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Abstract: Automated techniques to detect Alzheimer’s Dementia through the use of audio recordings
of spontaneous speech are now available with varying degrees of reliability. Here, we present a
systematic comparison across different modalities, granularities and machine learning models to
guide in choosing the most effective tools. Specifically, we present a multi-modal approach (audio
and text) for the automatic detection of Alzheimer’s Dementia from recordings of spontaneous speech.
Sixteen features, including four feature extraction methods (Energy–Time plots, Keg of Text Analytics,
Keg of Text Analytics-Extended and Speech to Silence ratio) not previously applied in this context
were tested to determine their relative performance. These features encompass two modalities (audio
vs. text) at two resolution scales (frame-level vs. file-level). We compared the accuracy resulting
from these features and found that text-based classification outperformed audio-based classification
with the best performance attaining 88.7%, surpassing other reports to-date relying on the same
dataset. For text-based classification in particular, the best file-level feature performed 9.8% better
than the frame-level feature. However, when comparing audio-based classification, the best frame-
level feature performed 1.4% better than the best file-level feature. This multi-modal multi-model
comparison at high- and low-resolution offers insights into which approach is most efficacious,
depending on the sampling context. Such a comparison of the accuracy of Alzheimer’s Dementia
classification using both frame-level and file-level granularities on audio and text modalities of
different machine learning models on the same dataset has not been previously addressed. We also
demonstrate that the subject’s speech captured in short time frames and their dynamics may contain
enough inherent information to indicate the presence of dementia. Overall, such a systematic analysis
facilitates the identification of Alzheimer’s Dementia quickly and non-invasively, potentially leading
to more timely interventions and improved patient outcomes.

Keywords: Alzheimer’s Dementia; deep learning; text/acoustic analysis; spontaneous speech

1. Introduction

Alzheimer’s Dementia (AD) is a neuro-degenerative disease [1], where language and
speech decline [2,3] can manifest years before other functions, such as behavior, memory,
and sensory–motor skills, are compromised [2,4]. A wide range of speech and language
impairments are well-documented and the focus of several review papers (e.g., [5–8],
amongst others). Analysing spontaneous speech may afford timely intervention upon
diagnosis of AD in its early stages.

With the rise of machine learning (ML) tools in the last decade, automatic speech
analysis exploiting acoustic features for the screening, early detection and intervention of
AD are becoming more robust and more practical to implement [9–11]. Furthermore, text
feature extraction techniques due to breakthroughs in natural language processing (NLP)
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tools [12], pretrained transformer-based language models [13,14] and automatic speech
recognition (ASR) [15,16] methods have shown promising results in predicting AD.

Accordingly, speech-based approaches for AD prediction rely on acoustic
features [16–19], text representations [20–22] or a fusion of both [23,24]. The authors
in Ref. [17] compared conventional acoustic features (fundamental frequency, jitter, shim-
mer, etc.), pretrained acoustic embeddings using wav2vec 2.0 and a combination of both
(by simply concatenating the representations from pretrained models and conventional
acoustic features) on the ADReSSo-2021 (Alzheimer’s Dementia Recognition through Spon-
taneous Speech only) dataset [25]. In addition, Ref. [17] investigated Logistic Regression
(LR), Support Vector Machines (SVM), Neural Networks (NN), and Decision Trees (DT),
reporting 67.6% accuracy on the combined representation of conventional acoustic features
and pretrained acoustic embeddings (using SVM classifier). ADReSSo-2021 dataset [25]
is also chosen for our investigation and comprises of 166 and 71 audio recordings in the
training set and testing set, respectively. Using the same dataset, Ref. [16] achieved 78.9%
accuracy using pretrained acoustic embeddings. Notably, Ref. [18] studied AD classifi-
cation using only acoustic features on a DementiaBank dataset [26,27] (473 recordings:
233 speech samples from 97 cognitively normal (CN) and 240 samples from 167 AD pa-
tients) to report high accuracies of 94.7%, 92.3% and 90.9% using Bayesian Networks (BN),
Meta-Bagging (MB) and Random Forest (RF) classifiers, respectively. On the other hand,
Ref. [20] achieved an accuracy of 81.0% by utilizing only linguistic features from textual
transcripts of the spontaneous speech (with pretrained transformer-based models) based
on the smaller ADReSS-2020 [28] dataset (audio recordings in training set: 108; testing
set: 48) [28]. Using only transcripts of this dataset, Ref. [22] achieved an accuracy of 83.3%
by using FastText-based classifiers to which bigrams and trigrams were appended to the
input transcription (which included discourse markers such as “um” and “uh”).

