chloride and deionized water [13]. Lastly, soil organic carbon was derived through
an oxidization method detailed in Zhang et al. [13]. Grass samples were collected during
the boot (December 2016) and maturity stages (April 2017) of the phenological cycle from
each of the 78 plots and stored in plastic bags. Samples were subsequently dried, milled
and analysed for plant nitrogen concentration at the Cedara Agricultural College laboratory
using the Kjeldahl digestion method [35]. To derive Aboveground Biomass (AGB), wet
grass samples were collected at peak grass growth. These samples were dried for 48 h at
70 ◦C, prior to being reweighed. These readings were then transformed to obtain dry total
AGB for each plot in kilograms per plot (kg/plot) [45].

2.5. Image Pre-Processing

A Worldview-3 image (400–1040 nm) was attained within one week of field sampling
(2 May 2017) under favourable weather conditions from the supplier, Swift Geospatial.
The spectral range of the 2 m 8-band Worldview-3 image is detailed in Table 1. Swift
Geospatial provided the image both orthorectified and atmospherically corrected. The
image was firstly atmospherically corrected using both the Shuttle Radar Topography
Mission (SRTM) 30 m radar data and the ENVI remote sensing software package [64]. It
was then orthorectified to a ± 3 m CE90 relative accuracy. Following this, the resultant
image and GPS readings were used to ascertain the overall image accuracy of 89% and
facilitate the formation of a map detailing the specific grassland plot boundaries (n = 78).
Thereafter, using both the zonal statistics tool in ArcGIS 10 and the grassland’s plot map,
the average spectral information from each grassland plot was extracted and to be used for
statistical analysis [65].

Table 1. Detailed spectral range of the 8-band Worldview-3 image.

Band Wavelength Range (nm) Designation

1 400–450 Coastal
2 450–510 Blue
3 510–580 Green
4 585–625 Yellow
5 630–690 Red
6 705–745 Red-Edge
7 770–895 Near–Infrared
8 860–1040 Near–Infrared 2

2.6. Vegetation Indices

To improve the characterization of nitrogen-saturated grassland plots, numerous
vegetation indices were developed from the spectral profile of the Worldview-3 image.
These indices included the: Normalized Difference Vegetation Index (NDVI), Simple
Ratio (SR), Enhanced Vegetation Index (EVI), Soil-Adjusted Vegetation Index (SAVI), and
the Green Difference Vegetation Index (GDVI) [47,66–68]. However, due to the spectral
arrangement of the Worldview-3 image, these vegetation indices had to be computed for
several near-infrared variations, namely, Near-Infrared 1 (NIR1), Near-Infrared 2 (NIR2)
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and a combination of the two (hereafter referred to as NIR3). This resulted in a total of
24 spectral variables, including 15 vegetation indices and 9 spectral wavebands. Thereafter,
both spectral wavebands and vegetation indices (n = 24) were input into the RF classification
algorithm to distinguish between nitrogen-saturated and -unsaturated grassland plots. The
datasets were split into 70% training and 30% testing data [69]. Next, the performance
of the RF classification algorithm in characterizing nitrogen saturation was evaluated.
For comparative purposes, a Classification and Regression Tree (CART) algorithm was
implemented together with RF using the R statistical software package [70].

2.7. Statistical Data Analyses

A Shapiro–Wilk test was first conducted to ascertain that all data did not significantly
deviate from the normal distribution curve (α = 0.05) [71]. A Student’s t-test was then
used to ascertain if any significant differences were noted between the saturated and non-
saturated plots, for each of the physiological-based criteria and associated site factors [13].

2.7.1. Classification and Regression Tree Analysis

The Classification and Regression Tree analysis, commonly referred to as CART, is a
binary discriminatory procedure with the ability to process both categorical and continuous
variables as target and predictor variables [72,73]. The analysis utilizes a binary recursive
partitioning method, where each node within the decision tree is repeatedly divided into
two groups—either nitrogen-saturated or non-nitrogen-saturated [72,73]. Thereafter, the
trees are grown to their maximum size [73,74]. The strength of the CART analysis lies in its
non-parametric nature and its ability to disregard the assumed distribution of the predictor
variable values [72,74]. Moreover, this method is further bolstered by its automatic class
balancing and missing value interpretation ability [72,73]. However, in recent years, the
RF algorithm, and its ability to contend with both highly correlated and noisy predictor
variables, has been extensively utilized by the remote sensing community [47,69,75,76].

