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Abstract: For most automatic speech recognition systems, many unacceptable hypothesis errors still
make the recognition results absurd anddifficult to understand. In this paper, we introduce the gram‑
mar information to improve the performance of the grammatical deviation distance and increase the
readability of the hypothesis. The reinforcement of word embedding with grammar embedding is
presented to intensify the grammar expression. An auxiliary text‑to‑grammar task is provided to
improve the performance of the recognition results with the downstream task evaluation. Further‑
more, the multiple evaluation methodology of grammar is used to explore an expandable usage
paradigm with grammar knowledge. Experiments on the small open‑source Mandarin speech cor‑
pus AISHELL‑1 and large private‑source Mandarin speech corpus TRANS‑M tasks show that our
method can perform very well with no additional data. Our method achieves relative character er‑
ror rate reductions of 3.2% and 5.0%, a relative grammatical deviation distance reduction of 4.7% and
5.9% onAISHELL‑1 and TRANS‑M tasks, respectively. Moreover, the grammar‑basedmean opinion
score of our method is about 4.29 and 3.20, significantly superior to the baseline of 4.11 and 3.02.

Keywords: speech recognition; grammar knowledge; multiple evaluationmethodology of grammar;
grammatical deviation distance

1. Introduction
With the inexorable logarithmic growth of computing power and the development

of deep learning, intelligent speech technology has developed rapidly and vigorously in
recent years. The automatic speech recognition (ASR) system, one of the most mature and
advanced techniques in artificial intelligence, has been applied in many fields, improv‑
ing work efficiency and lifestyle changes [1–3]. Especially when the end‑to‑end system
becomes the hotspot, the performance of large‑vocabulary continuous speech recognition
(LVCSR) systems has reached a new historic height [4–6].

However, along with the extensive application of ASR systems, the higher demand
for the performance of LVCSR is increasing, which leads to more comprehensive evalu‑
ation indicators [7–9]. Even though the large‑scale test shows a relatively low error rate,
many unacceptable hypothesis errors still make the recognition results absurd and difficult
to understand for most common application scenarios. These errors break some natural
language expression limitations, such as grammatical and semantic rules, which adversely
affect the recognition result to generalize for some post‑processing tasks, for example, text
summarization (TS) [10], spoken language understanding (SLU) [11] and machine transla‑
tion (MT) [12]. A keyword error may utterly destroy the readability and reliability of the
whole utterance [8]. Therefore, enhancing the rationality and robustness of speech recogni‑
tion systems from a grammatical point of view is important for promoting it to large‑scale
applications.

Grammar information is a prescriptive set of specifications that allow people to com‑
bine words into phrases and sentences during speech interaction. Recognition errors in
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the basic grammatical construction greatly impair the meaning of the whole utterance.
On the contrary, correct grammatical knowledge can contribute to the understanding of
the speech recognition results. A reasonable grammatical structure may aid users’ un‑
derstanding by linking prior knowledge in a more direct way. Although there may exist
some speech recognition errors, most people can really understandwhat the sayingmeans
quickly. Accordingly, the grammar criteria and word error rate (WER) deserve the same
attention that can adapt to the impending technological trends and user requirements. Al‑
though grammar knowledge can be founded in the language model used in the ASR sys‑
tem, explicit grammar constraints apparently are a more effective way to help the ASR
system achieve better recognition performance and improve the readability of the speech
hypothesis.

As is known to all, grammar knowledge is an essential part of natural language pro‑
cessing (NLP) and is widely used inmany tasks in automatic knowledge acquisition. In [13],
dependency parsing (DP) was introduced to design the syntax‑related pre‑training tasks to
improve the performance of the language model. Moreover, Refs. [14,15] employed part‑of‑
speech (POS) embedding to reinforce the word‑embedding expression in the MT task. In
addition, some researchers focused on correcting grammatical and semantic errors in the
speech recognition hypothesis with downstream tasks in order to improve the fluency and
readability of the ASR output [16–18]. An independent NLP task may suffer from the lim‑
ited decoding hypothesis from the ASR output or inconsistency with the original speech ex‑
pression. However, little attention has been given to the combination of automatic speech
recognition tasks and grammar knowledge, which provides more possibility for the one‑
pass decoding process. Unlike the common NLP task, speech recognition cannot take ad‑
vantage of the full context in advance to acquire relatively accurate grammar knowledge
during the first decoding process. Thus, incorporating grammar knowledge into the speech
recognition task will bring enormous challenges.