Indeed, incidental comparisons between acoustic-based features and text-based fea-
tures in dementia classification showed that text-based features performed better than
acoustic-based features [24,29–32]. More specifically, Ref. [24] classified AD patients with
85.0% accuracy using language-only features as compared to 65.0% using acoustic-only
features on the ADReSS-2020 test dataset. On the same dataset, Ref. [29] achieved 85.4%
accuracy with BERT text embeddings (SVM classifier), whereas the acoustic feature accu-
racy using i-vectors (kNN classifier) was only 56.3%. Based on the ADReSSo-2021 dataset,
Ref. [31] achieved the highest published accuracy of 84.5% (to date) using linguistic-only
features, compared to 74.6% accuracy of acoustic-only features. On this dataset, however,
Ref. [30] reported identical accuracies of 84.5% obtained for linguistic features as well
as fusion of acoustic and linguistic features. Based on a subset of ADReSSo-2021 dataset
(166 audio recordings), text-based features outperformed audio-based features in Ref. [23]
(83.7% accuracy) and Ref. [32] (81.6% accuracy). Some recent studies indicate that a fusion
of acoustic and linguistic features can improve AD prediction accuracy [23,33–35]. Ref [23]
reported 83.7% accuracy by fusing acoustic features (IS10 paraling, fine-tuned wav2vec
2.0) and deep linguistic features (extracted using fine-tuned BERT) using an SVM classifier
on the ADReSSo-2021 dataset. On the same dataset, Ref. [35] reported an accuracy of
81.6% by fusing linguistic and acoustic features. Ref. [36] utilized a C-Attention network
trained on a combination of both linguistic features and acoustic embeddings to achieve an
accuracy of 80.2%. However, similar to [30], Ref. [34] reported that both text features and
fusion features achieved the same accuracy. Further, Ref. [34] reported an accuracy of 81.2%
for both text features (Transformer-XL) and bimodal fusion features (ensembled output)
on ADReSS-2020 [28] dataset. On this dataset, Ref. [33] achieved 75.0% AD classification
accuracy by fusing acoustic-based models and transcript based models, compared to 72.9%
and 58% accuracies of unimodal transcript-only and acoustic-only models, respectively.
Furthermore, a fusion model investigated by [37] used a BiLSTM model with highway lay-
ers using linguistic (words, word probabilities), disfluency features, pause information and
a variety of acoustic features to achieve an accuracy of 84.0% based on the ADReSSo-2021
dataset (the focus of this study).
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Many deep learning (DL) models are now widely used in speech recognition research
because they allow for the implementation of multiple layers that capture information at
different granularity levels. Improved prediction accuracy scores have been reported for
AD classification tasks using deep learning approaches. Based on the ADReSS-2021 dataset
(the focus of our study), Ref. [16] used acoustic embeddings from pretrained models (trill,
allosaurus, and wav2vec 2.0), achieving an accuracy of 78.9% using wave2vec 2.0. Using
VGGish deep acoustic embeddings (ADReSS-2020 dataset) combined with other feature
aggregation methods, such as Fisher Vector encodings (FVs) and Bag-of-Audio-Words
(BoAW), Ref. [38] achieved an accuracy of 85.4%. Ref. [39] attained an accuracy of 83.3%
using fine-tuned Bidirectional Encoder Representations from Transformers (BERT) based
on the ADReSS-2020 dataset. For automatic AD identification from continuous speech,
Ref. [40] utilized perplexity characteristics collected from N-gram language models and
achieved 84.5% accuracy. Ref. [41] investigated both language features retrieved from
the transcripts and encoded pauses and reported 89.6% accuracy by using pretrained
language models along with pause encoding using the ADReSS-2020 dataset. Using
this dataset, Ref. [42] achieved 83.3% accuracy by utilizing multi-layered perceptrons
(MLP) and recurrent neural networks (RNN) while modelling several audio and linguistic
characteristics. By combining the text embeddings (both word level and phoneme level)
with audio features, Ref. [43] reported AD classification accuracy of 79.1%. They also used
phoneme-level embeddings to train deep learning text systems on their small ADReSS-2020
dataset due to concerns of frequent overfitting. Ref. [44] implemented transformer-based
models (ALBERT, XLNet, RoBERTa, BioBERT, BioClinical-BERT, ConvBERT, BERT) on the
ADReSS-2020 dataset and achieved an accuracy of 87.5% using BERT text embeddings.

Previous studies, however, did not have the opportunity to compare these models on
the same dataset. Therefore, to meaningfully assess the efficacy of the various approaches
already deployed, here we report a survey comparing multi-modal feature spaces engaging
multi-model and multi-feature cues in addressing Alzheimer’s Dementia based solely
on the same dataset: ADReSSo-2021 [25]. In this study, we offer a rich comparison of
sixteen different methods to classify between AD and CN subjects from audio recordings of
spontaneous speech. Such an assessment fairly compares the performance of these sixteen
models and architectures on the same dataset, for both audio-based features and text-based
features on the file-level and frame-level. These have not been reported before.

Accordingly, this study offers the following contributions:

• Provide a systematic comparison of the performance of sixteen features trained on
the same dataset, offering insight towards facilitating the implementation of context-
based tools.

• Notably, four of these feature extraction methods (Energy–Time plots, Keg of Text
Analytics, Keg of Text Analytics-Extended and Speech to Silence ratio) are original
approaches, contributing to existing methods.

• Specifically, we systematically compare the performance of both audio-based and
text-based modalities at both frame-level and file-level resolution scales based on the
same dataset. This rigorous approach allows comparison and insight on how audio-
based and text-based modalities compare at different levels of granularity, facilitating
accurate and effective AD classification based on the constraints of temporal and
signal-to-noise ratio contexts towards applications in practical (clinical) field settings.