2.7.2. Random Forest Classification Analysis

Similar to CART, the RF algorithm is an ensemble-based method which develops
multiple decision trees to complete classification-based tasks as opposed to a single de-
cision tree [69,75,77]. The algorithm utilizes a deterministic technique to select recursive
bootstrapped samples that are drawn with replacements [77]. These samples are then used
to build each tree within the decision tree matrix, which is then grown to a user-defined
node size [68,69]. Thereafter, the amount of decision trees (ntree) and the total number of
predictor variables (mtry) to be used were defined. The mtry values were derived by the
amount of the square root of the total number of predictor variables (spectral variables)
used, whilst ntree was set to 1000 [47,78]. Next, both ntree and mtry values were optimised
to improve model accuracy, and the resultant classification model was run 100 times [68].
Lastly, the samples not included in the bootstrapped samples or the Out Of Bag (OOB) data
were used to estimate the importance of the predictor variables [53,78]. The most important
variables for characterising nitrogen-saturated and -unsaturated grassland plots were then
derived through a backwards feature elimination method [53,78]. To avoid over-fitting the
data, a 10-fold cross validation approach was applied [68].

2.7.3. Accuracy Assessment

In recent years, the use of the Kappa statistic within classification accuracy assessment
has been critiqued due to its provision of often misleading information [79]. Moreover,
Kappa can be challenging to calculate and interpret [80,81]. To this end, Pontius Jr. and
Millones [79] proposed the use of quantity disagreement and allocation disagreement
as summary parameters of classification accuracy. Essentially, quantity disagreement is
the total number of mismatches obtained between the training and testing data for each
category [79]. Allocation disagreement is the summation of mismatches attained between
the column total of each category and its corresponding row total within the confusion ma-
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trix [79]. To compare the ability of each of the two classification algorithms in categorising
nitrogen-saturated and -unsaturated grassland plots, a confusion matrix was developed for
each model. Following this, user, producer and overall accuracy were derived. Moreover,
the quantity disagreement and allocation disagreement for each algorithm were derived
using XLSTAT [79–81].

3. Results
3.1. The Characterization of Nitrogen-Saturated and -Unsaturated Plots Using
Physiological Properties

From the 78 grassland plots investigated between stages 1 and 3, 16 plots fulfilled the
physiological saturation criteria and were considered nitrogen-saturated. Specific statistical
testing then revealed significant differences (α = 0.05) between saturated and unsaturated
plots for both net nitrate (NO3

−-N) concentrations and net pH levels (Figure 3a,b). More
specifically, net NO3

−-N concentrations were shown to be substantially higher for nitrogen-
saturated plots (65.28 mg/L), as opposed to plots that were not saturated (34.23 mg/L)
(Figure 3a), whereas net pH levels were significantly lower for saturated plots (−0.175 KCL)
as compared to non-saturated plots (−0.0001 KCL) (Figure 3b). In addition, both net calcium
and net magnesium concentrations were noticeably lower for saturated plots (Figure 3c,d).
More precisely, net calcium concentrations declined from 260 mg/L for unsaturated plots
to 138 mg/L for saturated plots (Figure 3c), while net magnesium concentrations decreased
from 35 mg/L for non-saturated plots, to −14.06 mg/L for saturated plots (Figure 3d).

Figure 3. Mean differences in soil properties for saturated vs. not saturated grassland plots across the
growing stages, where (a) represents net NO3

−−N concentrations, (b) represents changes in acidity (pH),
(c) represents net calcium concentration (Ca), and (d) represents net magnesium concentration (Mg).

From the associated site factors investigated, net ammonium (NH4
+-N) levels were

shown to decrease from 8.87 mg/L for non-saturated plots to −1.2 mg/L for saturated
plots (Figure 4a). Net foliar nitrogen concentrations, however, were found to be higher for
saturated grassland plots (0.36%) as compared to non-saturated plots (0.19%) (Figure 4c).
Both biomass and soil organic carbon concentrations demonstrated negligible changes
between saturated and non-saturated plots (Figure 4b,e). Unsaturated plots demonstrated
a mean biomass yield of 0.92 kg/m2, whilst saturated plots recorded a biomass mean
of 0.95 kg/m2 (Figure 4e). Soil organic carbon showed an insignificant change, with
concentrations declining from −2.89% for saturated plots to −2.90% for non-saturated
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plots. Subsequent testing discovered net total soil nitrogen concentrations to be higher
for saturated plots (Figure 4d). Lastly, computation of the nitrogen enrichment factor
demonstrated a higher nitrogen enrichment factor of 0.37% for saturated grassland plots as
opposed to 0.22% for non-saturated plots (Figure 4f). Moreover, significant positive linear
correlations (α = 0.01) were documented between net calcium, magnesium, and pH levels.