Compared with the traditional hidden Markov model (HMM)‑based and neural net‑
work (NN)‑based frame‑to‑frame systems [19,20], end‑to‑end speech recognition systems
can directly convert speech input into the corresponding text with the joint optimization of
both acoustic and language models. In this sense, the end‑to‑end structure is better suited
to using grammar constraints as supplementary information. At present, end‑to‑endmeth‑
ods mainly include connectionist temporal classification (CTC) [21], the recurrent neural
network transducer (RNN‑T) [22], and an encoder–decoder based on the attention mecha‑
nism [23]. As a typical non‑autoregressive method, CTC can realize the mapping between
input speech and target labels without an additional alignment operationwhile it depends
strongly on the conditional independent assumptions. RNN‑T consists of an encoder, a
prediction network, and a joint network, and it has gained a lot of attention because of its
streaming mode. The encoder–decoder framework, especially, which is mainly divided
into three parts—encoder, decoder, and the attention module—is often used together with
the CTC model within the multi‑task learning framework to improve the recognition ro‑
bustness [24]. The structure paradigmprovides a good supplement or alternative to restrict
the output hypothesis within the grammatical category.

In order to evaluate the reasonableness of the speech recognition hypothesis with
grammar knowledge, a series of methods are proposed to improve the recognition per‑
formance in this work. Based on the mainstream end‑to‑end ASR system, POS and DP are
regarded as the two operational dimensions of grammar knowledge. First, we integrate
the grammar knowledge into the additional representation of word embedding to further
reinforce the grammar rules of the final recognition hypothesis. The grammar knowledge
is extracted from the hypothesis of the CTC branch. Next, a text‑to‑grammar downstream
task is introduced in the training stage to avoid the mismatch of access to grammar knowl‑
edge between the training and inference stage. With a multi‑task learning method, the
accuracy and the intelligibility of speech recognition can be learned jointly. Finally, a com‑
plete framework for the multiple evaluation methodology of grammar (MEMG) is pro‑
posed. In order to adapt to practical scenarios, MEMG shares most of the decoder param‑
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eters of end‑to‑end systems with little training cost. Meanwhile, an evaluation method for
the grammatical deviation distance (GDD) is defined to evaluate the reasonable degree of
ASR output and overcome the one‑sidedness of the traditional WER criterion. Finally, the
grammar‑based mean opinion score is analyzed based on a subjective evaluation experi‑
ment to help us better evaluate our proposed methods.

We briefly summarize the contributions of this study as follows:
1. A method for incorporating grammar knowledge into end‑to‑end ASR systems is

proposed, which can improve the accuracy of speech recognition and reduce hypoth‑
esis errors.

2. Several grammar constraint methods, such as the reinforcement of word embedding
with grammar embedding and adding the auxiliary text‑to‑grammar downstream
task, are proposed, which can increase the readability of the hypothesis and improve
the user experience of ASR systems.

3. For providing various evaluation methods for grammar knowledge in recognition
outputs, we introduced an evaluationmethod for the grammatical deviation distance
and a grammar‑based mean opinion score to supplement existing common evalua‑
tion criteria such asWER and CER for exploring an expandable usage paradigmwith
grammar knowledge.
Our proposed framework has been demonstrated to be effective in the publicly avail‑

able dataset. Its incorporation of grammar knowledge into end‑to‑end ASR systems not
only provides a valuable avenue for future research, but also enables increased repro‑
ducibility in this field. The rest of the paper is organized as follows: Section 2 gives a
brief introduction to the ASR framework. Section 3 elaborates on the proposed method of
incorporating grammar knowledge into speech recognition tasks. In Section 4, we report
and analyze the experimental results. Finally, we conclude our findings in Section 5.