2. Experimental Methodology

In our investigation, we use a set of audio recordings in which participants are asked
by the interviewer to describe the Cookie Theft picture from the Boston Diagnostic Aphasia
Examination [45] provided as part of the ADReSSo-2021 dataset [25]. Participants include
both CN subjects and people who have been diagnosed with AD. The Mini-Mental State
Exam (MMSE) score was used to distinguish between CN and AD subjects.
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2.1. Audio Pre-Processing and Choice of Features

To ensure the quality of our model’s training, we aim to restrict the use of data solely
to the relevant subject. Hence, all audio associated with the interviewer (including when it
overlapped with the subject) was removed while retaining all other audio segments (such
as silence and filler words), as these non-speech segments could still contain useful cues.
To achieve this, segments corresponding to the interviewer were manually removed using
Adobe Audition [46]. Various training features were then extracted in both audio and text
domains, at both frame-level or file-level (detailed in Table 1). Text features were extracted
from transcriptions of the recorded speech generated using Otter.ai [47], a commercial
speech-to-text transcription service.

As speech cues can occur at different levels (individual phonated utterances or the
entire string of utterances across the interview), we analyze the data on two levels: frame-
level (’granular’ or ’frame-by-frame’ descriptors) and file-level (across the entire interview
recording). Specifically, audio features at the frame-level were obtained by segmenting
the audio signal into shorter frames (∼10–25 ms), whereas the audio features at the file-
level were computed by utilizing the audio recording of the complete interview (minus
the interviewer). Likewise, text features at the frame-level were extracted from words
and short phrases (i.e., below the sentence level) of the transcribed speech (relying on a
speech-to-text service), rather than employing the complete transcription of each subject’s
interview, where the latter was utilized in the generation of text features at the file-level.
This approach facilitated insight into distinctive and efficacious features from both audio
and text data at different levels of granularity.

Table 1. Training features used in our 16 models.

File-Level Frame-Level

Audio eGeMAPS OpenSMILE (Prosody)
Emobase-Large VGG
Emobase OpenL3
Speech/Silence
Energy-Time Plots

Text Keg of Text Analytics Word Embedding
Summed Word Embedding BERT, RoBERTa, DistilBERT
Keg of Text
Analytics-Extended XLNet

2.2. Audio Feature Extraction
2.2.1. File-Level Audio Features

File-level features (or high-resolution features) were extracted from entire audio files
provided (minus the interviewer speech). These include features extracted using various
configuration files of the OpenSMILE library (Emobase, Emobase-Large, eGeMAPS) and
our original features: Speech/Silence statistics and Energy–Time plots. OpenSMILE [48]
(open-source speech and music interpretation by large-scale extraction) is a convenient
toolkit which provides acoustic feature extraction and is capable of extracting low-level
descriptors (LLD).

• Emobase: We extracted 988 acoustic features: 26 LLDs, along with their deltas and
their 19 functionals [48,49]. The feature set contains the mel-frequency cepstral coeffi-
cients (MFCCs), voice quality, fundamental frequency ( f0), f0 envelope, line spectral
pairs (LSP), intensity features along with their first- and second-order derivatives and
several statistical functions applied to these features, resulting in a total of 988 features
for every speech segment.

• Emobase-Large: Using Emobase-Large [48,49], we extracted 6552 file-level features:
56 LLDs along with their 56 delta for their 56 delta–delta and 39 functionals. Local
features or low-level descriptors (MFCCs, pitch, energy, quality of voice, etc.), their



Appl. Sci. 2023, 13, 4244 5 of 18

first and second derivatives (i.e., delta and delta–delta) and statistical functionals
(global features) were extracted.

• eGeMAPS: We extracted 88 file-level features (25 LLDs and their functionals) using the
eGeMAPS [50] configuration in the OpenSMILE toolkit. The eGeMAPS configuration
offers a reduced fundamental feature set to include 88 features, comprising of f0
semitone, loudness, spectral flux, MFCCs, jitter, shimmer, F1, F2, F3, alpha ratio,
Hammarberg index and their most common statistical functionals [48] and can detect
physiological changes in voice production.

• Speech/Silence: Pauses were identified in the preprocessed audio using a voice
activity detection (VAD) algorithm [51]. Speech segments of less than 0.3 s and silence
segments of less than 0.2 s are considered false detections and are converted into the
opposite type. The feature set consists of nine features. Out of the nine features, five
correspond to the number of pauses, which were organized into five “pause bins”
(pb). Each pause bin is associated with a duration: <0.5 s (pb1), 0.5–1 s (pb2), 1–2 s
(pb3), 2–4 s (pb4) and >4 s (pb5). The sixth feature is the “Centre of Mass of pause
bins” (pbcm), where pbcm represents the number of pauses in a bin multiplied by
the respective bin number, calculated as a weighted sum of the five bins, as shown in
Equation (1).

pbcm = 1 ∗ pb1 + 2 ∗ pb2 + ... + 5 ∗ pb5 (1)

Furthermore, the remaining three features are “sprat” (speech chunk to pause chunk
ratio), where the ratio of lengths of each pair of speech chunks and consequent pause
chunks are calculated. This speech–silence subsequent segment pair duration ratio
in the first, second (median) and third quartiles across the whole recording (spratq1,
spratq2 and spratq3) followed by average duration of speech segments were then
calculated. Figure 1 shows a typical distribution of normalized Speech/Silence features
analyzed. As seen in this Figure 1, the pause bins of the healthy control (CN) group is
always lower than the AD group. As expected, the opposite trend of higher speech
chunk to pause chunk ratio was observed for spratq features in the CN group.

Figure 1. A typical distribution of normalized speech/silence features analyzed for Alzheimer’s
Dementia (AD) and Control Normal (CN). pb3: pause bin of 1–2 second duration; pb4: pause bin of
2–4 second duration; spratq1, spratq2 and spratq3 are the speech–silence segment ratio in the first,
second (median) and third quartiles across the entire audio recording.