Figure 4. Mean differences in additional site factors for saturated vs. not saturated grassland
plots across the growing stages, where (a) represents net ammonium concentrations (NH4

+−N),
(b) represents changes in soil organic carbon levels, (c) represents net foliar nitrogen, (d) represents
net soil nitrogen, (e) represents biomass yield, and (f) represents the nitrogen enrichment factor.

3.2. The Discrimination of Nitrogen-Saturated and -Unsaturated Plots Using
Worldview-3 Imagery

Once the physiological criteria identified grassland plots within the initial stages
of nitrogen saturation, Worldview-3 based wavebands and vegetation indices were then
used to discriminate between the grassland plots characterised as either saturated or not
saturated. The CART model produced an overall accuracy of 79%, with a user accuracy
of 50% and a producer accuracy of 52% (Figure 5). The model was able to adequately
characterise non-saturated grassland plots; however, it was unable to sufficiently classify
nitrogen-saturated grassland plots as saturated. The RF model performed considerably
better, with an overall accuracy of 91%, and associated user and producer accuracies of 83%
and 89%, respectively (Figure 5). The RF model was able to effectively characterise both
saturated and non-saturated grassland plots, with an average class error of 17.2%.
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Figure 5. Classification results for discriminating nitrogen-saturated vs. -unsaturated grassland plots,
where RF = Random Forest, and CART = Classification and Regression Tree analysis.

Fundamentally, the RF model, with a quantity disagreement of 4% and an allocation
disagreement of 5%, had a lower level of overall disagreement in comparison to the
CART model with a quantity disagreement of 19% and an allocation disagreement of 4%,
respectively. The RF model, therefore, demonstrated a greater ability to reliably discriminate
between nitrogen-saturated and -unsaturated grassland plots.

From the 24 spectral variables used, nine variables were identified as important in
characterizing grassland plots within the initial stages of nitrogen saturation. The most
important wavebands identified were the Red-Edge (705–745 nm), Coastal (400–450 nm),
and NIR3 (838–950 nm) (Figure 6), whereas the most important vegetation indices identified
were the SAVI and the Normalized Difference Vegetation Index 3 (NDVI3) (Figure 6).

Figure 6. The relative importance of each spectral variable in classifying nitrogen-saturated vs.
nitrogen-non-saturated grassland plots.

4. Discussion

The effects of over-fertilization and ensuing nitrogen saturation have repeatedly de-
layed the successful rehabilitation of degraded grasslands [13]. As such, the development
of a framework to identify grasslands at the brink of nitrogen saturation is fundamen-
tal in assisting rangeland management protocols and thus, safeguarding the well-being
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of South African grassland ecosystems. To this end, this study set out to characterize
tropical grassland plots within the preliminary stages of nitrogen saturation using 2 m
8-band Worldview-3 satellite imagery (400–1040 nm) and decision tree techniques. The
results produced from this study demonstrated that Worldview-3 spectral variables and
the RF algorithm enabled the successful identification of nitrogen-saturated grassland
plots. Furthermore, the Red-Edge (705–745 nm), Coastal (400–450 nm), and Near-Infrared
(838–950 nm) parts of the electromagnetic spectrum, as well as the SAVI and the NDVI
indices, were all proven to be highly influential spectral variables for identifying nitrogen-
saturated grassland plots.

4.1. The Characterization of Nitrogen-Saturated Plots Using Physiological Properties

Physiological results obtained from the nitrogen-saturated plots within this study showed
a reduction in net ammonium (NH4

+-N) concentrations, whilst net nitrate (NO3
−-N) levels

increased considerably. This outcome is indicative of the processes governing the nitrogen
cycle and subsequent nitrogen saturation [28]. More specifically, once the required nitrogen
uptake of the plant and microbial communities within the grassland were exceeded, the
majority of excess ammonium (NH4

+-N) was converted into nitrate (NO3
−-N) through the

process of nitrification [16]. Thereafter, soils within the saturated plots began to acidify as
pH levels decreased due to the abundance of NO3

− cations [30]. The negatively charged
NO3

− cations combined with the high annual rainfall within the site (694 mm) attracted
and facilitated the leaching of positively charged calcium and magnesium anions from
the saturated plots [13]. This resulted in a highly acidic physiochemical environment with
reduced and unbalanced soil nutrient profiles. These results are congruent with the early
indicators and associated effects of early nitrogen saturation documented by Aber et al. [16].
Moreover, Wei et al. [28] achieved comparable results in their study of the impact of nitrogen
deposition on the interactions between plants and microbes within Chinese grasslands.
Their study demonstrated that at high nitrogen deposition, NO3