2. The Framework of the ASR System
The baseline framework of the ASR system considered in this paper is presented in

this section.
The attention‑based encoder–decoder ASR system has enabled state‑of‑the‑art speech

recognition performance over a wide range of tasks. In particular, it consists of a “con‑
former” encoder module and a “transformer” decoder module [25] as shown in Figure 1.
In the conformer module, the input sampling rate is reduced from 10 ms to 40 ms with a
convolutional subsampling block, and the rate is kept constant through the entire multi‑
blocked stacked architecture. Each encoder block consists of the following components:
a sequence of feed‑forward modules, a multi‑head self‑attention module, a convolution
module, and another feed‑forward module. The conformer block gives consideration to
the diversity of both global interactions and local features, and obtain better accuracy with
fewer parameters.

During encoder–decoder training, the CTC criteria, whose non‑autoregressive decod‑
ing method benefits the inference latency, is used to maintain the training robustness and
achieve a fast convergence as the following loss function formula. In addition, the tunable
parameter λ is set between 0 and 1:

Lossasr = λLossce + (1 − λ)Lossctc (1)
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3. Integration of Grammar Knowledge
The attention‑based encoder–decoder ASR system uses grammar knowledge such as

POS and DP to supplement the information representation. In this section, the proposed
methods are introduced in detail, including the reinforcement of word embedding with
grammar embedding, the auxiliary text‑to‑grammar task, and a complete framework for
the multiple evaluation methodology of grammar.

3.1. Reinforcement of Word Embedding with Grammar Embedding
A language model is essential in many natural language processing research fields,

especially in information retrieval, question answering, speech recognition, etc. Moreover,
data‑driven word embedding in an encoder–decoder ASR system can be used to describe
the probability distribution of different syntactic units, such as words, statements, and
even whole documents. However, many grammatical errors in the speech recognition
hypothesis indicate that there is still plenty of room for language model representation im‑
provement. Despite being extremely important, the grammar information in recognition
system rarely gets the attention it deserves. The critical point to changing this situation is
that we should capture grammar informationmore explicitly to produce amore acceptable
quality of the speech recognition hypothesis.

Inspired by the ideas about incorporating grammar tags into the transformer neural
machine translation (NMT) framework [14], we could consider enriching the grammatical
representation of word embedding with POS. According to the characteristics of different
languages, POS helps to identify the correct interpretation of the word. Therefore, the
POS grammar information can serve as a complemental input of the ASR system to further
enhance the performance of the baseline system.

Since each word can be assigned to a POS tag considering the context of the word
in a sentence, we can pre‑process all the training data to obtain POS tags with the help
of an open‑source language technology platform (LTP) tool. Firstly, we realize the word
segment for all the ground‑truth labels in the training data based on the language model,
and then obtain the POS labels for each word in the utterance to align the grammar label
sequence with the character label sequence. Finally, the extracted grammar information is
taken as a part of the input embedding to combinewith theword embedding by direct con‑
catenation. The grammatical constraints will becomemore normative through this pattern
of self‑reinforcement. The following formula describes the process of the reinforcement of
word embedding with grammar knowledge, where the FusionLayer is the splice or addi‑
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tion operation. In addition, the entire flow of the reinforcement of word embedding with
grammar embedding is illustrated in Figure 2.

Yemb−ori = EmbedLayer(y) (2)

Yemb−pos = EmbedLayer
(
ypos

)
(3)

Yemb = FusionLayer(Yemb−ori; Yemb−pos) (4)
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We have to consider the mismatch between the training and testing conditions for
the grammar knowledge acquisition mode. While decoding, no ground‑truth labels can
be used to ensure the accuracy of the grammar information. As an alternative, grammar
labels can be extracted from the hypothesis of the CTC branch. Although there may exist
some inevitable speech recognition errors, the expand space of the POS tags based on the
hypothesis is relatively limited.