• Energy–Time plots: Two types of images were generated to represent the time ampli-
tude signal of the segmented audio files: a plot with Cartesian coordinates (x = time,
y = absolute value of amplitude) (Figure 2a,b) and a polar plot with time mapped
to angle θ and absolute amplitude values mapped to the radii ρ (Figure 2c,d). All
the values were normalised to a number between 0 and 1, except for θ which was
normalised to an angle between 0 and 2π. The resulting images were then used
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to train an image-based model. (A side benefit: because the tangential direction in
polar representation represents the temporal domain, the noise floor is consequently
diminished in visual weight, thereby making the polar representation somewhat less
sensitive to the noise floor.)

Figure 2. A typical Energy–Time plot is shown. Cartesian representation for (a) Control Normal
(CN) and (b) Alzheimer’s Dementia (AD) and polar representation for (c) Control Normal (CN) and
(d) Alzheimer’s Dementia (AD) shows rhythmic/metrical representations as different spatial features.

2.2.2. Frame-Level Audio Features

Frame-level features extracted from audio frames include VGG, OpenL3 feature em-
beddings and features extracted using another configuration file, Prosody, using the OpenS-
MILE toolkit [48]:

• VGG: Semantically meaningful feature embedding extracted from the audio using
VGGish resulted in a 128-dimension embedding of the input audio feature (modified
mel-spectrogram to a log scale) extracted from an audio frame [52,53].

• OpenL3: OpenL3 embeddings were extracted from the audio signal, resulting in a
512-dimension embedding of the input audio feature (mel-spectrogram) extracted
from an audio frame [54].

• Prosody: Features include f0, voice probability and PCM loudness, among others [48].

2.3. Text Feature Extraction

Automatic transcription was performed for the manually segmented audio signal
using Dropbox integration with Otter.ai [47]. From the generated transcripts, text features
were extracted. Unfortunately, the automated transcription excluded instances of hesitation
such as uhm, errr, uh, etc., which may in fact contain useful cues for classification. We also
note that the transcription accuracy may be compromised by the audio quality. Thus, the
reliability of the transcription obtained from Otter.ai then had to be checked manually. Sim-
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ilar to the audio feature extraction, both file-level and frame-level features were extracted
from the transcript.

2.3.1. File-Level Text Features

Linguistics metrics were extracted from the automatically transcribed text. Features
from the BERT family (BERT, DistilBERT, RoBERTa) and XLNet were extracted using the
HuggingFace transformer [55] library. Keg of Text Analytics is an original feature.

• Keg of Text Analytics: The file-level text features extracted using Matlab’s text analyt-
ics toolbox include: total number of words (Wt); total number of unique words Wu;
unique words normalised (Wu/Wt) (looking out for repeated words or repetitive use
of simple words); speech rate in words per seconds (Wt/t); number of words which
are not ‘stop words’ (Wt − Ws) (‘stop words’ are words which can be omitted without
losing meaning of the sentence, e.g., ‘a’, ‘the’, ‘to’, ‘and’); ratio of number of words
with ≥4, ≥5 and ≥6 letters to the number of unique words (although the correlation
between longer words and complexity is not constant in English, it aids in filtering
out short words); the number of nouns, pronouns, adjectives, verbs, adverbs, auxiliary
verbs, ad-positions, coordinating conjunctions, interjections, subordinating conjunc-
tions and determiners and lastly, binary representation of the presence of the word
“cookie” (included because many dementia subjects struggle to use the word “cookie”
in the “Cookie Theft” picture). Figure 3 shows a typical parts-of-speech comparison
for AD and CN. Further, a word cloud of 45 randomly selected AD and CN subjects
from training is shown in Figure 4 (words with fewer than 4 characters were ignored
in these charts). The difference in word count between CN and AD is obvious (seen in
both Figures 3 and 4 ): the CN group has a larger vocabulary bank than the AD group.
Furthermore, CN subjects produce longer words frequently, indicating a possibly
higher cognitive capacity. Two sets of file-level text features were investigated: Keg of
Text Analytics and Keg of Text Analytics-Extended. In the former, a total of 12 features
were used (Wt, Wu, ratio of number of words with more than ≥4, ≥5 and ≥6 letters to
the number of unique words, Wt − Ws, Wt/t, number of pronouns, nouns, adverbs,
adjectives and auxiliary verbs), and in the latter, a super-set with 18 features (contain-
ing the former 12 plus 6 additional features: number of ad-positions, coordinating
conjunctions, interjections, subordinating conjunctions and determiners and binary
representation of presence of “cookie”) was used.

Figure 3. A typical parts-of-speech comparison extracted as part of Keg of Text Analytics. Differ-
ences between Alzheimer’s Dementia (AD) and Cognitively Normal (CN) subjects can be observed,
particularly for nouns.
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Figure 4. Word cloud of transcribed speech from (a) Alzheimer’s Dementia (AD) and (b) Healthy
Control (CN) groups.

• Summed Word Embedding: Words from the transcripts are embedded into a vector
space model using FastText pretrained word embedding and sentence
classification [56,57]. The hyperspace dimension for this embedding was 300, re-
sulting in a vector of 300 elements for each word. The resulting vectors were then
summed up to produce an overall representation of the transcription. Although the
implication of this sum is not immediately intuitive, our results here suggest that, at
least for this dataset, it seems helpful to provide cues for the overall transcript.