−-N concentrations were
significantly elevated, whilst both NH4

+-N and pH values were considerably lower. In
addition, at extreme nitrogen deposition, they documented a decrease in both shoot and root
biomass as well as species richness within the grassland [28]. Likewise, Zhang et al. [13], in
their assessment of the effects of nitrogen fertilization on grassland soil within northern
China, obtained similar outcomes. They stressed that fertilizer treatments in excess of 80 kg
N ha−1 (which was exceeded within Ukulinga) will facilitate the accumulation of mobile
NO3

− within the soil, with possible NO3
− and mineral leaching likely to occur soon after.

Lastly, they found that rainfall above 655 mm per annum was significantly correlated to the
rate of nitrification within Mongolian grasslands [13]. Finally, Wang et al. [18] found that
nitrogen deposition at an average rate of 50 kg N ha−1 can cause a non-linear relationship
with soil respiration; however, this varied with grass type in addition to the N gradients
applied in the study.

Furthermore, the high net foliar nitrogen concentrations obtained for saturated plots,
as well as a similar biomass yield between saturated and non-saturated plots demonstrated
by this study, indicate that the ecosystem had not yet reached the final stage of nitrogen
saturation. Moreover, this outcome is congruent with the indicators and related ecosystem
impacts associated with the effects of early onset nitrogen saturation that was documented
by Aber et al. [16]. This is further consolidated by the high nitrogen enrichment factor
obtained for nitrogen-saturated grassland plots (Figure 4f), which correspond to findings
by Garten Jr. and Miegroet [82]. Garten Jr. and Miegroet [82] highlighted that the natural
abundance of foliar nitrogen would increase for systems approaching nitrogen saturation.
Hence, this study maintains that the saturated grassland plots identified were within the
initial stages of nitrogen saturation. From a spectral perspective, however, the increased
availability of foliar nitrogen within saturated plots would intensify chlorophyll concen-
trations [83]; this will in turn facilitate greater visible leaf reflectance within the Red-Edge
and Near-Infrared parts of the spectrum and thereby allow for a greater discernment of
nitrogen-saturated plots [39,83].
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Nonetheless, we caution that if further nitrogen deposition occurs within this ecosys-
tem, the negative consequences associated with the final stage of nitrogen saturation will
likely ensue. This will result in a decrease in overall grassland biomass and a reduction
in species diversity [14,20,31]. For instance, Wei et al. [28] found that beyond a threshold
of 0.4 mol N m−2 yr−1, plant functional dynamics within Chinese grasslands will change.
Specifically, perennial grasses are often replaced by annual grasses, which are more adept
at contending with high nitrogen levels and associated soil acidification and mineral leach-
ing [28]. Peng et al. [14] explored the controlling factors of the N rate on above-ground net
primary production in grasslands and support that the overuse of N has little benefits to
pasture yield with negative consequences on the immediate environment. In this context,
further detailed studies into the nitrogen saturation status of specific South African range-
lands are required to supplement and improve current rangeland management protocols.
Furthermore, as an indicator of grassland health and condition, studies assessing biomass
variability within fertilizer-managed South African rangelands are also urgently required.

4.2. The Discrimination of Nitrogen-Saturated and -Unsaturated Plots Using
Worldview-3 Imagery

The RF model identified nine important variables for characterizing grassland plots
within the initial stages of nitrogen saturation (Figure 6). However, the most important
wavebands identified were the Red-Edge (705–745 nm), Coastal (400–450 nm), and NIR3
(838–950 nm). The Red-Edge and NIR bands, which are sensitive to vegetation health, have
been identified by several studies as crucial segments of the electromagnetic spectrum
used for assessing foliar biochemicals [47,49,55]. In particular, the Red-Edge is sensitive
to changes in chlorophyll concentration and is less affected by background effects [47,48].
Saturated grassland plots demonstrated elevated foliar nitrogen concentrations, which are
consistent with higher chlorophyll levels. Subsequently, the Red-Edge facilitated a greater
discernment between nitrogen-saturated and -unsaturated grassland plots. Likewise, Singh
et al. [49] identified both the NIR and Red-Edge parts of the spectrum as crucial variables in
mapping key grassland nutrients in KZN, South Africa. The Coastal band, however, is not
usually associated with vegetation condition and is more typically applied for the imaging
of shallow water and aerosol-based investigations [84,85]. Nevertheless, Wu et al. [86], in
their study of mapping foliar nutrition in Queensland, Australia, similarly found both the
Coastal and NIR bands as important variables for mapping foliar nitrogen.