3.2. The Auxiliary Text‑To‑Grammar Downstream Task
Although the CTC branch makes the reinforcement of word embedding with gram‑

mar embedding possible, the grammar knowledge extracted from the CTC branch and
the final hypothesis of the encoder–decoder branch support and interfere with each other.
This situationmay increase the risk of low robustness in complex scenes. An auxiliary text‑
to‑grammar downstream task can be added to the ASR system based on the performance
evaluationwith different types of grammatical knowledge to constrain the final hypothesis
directly. Under this circumstance, joint training patterns of speech recognition accuracy
and intelligibility may be more effective.

In this study, we propose a new architecture for text‑to‑grammar tasks based on the
grammatical knowledge of part‑of‑speech and dependency parsing, a vital task format in
natural language processing. The text‑to‑grammar task is a downstream task to constrain
the primary ASRmodel, especially in grammatical representation. In order to enhance the
effective efficiency of the text‑to‑grammar task and further influence the ASR output, the
top hypothesis from the standard encoder–decoder ASR system is equally regarded as an
additional input via a new embedding layer.

The details of the auxiliary text‑to‑grammar task are shown in Figure 3. Here, we
mark the grammar‑label sequence as ygram. In addition, the hu is used to express the hid‑
den states of the decoder module and the he is the representation of the one best decoding
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result encoded by the embedding layer. After obtaining hu and he, the addition opera‑
tion is employed to merge them as the input of the text‑to‑grammar task. The encoder
of the transformer is used as the backbone network of the text‑to‑grammar. The follow‑
ing formula describes the final loss function at the training stage and θ is introduced as a
hyper‑parameter to balance the two tasks.

Losst2g = CE
(
[he : hu], ygram

)
(5)

Loss f inal = Lossasr + θLosst2g (6)
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3.3. Multiple Evaluation Methodology of Grammar
In order to further explore an expandable usage paradigm with grammar knowledge

for the ASR system, we extend a complete framework and make it more robust to the
overall model structure.

As shown in Figure 4, the architecture of the multiple evaluation methodology of
grammar consists of the original ASR loss, the part‑of‑speech loss, and the dependency
parsing loss. In order to combine these extended tasks into the main architecture, we also
employ a multi‑task training method. Nevertheless, unlike the auxiliary text‑to‑grammar
downstream task, the new one is a parallel constraint network structure. The three tasks
share most parts of the decoder parameters. In addition, an independent project layer was
added before the output layers to learn the representation of different types of grammar
knowledge, respectively. Specifically, consistent with the format of the inputs and outputs
for the original ASR loss, the part of speech is evaluated with the sequence grammar labels
ypos, and the representation after passing the linear layer of POS is recorded as hpos. How‑
ever, the dependency parsing task is mainly based on the utterance structure, so we cannot
migrate from the sequence method. Inspired by [26], a bilinear function is introduced to
imitate the structure information, which consists of two parts: the arc and head, respec‑
tively, represent the relationship and location information between words in the utterance.
Here, they are called harc and hhead. The following formula describes the process of the
multiple evaluation methodology of grammar.

Losspos = CE
(
hpos, ypos

)
(7)

Lossdp = γCE(harc, yarc) + (1 − γ) CE(hhead, yhead) (8)

Loss f inal = Lossasr + δLosspos + (1 − δ)Lossdp (9)
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4. Experiments
In this section, the datasets and the experimental setup are described in detail, firstly.

Then, a new evaluation method for the grammatical deviation distance is defined to evalu‑
ate the reasonable degree of the ASR output. Meanwhile, we also introduce the grammar‑
based mean opinion score to evaluate the quality of the hypothesis subjectively. Finally,
the performance of the three methods is evaluated from different angles to give a more
comprehensive analysis of the recognition performance.

4.1. Datasets
We evaluated the performance of the proposed approach on both the small open‑

sourceMandarin speech corpus AISHELL‑1 [27] and the sizeable private‑sourceMandarin
speech corpus TRANS‑M; the details of the two speech recognition corpus are illustrated
in Table 1.