• BERT: The text transcriptions were used to generate feature embedding vectors from
the pretrained BERT (Bidirectional Encoder Representations from Transformers) [14]
model. BERT is used for pretraining a language representation over a large amount of
unlabeled textual data and employs an attention mechanism (an encoder that reads
the text and a decoder that predicts), resulting in deeper sense of language contextual
relationships between words in a text.

• RoBERTa: RoBERTa (a Robustly optimized BERT approach) [13] uses dynamic mask-
ing (unlike BERT’s static masking) which increases the data variability (by augmenta-
tion) and helps in yielding more robust features.

• DistilBERT: DistilBERT is a cheaper, smaller version of BERT [58], which is 60% faster
and 40% smaller, while retaining 97% of its performance.

• XLNet: XLNet [59] uses an autoregressive pretraining method unlike BERT’s autoen-
coding based pretraining.

2.3.2. Frame-Level Text Features

Word Embedding: This feature extraction is similar to the Summed Word Embedding
extraction, except they are not summed; instead the 300 element feature representations of
the individual words are analyzed.

2.4. Training Models

This study looked into a variety of machine learning and deep learning models.
Table 2 shows the investigated models for the sixteen feature set. The choice of selected
models was motivated by the success of these algorithms in supporting fast-prototyping
when working with various frame-level or file-level features. Various combinations of
classifiers and their hyperparameters were fine tuned for every feature set, and the resulting
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training losses were compared. Those with the lowest training loss for a particular feature
are reported here. Voting was also used to combine various ensemble models, including
Bagging, Gradient Boost, Random Forest, and Adaboost classifiers because the resulting
combination outperformed the individual classifiers. In the case of frame-level features,
where long-term dependencies and dynamics are present in the sequences of data captured
at the frame-level, GMM-UBM and BiLSTM were used. GMM-UBM uses a 512 mix of
Gaussians, and the BiLSTM models were only one layer deep with 100 hidden units, except
for OpenL3 that was two-layers deep. For deep neural networks used for modelling
various text embeddings, a grid search was applied, and hyperparameter optimization
was performed to decide on a dense (fully-connected) layer network with either ReLU
or Softmax activations. A convolution neural network (CNN), a traditional approach for
handling images, was chosen with four convolution layers of 3 × 3 with max pooling for
modelling the Energy–Time plot feature set.

Table 2. Training features and models investigated in this work are shown. AD: Alzheimer’s
Dementia; CN: Cognitively Normal.

Resolution (Modality) Feature Models
(Number of Estimators, If Applicable)

file-level (Audio)

eGeMAPS Bagging Classifier (500)
Emobase-Large Hard Voting

(Random Forest (1000) + Bagging
Classifier (200))

Emobase Bagging Classifier (200)
Speech/Silence * Catboost (1000)
Energy–Time plot CNN

file-level (Text)

Keg of Text Analytics (500)
Keg of Text Analytics-Extended Random Forest (500)

Summed Word Embedding Hard Voting
(Random Forest (500) + Gradient

Boosting (500) + Bagging Classifier (500))
BERT * DNN (4-layers)

DistilBERT * DNN (5-layers)
RoBERTa * DNN (3-layers)

XLNet * DNN (3-layers)

frame-level (Audio)
OpenSMILE (Prosody) GMM-UBM

VGG BiLSTM
OpenL3 BiLSTM

frame-level (Text) Word Embedding BiLSTM

* See Appendix A for details of model architecture.

The Summed Word Embedding feature and all the ensemble models, such as Random
Forest, Adaboost, Gradient Boost and Bagging Classifiers, demonstrated similar losses,
and hard-voting resulted in an even lower loss. For the Speech/Silence feature, SVM
outperformed ensembles, whereas CNN appeared to be the best choice to analyze the
Energy–Time plots, since the aim was to identify spatial patterns in those plots. The BiLSTM
models chosen for frame-level features were only one layer deep with 100 hidden units.

2.5. Train–Test Dataset and Result Evaluation Metric

The ADReSSo-2021 dataset [25] has subjects from the healthy control group (CN
cohort) and subjects with cognitive decline (assigned to the AD cohort). Of the 237 audio
recordings made available, which were balanced for age and gender (to avoid biases),
166 were used for training, and the models were tested against a mutually exclusive
71 audio recordings. The number of audio recordings in the AD training and testing
group were 87 and 35, respectively. The CN training and testing group contained 79 and
36 recordings, respectively.
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The results for AD classification task are shown in terms of accuracy (see Equation (2)).
We considered the AD class to be the positive one.

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(2)

The ADReSSo-2021 dataset [25] is a subset of the English Pitt corpus of
DementiaBank [26,27], where AD and CN subjects respond to the Cookie Theft stimu-
lus from the Boston Diagnostic Aphasia Examination [45] consisting of the following:
average age of AD patients is 69.3± 6.9 years; average age of CN subjects is 66.0± 6.3 years.
A total of 237 audio recordings of the Cookie Theft picture description task is provided,
constituting of 122 CN subjects (43 men, 79 women) and 115 patients with AD diagnosis
(40 men, 75 women). These recordings also include the interviewer’s instructions to the
subjects or occasional short prompts. The average duration of interviews of AD and CN
groups was 65.7 ± 38.6 and 61.6 ± 26.9 seconds, respectively. To minimize biases, not only
was this dataset matched for age and gender, but also carefully matched to avoid commonly
overlooked issues, such as repeated occurrences of speech from the same participant, varia-
tions in audio quality, etc. The audio was acoustically enhanced by removing stationary
noise, and audio volume normalization to control for recording condition variations, such
as microphone placement, was also performed [25].