The most important vegetation indices identified were the NDVI3 and the SAVI. The
performance of these indices could be attributed to the fact that both indices contain the
NIR region which responded positively to increases in foliar nitrogen content, that was
associated with nitrogen-saturated plots. The normalized difference index is widely used as
an indicator of vegetation condition and to assess the nutritional status of vegetation [48,54,87].
Ramoelo et al. [47] attained related results, noting that Red-Edge-based Simple ratio and NDVI
were crucial in detecting both biomass variation and mapping leaf nitrogen concentrations.
Likewise, Cabrera-Bosquet et al. [88] showed the importance of NDVI as a potential tool
for predicting foliar nitrogen content (R2 = 0.86) and other physiological variables in wheat
subjected to water and nitrogen stress. However, although SAVI was identified as an important
predictor—likely due to the percentage of vegetation cover and various soil background
influences prevalent within the site—this outcome contradicts studies such as Ullah et al. [52],
Ren and Feng [89] and Shoko et al. [90], which did not find SAVI to be among the most
important predictors for assessing vegetation condition.

4.3. The Performance of Decision Tree Techniques in Characterizing Nitrogen-Saturated
Grassland Plots

The RF classification algorithm (overall accuracy of 91%) noticeably outperformed the
CART analysis (overall accuracy of 79%) in characterizing nitrogen-saturated plots. These
observations are in agreement with findings by Gómez-Chova et al. [91], Ham et al. [92]
and Laliberte et al. [93] who report that because CART methods are stand-alone decision
trees, they are often prone to a high variance caused by a heavy dependence upon the



Appl. Sci. 2023, 13, 4252 13 of 17

training data. The RF model circumvents this through a form of regularization provided via
a multitude of decision trees [77,92]. The resultant lower variance facilitated an increase in
discriminatory power and accuracy [94]. However, although decision tree model accuracy
can be improved through increased iteration, the resultant model can easily overfit the
data if cross validation is not applied [95]. Na et al. [94] arrived at a similar conclusion
during their study of improving landcover mapping using Landsat TM imagery in China.
They found that in addition to their RF model (91.3%) outperforming their CART model
(89.2%), the RF model was also more resilient to a reduction in training data and amplified
noise [94].

This study has shown that nitrogen-saturated grassland plots can be successfully
identified using Worldview-3 imagery and the RF classification algorithm. This provides
a platform to assist rangeland managers in identifying grasslands within the initial stages
of nitrogen saturation and facilitate the rehabilitation and management of both degraded
and pristine South African grasslands.

5. Conclusions and Implications

The burden placed upon grassland ecosystems by exponential population growth
justifies the need for more accurate and expedient rangeland monitoring frameworks to
safeguard grassland ecosystems for the foreseeable future. This necessitates the need for
more prudent scientific research, which both informs and augments environmental pol-
icy and management protocols. Thus, the intention of this investigation was to develop
a semi-autonomous framework to facilitate the detection of nitrogen saturation within
grassland ecosystems. Based on the results of this study, it can be concluded that the RF
classification algorithm and high-resolution 8-band Worldview-3-derived spectral variables
can be used to successfully identify grassland plots at the brink of nitrogen saturation. In
particular, the Red-Edge, NIR3 and Coastal parts of the electromagnetic spectrum were
discovered as crucial wavebands for identifying nitrogen-saturated grassland plots. More-
over, the study identified the NDVI3 and SAVI as key vegetation indices for characterizing
nitrogen saturation.

These findings provide insights into the possible environmental and spectral reper-
cussions of excessive fertilization, as well as a sense of the practical ability of presently
orbiting modern satellite sensors and remotely sensed techniques, in assessing grassland
biochemical conditionality in regions susceptible to nutrient irregularities. Furthermore,
this research provides a framework that is potentially capable of assisting rangeland man-
agers in spatially characterizing and isolating grassland segments within the initial stages of
nitrogen saturation. This will enable fertilization treatments to be adjusted in near-real-time
according to ecosystem demand and thereby maintain the health and longevity of Southern
African grasslands. However, this is just a small component within the overarching frame-
work of sustainable nitrogen usage within the regional biogeochemical planetary boundary.
In order to remain within a safe biogeochemical operating space, it is essential for future
studies to establish specific nitrogen thresholds for individual rangelands within Southern
Africa. Hence, the results, deductions and frameworks derived from this investigation
will serve to crucially inform and expand current rangeland conservational cognizance in
Southern Africa.
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