Table 1. The details of the speech recognition corpus.

Dataset Name Subset Duration (h) Utterance

AISHELL‑1
Training 150 120,098

Development 10 14,326
Test 5 7176

TRANS‑M
Training 12,000 12,225,244

Development 3 4834
Test 10 27,952

TheAISHELL‑1 task is a benchmark for large‑Mandarin‑vocabulary continuous speech
recognition, so we choose it as the main task. As an elaborately prepared public dataset,
AISHELL‑1 contains over 170 h of recorded speech data, including 400 speakers. For each
speaker, around 360 utterances are provided. In addition, the domain of AISHELL‑1mainly
includes finance, science and technology, sports, entertainment, and news.

The TRANS‑M task combines multiple data styles, including lessons, conferences, in‑
terviews, and television programs. Obviously, the vocabulary is varied and covers more
fields. Unlike AISHELL‑1, TRANS‑M turns to a more colloquial and dialogic linguistic
style. On the whole, the automatic speech recognition on this dataset is challenging and
highly applicably valuable.
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4.2. Experimental Setup
All experiments in our study were performed using the WeNet toolkit [28] and run

on a server equipped with 8 Tesla V100 GPUs.
Based on the conformer ASR system described in Section 2, an 80‑dimension log‑Mel

filter bank was used as input features with a 25 ms Hamming window with a 10 ms fixed
frame rate, and all the training features were processedwithmean and variance normaliza‑
tion. Speed perturbation and SpecAugment [29] were used simultaneously for additional
data augmentation. Specifically, speechwas perturbed on speedwith the factors of 0.9, 1.0,
and 1.1; SpecAugment was implemented, with two frequency masks with the maximum
frequency mask (F = 10) and two times masks with the maximum time mask (T = 50). The
architecture of the encoder model is composed of a convolutional subsampling module
and 12‑layer conformer blocks. The convolutional subsampling module contains 2D con‑
volutional layers with stride 2, resulting in a 40 ms frame‑rate output. For the conformer
blocks of the encoder module, each layer is configuredwith an 8‑head attention of 512‑dim
and 2048 feed‑forward hidden nodes. For the transformer blocks in the decoder module,
each layer is also configuredwith an 8‑head attention and 2048 feed‑forward hidden nodes.
Finally, 6728 tokens served as the decoder outputs, including the Chinese characters in
GB2312, a start symbol, an end symbol, and an unknown symbol used to indicate ‘out of
vocabulary’.

In order to prevent over‑fitting, label smoothing [30] is applied in the training process,
and the penalty is set to 0.1. The Adam algorithm [31] is adopted to avoid falling into the
local minimum and ensure the algorithm’s stability with regularization terms. The learn‑
ing rate firstly warms up linearly to 0.002 in 25,000 steps and then decreases proportionally
to the inverse square root of the step number. To the framework of the ASR system, the
CTC weight is set to 0.3 in training while it is set to 0.5 in decoding.

4.3. Evaluation Metric of Hypothesis
The character error rate (CER), word error rate (WER), and sentence error rate (SER)

are the three main evaluation methods used to measure the performance of the speech
recognition hypothesis. These methods can objectively reflect the corresponding relation‑
ship between the recognition result and ground truth involved in the deletion (D), insertion
(I), and substitute (S) errors. As is well‑known, we can guess the real meaning of the hy‑
pothesis even if some recognition errors may exist. However, there is another possibility
that some sentences are difficult to understand even if there is only one recognition error
in it. To some degree, the common evaluation criteria, such as CER,WER, and SER, cannot
reflect the legibility of the final recognition result in a more direct way. In some scenarios,
theWER or CER improvementmay no longer correlate with a practical value. It is far from
being enough to take the above evaluation criteria as the only measure of the quality of an
ASR system.