3. Results

All our 16 models performed well above chance (see Table 3), with the poorest per-
formance arising from Speech/Silence with 66.2% accuracy. On the other hand, the best
performing model was RoBERTa at an accuracy of 88.7%, followed by DistilBERT at 85.9%
and BERT at 84.5%. Looking at the confusion matrix (Figure 5) for RoBERTa, 29 out of
36 CN subjects and 34 out of 35 AD subjects were correctly classified. A comparison be-
tween file-level text features and file-level audio features reveals the file-level text features
outperform file-level audio features: 78.8 ± 7.6% vs. 70.9 ± 4.5%, respectively, on average.
This observation is true even on a broader scale (overall text vs. overall audio): 78.8 ± 7.0%
vs. 73.2 ± 4.9%, respectively, on average. This agrees with previous observations [24,30,43]
that text features contain more distinguishing cues than audio features for identifying AD.

Regarding automated transcription, whose accuracy depends on the overall intel-
ligibility of utterances recorded, CN cases naturally transcribe richer (due to increased
verbosity and word variety) and more faithfully (due to better speech clarity) than AD.
Transcriptions that yield meaningful strings of words (or not) will result contrastingly
in the text feature analysis (see Figure 3), facilitating classification between AD and CN.
Accordingly, we indeed observed our best performances at 88.7%, 85.9% and 84.5% when
using BERT-related features. While analyzing other text feature sets, the Keg of Text Ana-
lytics and Keg of Text Analytics-Extended both resulted in identical accuracies of 76.1%, a
drop in performance compared to the BERT-related features (which was associated with
more AD misclassifications). Finally, the Summed Word Embedding resulted in greater AD
and CN misclassifications due to lower accuracy (73.2%) in comparison with Keg of Text
features and BERT-related text features.

Now, frame-level audio features (77.0 ± 3.2%) performed better than file-level audio
features (70.9 ± 4.5%), suggesting that extended audio recordings need not be aggregated,
but rather brief speech audio samples representing intrinsic mechanics and dynamics of
speaker idiosyncrasies may be preferred, being also easier to collect and execute. Among
the various file-level audio features explored, however, Emobase and Emobase-Large
yielded accuracies of 70.4% vs. 77.5%, respectively. In this case, Emobase-Large (consisting
of a larger feature set) resulted in lower misclassification for both AD and CN. In con-
trast, eGeMAPS resulted in 67.6% accuracy, which is associated with greater AD and CN
misclassification than Emobase (70.4%).
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Figure 5. Confusion matrix (0- CN, 1- AD) for the best performing model: RoBERTa.

The best performing text-based feature at the file-level (RoBERTa) performed 9.8%
better than the frame-level (Word Embedding). Conversely, the best audio-based feature
at the frame-level (VGG) performed 1.4% better than the best file-level audio feature
(Emobase-Large). Extracting deep features using VGG’s deep neural networks at the frame-
level could be a reason for its higher performance than the conventional acoustic features
(low-level descriptors and functionals) of extractors, such as Emobase-Large. Mostly, VGG
was able to find task-specific features leading to better classification accuracy.

Our four original feature extraction methods proposed—Speech/Silence, Energy–Time
plot, Keg of Text Analytics, and Keg of Text Analytics-Extended—achieved accuracies of
66.2%, 73.2%, 76.1% and 76.1%, respectively. Although the accuracies of both Keg of Text
Analytics and Keg of Text Analytics-Extended features were 76.1%, the incorrectly classified
subjects were not the same. These ab initio results may be currently lower than the well-
established features, but with further exploration, we may expect overall improvements
in performance.

The pretrained BERT, DistilBERT, RoBERTa and XLNet models used in this study
achieved accuracies of 84.5%, 85.9%, 88.7% and 67.6%, respectively (Table 3). These
pretrained models performed feature extraction by first processing the transcribed texts
followed with a hyperparameter optimization for deep neural network (DNN) models.
Appendix A details how the DNN models for BERT, DistilBERT, RoBERTa and XLNet
were optimized.

Table 4 compares the best results of this study to state-of-the-art models (at the time
of writing) for other AD classification studies based on the same ADReSSo-2021 dataset,
surpassing them in accuracy by 4.2%. Consistent with earlier reports of successful pre-
trained BERT models in AD classification, in this study, RoBERTa achieved the best accuracy
of 88.7%.
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Table 3. Training features and their associated performance are shown. Accuracy is presented
as a percentage reflecting the total correct predictions out of total predictions. Accuracy = (True
Positive+True Negative)/(True Positive+True Negative+False Positive+False Negative). AD class is
positive. AD: Alzheimer’s Dementia; CN: Normal Control.