In order to give a more objective and comprehensive evaluation of the speech recog‑
nition hypothesis, another evaluation method involved in the grammatical knowledge is
defined in this work as follows:

Grammatical deviation distance (GDD): The study of its characteristics is to objec‑
tively and accurately redefine a new evaluation metric for the hypothesis, show concern
for grammar knowledge, and pay attention to the grammatical deviation distance between
the hypothesis and ground truth. GDD is proposed as a complementary method of the
speech recognition evaluation criteria. Specifically, we first use the LTP toolkit to obtain
the linguistic tags for the hypothesis and ground truth, such as part‑of‑speech (POS) and
dependency parsing (DP), etc. Then, we align each of them on the linguistic tag level. Fi‑
nally, we calculate the GDD of each utterance according to the weights corresponding to
the linguistic tags. We believe that different linguistic tag errors have different effects on
the GDD.Moreover, we also prove that the design of linguistic tagweights (LTW) is almost
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consistent with the manual review results. The following formula shows the details of the
calculation for the grammatical deviation distance.

UGDD =
LTWerror

LTWtotal
(10)

GDD =
∑M

i=1 UGDD

M
× 100% (11)

whereUGDD is the grammatical deviation distance of each utterance, LTWerror refers to the
sum of the linguistic label weights corresponding to the error linguistic label position, and
LTWtotal is the sum of all linguistic tag weights. In addition,M is the number of utterances
in the data set.

4.4. Experiment Results
Establishment of baseline: In this section, we intend to build a competitive baseline

compared with the prior work to evaluate the effectiveness of the proposed system. As
described in the dataset, we use AISHELL‑1 as the primary training set to establish the
baseline model and make sure the training process is fair and reasonable. As shown in Ta‑
ble 2, the CER in both Dev and Test are competitive enough and robust enough compared
with the other two typical speech recognition systems based on the small open‑sourceMan‑
darin speech corpus AISHELL‑1.

Table 2. The CER of the baseline system.

Model
CER (%)

Dev Test

ESPnet [32] ‑ 5.1
K2 [33] 4.55 5.1
Ours 4.22 4.87

4.4.1. Reinforcement of Word Embedding with Grammar Embedding (RWE)
The extracted grammar information is taken as a part of input embedding to enrich

the representation of each token embedding. In this part, we actually only use the part‑of‑
speech embedding to combine with the word embedding because the sequence of the POS
can be consistent with the character sequence. The POS sequence was obtained from the
ground truth in the training process while it was obtained from the hypothesis of the CTC
branch in the testing process. In order to maintain the unity on the scale of the modeling
unit and combine the two types of embedding, the BIES labeling criteria was used to make
POS tags for different words and expressions.

As shown in Table 3, when the POS sequence was obtained from the ground truth,
the theoretical limit seemed impressive. For AISHELL‑1, the CER dropped from 4.87% to
4.49%while theGDDdropped from 6.16% to 5.50%. There has been a similar improvement
in TRANS‑M. When the POS sequence was obtained from the hypothesis from the CTC
branch, the improvement of the CER and GDDmight seem modest on both the AISHELL‑
1 and TRANS‑M dataset. In actual environments, the performance of the ASR system
may be degraded significantly because of the mismatch between the training and testing
conditions on the POS information. Although the potential of the grammar information is
enormous, it has not been fully developed.
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Table 3. The CER and GDD of the proposed system on two test sets.

Model
AISHELL‑1 (%) TRANS‑M (%)

CER GDD CER GDD

Baseline 4.87 6.16 18.14 24.02
RWE (ground truth) 4.49 5.50 15.30 21.02
RWE (hypothesis from

CTC branch) 4.84 6.16 18.03 24.00

AT2G 4.83 6.08 17.73 23.06
MEMG 4.71 5.87 17.23 22.60

4.4.2. The Auxiliary Text‑to‑Grammar Downstream Task (AT2G)
Since mismatch is a long‑standing and complex problem, we take the joint training

of the ASR task and text‑to‑grammar task as a new configuration. In this experiment, the
loss of the text‑to‑grammar falls at a high speed, and the joint training tasks have a fast
convergence rate and good stability in the training process.

As reported in Table 3, the AT2G slightly reduces the CER and GDD on both datasets.
For TRANS‑M, the CER and GDD of AT2G are 17.73% and 23.06%, respectively, repre‑
senting a relative CER reduction of 2.26% and a relative GDD reduction of 4.00% over the
baseline. However, AT2G adds extra parameters and the cost of model training, andweak‑
ens the constraints of the hidden features in the ASR decoder.

4.4.3. Multiple Evaluation Methodology of Grammar (MEMG)
Tomake the best use of the grammar information, we combine both the part‑of‑speech

loss and the dependency parsing loss into the original loss simultaneously. As described in
Table 3, the results on both AISHELL‑1 and TRANS‑M show that the multiple evaluation
methodology of grammar obtains a very significant performance improvement in terms of
the CER and GDD. Specifically, the AISHELL‑1 of the CER decreased from 4.87% to 4.71%
for the test set that has a 3.29% relative reduction, while TRANS‑M of the CER decreased
from 18.14% to 17.23% with a 5.0% relative reduction. Meanwhile, compared with the
baseline model, the relative GDD reduction of AISHELL‑1 and TRANS‑M can reach 4.7%
and 5.9%, respectively, which indicates the improvement of readability of the final speech
recognition hypothesis.

In order to know the influence of the different evaluation methodologies on the ASR
system, we designed a series of ablation experiments with different hyper‑parameters to
balance the tasks. As shown in Table 4, different grammatical weights are set to make
certain the constraining function of the different evaluation methodologies.

Table 4. The ablation experiments of MEMG.

Evaluation
Methodology Weight

AISHELL‑1 (%)

Dev Test

CER GDD CER GDD

DP

0 4.42 5.48 4.87 6.16
0.1 4.50 5.57 4.88 6.03
0.3 4.42 5.43 4.86 6.06
0.5 4.40 5.43 4.82 6.02
0.7 4.45 5.47 4.93 6.17

POS

0 4.42 5.48 4.87 6.16
0.1 4.31 5.26 4.78 5.84
0.3 4.31 5.16 4.72 5.84
0.5 4.34 5.26 4.69 5.80
0.7 4.27 5.17 4.80 5.83
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Compared with the DP task, the POS task is more effective for the ASR systemwithin
the grammar constraint. It can be explained that learning the structure of awhole utterance
is challenging and usually requires adequate extended information. Meanwhile, we also
note that the lowerCERdoes not necessarilymean a lowerGDD,which is almost consistent
with our guess and observation. When the weight is 0.5, we find the model has almost
achieved consistency improvement.

4.4.4. Model Comparison with External Language Model
In order to prove the practicability and generalization of the proposed model, the

results from the different approaches with the 4‑gram language model on the AISHELL‑1
test are described in Table 5.

Table 5. Model comparison with language model on AISHELL‑1.

Model
No LM (%) 4‑gram LM (%)

CER GDD CER GDD

Baseline 4.87 6.16 4.59 5.79
MEMG 4.71 5.87 4.47 5.51

Compared with the baseline with the external language model, the multiple evalu‑
ation methodology of grammar can also obtain a relative CER reduction of 2.61% and a
relative GDD reduction of 4.84%. Overall, the degree of improvement is only slightly de‑
creased on CER while stable on GDD. For the attention‑based encoder–decoder ASR sys‑
tem which involves the acoustic model and language models, the proposed method could
pay more attention to syntactic information during the training process.

4.5. Grammar‑Based Mean Opinion Score of Speech Recognition Hypothesis
As an objective statistical indicator based on the LTP toolkit [34], GDD is defined to

evaluate the reasonable degree of the speech recognition hypothesis. In order to reflect
the proper degree of intelligibility for all the hypotheses of the different methods, we in‑
troduce a new method to listen to the natural feeling of the users and pay more attention
to their satisfaction. Inspired by the application of the mean opinion score (MOS) in text‑
to‑speech [35,36], the grammar‑based mean opinion score (GMOS) is analyzed based on
a subjective evaluation experiment. Three volunteers with linguistic ability are chosen to
rate the candidate hypothesis on factors including reading fluency, grammar changes, and
semantic deviation. After obtaining the GMOS of the three volunteers, the mean value is
calculated. From Table 6, it can be observed that the multiple evaluation methodology of
grammar has a significant improvement. Compared with the baseline system, the MEMG
increased the GMOS from 4.11 to 4.29 on AISHELL‑1, while it increased the GMOS from
3.02 to 3.20 on TRANS‑M. These results indicate that the proposed method is conducive to
improving the subjective experience.