Resolution (Modality) Feature
Accuracy (%)

(Correct CN Class/Total CN Class,
Correct AD Class/Total AD Class)

file-level (Audio)

eGeMAPS 67.6 (26/36, 22/35)
Emobase-Large 77.5 (30/36, 25/35)

Emobase 70.4 (29/36, 21/35)
Speech/Silence 66.2 (25/36, 22/35)

Energy-Time plot 73.2 (25/36, 23/35)

file-level (Text)

Keg of Text Analytics 76.1 (30/36, 24/35)
Keg of Text Analytics-Extended 76.1 (30/36, 24/35)

Summed Word Embedding 73.2 (26/36, 26/35)
BERT 84.5 (30/36, 30/35)

DistilBERT 85.9 (29/36, 32/35)
RoBERTa 88.7 (29/36, 34/35)

XLNet 67.6 (25/36, 23/35)

frame-level (Audio)
OpenSMILE (Prosody) 78.9 (28/36, 28/35)

VGG 78.9 (31/36, 25/35)
OpenL3 73.2 (22/36, 30/35)

frame-level (Text) Word Embedding 78.9 (28/36, 28/35)

Table 4. Comparison with other studies reporting from the ADReSSo-2021 dataset.

Reference Best Performing Modality Highest Accuracy % (Model)

[36] Fusion (Audio + Text) 80.2 (C-Attention Network)
[30] Fusion (Audio + Text) 84.5 (LR)
[16] Audio 78.9 (DNN)
[37] Fusion (Audio + Text) 84.0 (BiLSTM)
[31] Text 84.5 (BERTlarge)
[60] Fusion (Audio + Text) 83.1 (Ensemble)
[61] Fusion (Audio + Text) 83.1 (DNN)
[35] Fusion (Audio + Text) 81.6 (Ensemble)
[25] (Baseline) Fusion (Audio + Text) 78.8 (Ensemble)
This study Text 88.7 (DNN)

4. Discussion

This study presents a systematic comparison of various approaches and methods, thus
allowing us some insight into the speech information that should be considered depending
on the speech sampling context. If the audio quality is amenable to faithful transcription
(low background noise, good speaker clarity, monolingual and well-documented accents),
our study shows that file-level text is most effective, with the BERT family performing
rather satisfactorily at 86.2 ± 2.2%. However, care must be taken with file-level text as
XLNet feature (67.6%) offered the second lowest accuracy among the 16 features studied.

In contrast, if the audio quality is good (high signal-to-noise ratio), but the speaker
does not enunciate clearly or perhaps speaks in a way not compatible with automated text
transcription (e.g., mixed languages used, poorly documented accent), the results guide us
to suggest that frame-level analysis is then preferred. It can be expected that phonatory
dynamics captured in short time frames may contain enough inherent information about
the speaker’s psycho-motor health. Further, such an approach relying on using audio
feature sets alone has the added benefit of not being limited to a particular carrier language
since it should reflect the speaker’s cognitive/physiological state without the extra burden
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and process of transcription pigeon-holed in a particular carrier language (which may
introduce transcription errors compromising the efficacy of a text-based approach).

Frame-level features, such as sub-word or phoneme-level representations, are suitable
for training on small datasets and have been shown to have better dementia classification
accuracy than file-level features (such as word or sentence level) [43]. On the other hand,
file-level features have the benefit of larger temporal samples and increased opportunities
to rely on cues that arise randomly or infrequently [41].

Overall, text modality performs better on average (file-level + frame-level) than audio.
This may suggest that with the onset of AD cognitive decline affects linguistic capacity
more sensitively and may be apparent earlier than physiological decline. Given that factors,
such as semantic distance, lexical resource and grammar structure, may become simpler
as cognitive decline progresses, text-based methods could be more useful and provide
greater insight into differentiating AD from CN, resulting in higher detection accuracy.
However, text-based approaches require faithful and robust transcription processing as
an additional step, complicating the analysis. Furthermore, many transcription services
currently available automatically omit non-semantic utterances (such as mmm, uh, um and
ah) which may in fact further enhance detection accuracy [41,62].

Most of the best performing AD classification approaches investigating the ADReSSo-
2021 dataset [25] are trained on either text features alone or a fusion of features, such as
text and audio [25,37], text and disfluency [60] and text and pauses [61], among others.
Using solely text, Ref. [31] achieved an accuracy of 84.5%. On the other hand, several
studies [25,30,35,37,60,61] also reported good accuracies by using fusion approaches, such
as integrating audio and text data, with accuracies ranging from 78.8% to 84.5%. An
audio-only study by [16] reported 78.9% accuracy using wave2vec 2.0 embeddings, which
is comparable to our best-performing audio-only model accuracy of 78.9% using VGG and
Prosody features. Our best performing approach using DNN was trained on RoBERTa text
embeddings and offers comparable AD detection accuracy scores while still outperforming
the existing state-of-the-art approaches on the ADReSSo-2021 dataset. While more ap-
proaches on other datasets exist in the literature, comparing them with this study will not
offer a fair comparison. In our study, fine-tuned pretrained RoBERTa embeddings (using
automatically transcribed text) achieved the highest accuracy (to date) score of 88.7%,
offering a 4.2% improvement over Ref. [30] and Ref. [31] (both reported 84.5% accuracy).
Thus, although on prima facie, our study may seem to suggest that text-based methods
outperform audio-based methods, the successful implementation of text-based methods
depends sensitively on the context in question (such as carrier language, choice and avail-
ability of reliable transcription, among others). Audio-based methods, on the other hand,
will offer greater flexibility less sensitively to the context. As long as a good signal-to-noise
ratio is achieved in recording the speaker’s utterances, analysis can still proceed with some
reliability, agnostic to the carrier language(s) involved. Lastly, depending again on the
audio context and linguistic requirements, a simple voting- and/or fusion-model can then
be implemented to reconcile the mutli-modal multi-model multi-feature approach to yield
an optimal AD/CN classification outcome. However, this approach was not tested in our
investigation due to the absence of a validation dataset. Thus, although text generally has
better accuracy than audio, it is limited by the reliability of transcription services. Audio
features, on the other hand, would not be constrained by the limitations of carrier/target
language per se.