Table 6. The GMOS of the proposed system on two test sets.

Model
GMOS

AISHELL‑1 TRANS‑M

Baseline 4.11 ± 0.06 3.02 ± 0.08
MEMG 4.29 ± 0.06 3.20 ± 0.08

In Table 7, we also list some examples from the test sets. Our proposed methods im‑
prove the readability of the speech recognition results compared with the baseline model,
which proves the improvement of the grammatical level again.
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Table 7. The examples of two test sets.

ID Model Utterance

1
Ground‑Truth Chinese: 何为爱你知道嘛

English: You know what love is

Baseline Chinese: 何为哎你知道嘛
English: You know what it is

MEMG Chinese: 何为爱你知道嘛
English: You know what love is

2
Ground‑Truth Chinese: 实行全口径统计和动态检测

English: Implement full caliber statistics and dynamic detection

Baseline Chinese: 实行权口净统计和动态检测
English: Implement net power statistics and dynamic detection

MEMG Chinese: 实行全口径统计和动态检测
English: Implement full caliber statistics and dynamic detection

Both the objective statistical indicators and subjective experience indicators above
show that the grammar‑supervised end‑to‑end speech recognition system may be more
suitable for improving the readability and accuracy of the speech recognition hypothesis.
By introducing the grammar knowledge such as part‑of‑speech tagging and dependency
parsing, the information representation of the attention‑based encoder–decoder ASR sys‑
tem can correlate well with an ability to understand the syntactic structure. Compared
with the implicit learning of grammatical knowledge in the decoder module, the explicit
use of grammar knowledge is more conducive to correlating with practical value. The
expandable usage paradigm with grammar knowledge can be used in other intelligent
speech systems, especially those involved in speech and text transition such as text‑to‑
speech systems [35,36].

5. Conclusions
In this study, we have proposed amethod for incorporating grammar knowledge into

automatic speech recognition systems. We have shown that explicit grammar constraints
are an effective way to improve the recognition performance of ASR systems and increase
the readability of the speech hypotheses. Specifically, we have proposed several grammar
constraint methods, including the reinforcement of word embedding with grammar em‑
bedding and adding the auxiliary text‑to‑grammar downstream task, which can intensify
the grammar rules of the final recognition hypothesis.

For providing various evaluation methods for grammar knowledge in recognition
outputs, we introduced an evaluation method for the grammatical deviation distance and
a grammar‑based mean opinion score to supplement the existing common evaluation cri‑
teria such as WER and CER for exploring an expandable usage paradigm with grammar
knowledge.

To evaluate the effectiveness of our approach, we conducted experiments on the small
open‑sourceMandarin speech corpusAISHELL‑1 and largeprivate‑sourceMandarin speech
corpus TRANS‑M to verify the effectiveness of our method. Compared with the baseline,
our approach achieved relative CER reductions of 3.2% and 5.0% and relative GDD reduc‑
tions of 4.7% and 5.9% on AISHELL‑1 and TRANS‑M tasks, respectively. Meanwhile, the
grammar‑basedmean opinion score of our method is about 4.29 and 3.20, while the baseline
can only reach 4.11 and 3.02.

Overall, our study provides a framework for future research on incorporating gram‑
mar knowledge into ASR systems. We believe that this approach has great potential for
improving speech recognition technology and enhancing the user experience in various
applications such as virtual assistants, voice‑controlled devices, and automated customer
service systems.

Future work will evaluate the performance of deeper integration with the grammar
information, and we will also incorporate more downstream tasks to increase the role of
multiple evaluation methods.
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