It should also be noted that the performance of the various models in this study is
limited inherently by the reliability of the provided clinical labels and the quality and
consistency of audio recordings provided in the dataset. In addition, in the absence of a
validation set, we are unable to meaningfully fuse the results of this study further.

5. Conclusions

An approach for assessing audio recordings of spontaneous speech utterances related
to Alzheimer’s Dementia, utilizing a multi-model machine learning strategy, is presented.
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The study analysed the effectiveness of various features extracted from audio recording
and text derived from the audio, employing 16 different models to assess their relative
performance. All models trained on various distinct feature sets demonstrated accuracy
above chance levels. Overall, text-based features extracted from the transcribed audio
outperformed the audio-based features. The best performing model was achieved by
modelling the RoBERTa text embeddings, which attained an accuracy of 88.7%, achieving
near-perfect classification for AD, identifying 34 out of 35 cases. This represents a 4.2%
improvement surpassing other state-of-the-art models for AD classification trained on the
same ADReSSo-2021 dataset.

When comparing the level of granularity (resolution) in the feature extraction process,
frame-level audio features generally outperform their file-level counterparts. However, as
the number of features increase, such as with Emobase-Large, the results become more
comparable. This suggests that a sufficient number of low-level descriptors can effectively
represent both AD and CN classes. In contrast, while file-level text embeddings have pro-
duced higher accuracy than frame-level word embeddings, this trend cannot be generalized
since only one model was tested at the latter level.

The four original feature extraction methods we proposed, namely Speech/Silence,
Energy–Time plot, Keg of Text Analytics and Keg of Text Analytics-Extended, demonstrated
reasonable accuracy. The image-based Energy–Time plots may offer a new and promising
avenue of dementia detection and invites further investigation. While their performance
may not yet match off-the-shelf feature sets, additional exploration and fine-tuning of these
four original feature extraction methods could lead to further improvements.

This investigation suggests that the transcribed textual data can produce meaningful
word sequences that lead to contrasting results in text feature analysis. This is particularly
helpful in classifying AD and CN patients, as factors such as semantic distance, vocabulary
usage and grammar structures tend to be simpler for dementia patients. While transcrib-
ing English audio datasets is relatively straightforward, transcription resources for other
languages may not be as easily available nor as mature and robust, making the text-based
approach sensitive to the linguistic context of the target speaker. On the other hand, in
an audio-based approach, data are not constrained by carrier language, making it more
generalizable and useful for developing AD classification models that are more universal,
as long as good signal-to-noise ratios of the speech utterances are captured. In practical
terms, however, it is expected that the optimal solution is to implement a combination of
both approaches to best reconcile differences arising from the context.

This study provides insight into the effectiveness of machine learning techniques
trained on both textual and audio data for a given dataset, which is an improvement over
previous studies that focused on only one (or one of the many) aspect(s) of the feature
space or model selection. Insights from this study provide a fast and non-invasive means
of reliable screening for Alzheimer’s Dementia, assessing its severity and monitoring its
progression. Profoundly, outcomes from the frame-level audio features hint at its potential
to be generalizable across languages.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Alzheimer’s Dementia
CN Cognitively Normal
MFCCs Mel-Frequency Cepstral Coefficients
ML Machine Learning
DL Deep Learning
NLP Natural Language Processing
ASR Automatic Speech Recognition
LR Logistic Regression
MLP Multi-Layered Perceptrons
BERT Bidirectional Encoder Representations from Transformers
MMSE Mini-Mental State Exam
LLD Low Level Descriptors
GMM-UBM Gaussian Mixture Model-Universal Background Model
NN Neural Networks
DNN Deep Neural Networks
CNN Convolutional Neural Networks
VAD Voice Activity Detection
LSTM Long Short-Term Memory
RNN Recurrent Neural Networks
BN Bayesian Networks
RF Random Forest
GB Gradient Boosting
DT Decision Trees
SVM Support Vector Machines

Appendix A

BERT*: The DNN model used was four layers deep. Units used in the dense first,
second, third and fourth layers are 103, 76, 65 and 105, respectively. The associated
activation functions used were Softmax, ReLu, Softmax and ReLu, respectively. Adam
optimizer with a learning rate of 0.01 was used.

RoBERTa*: The DNN model used was three layers deep. The units in the dense first,
second and third layers were 65, 154 and 224, respectively. The activation functions used
for these layers were Softmax, ReLu and Softmax, respectively. Adam optimizer was used
with a learning rate of 0.023.

DistilBERT*: The DNN model used for DistilBERT was five layers deep. The units
used in the dense first, second, third, fourth and fifth layers were 120, 29, 213, 98 and 152,
respectively. The activation functions were ReLu, Softmax, Softmax, Softmax and ReLu,
respectively. Adam optimizer with a learning rate of 0.075 was used.

XLNet*: Three layers were used in the DNN model. The units used in the dense first,
second and third layers were 103, 137 and 73, respectively. The activation functions used
for these three layers were Softmax, Relu and Relu, respectively. Adam optimizer with a
learning rate of 0.05 was used.

Speech/Silence*: A 20-fold cross-validation and a grid search were conducted across
learning rates and number of PCA components. The final model’s learning rate was 0.05,
and the PCA dimension was 6. The classifier used was Catboost.
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