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Abstract: Language identification is the front end of multilingual speech-processing tasks. The
study aims to enhance the accuracy of language identification in complex acoustic environments
by proposing a multi-scale feature extraction method. This method replaces the baseline feature
extraction network with a multi-scale feature extraction network (SE-Res2Net-CBAM-BILSTM) to
extract multi-scale features. A multilingual cocktail party dataset was simulated, and comparative
experiments were conducted with various models. The experimental results show that the proposed
model achieved language identification accuracies of 97.6% for an Oriental language dataset and
75% for a multilingual cocktail party dataset Furthermore, comparative experiments show that our
model outperformed three other models in the accuracy, recall, and F1 values. Finally, a comparison
of different loss functions shows that the model performance was better when using focal loss.
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1. Introduction

Language identification (LID) is the process of identifying the language type of a given
speech segment [1], and it is a classification task [2]. The overall architecture includes a
feature extraction task and a classification task. So, the system can be feature-intensive,
as [3] represented by training large-scale data, or it can be model-intensive, as obtained
by better classifier models. Both the feature extraction and classification tasks are equally
important, but a balance between them is optimal [4], as described in this paper.

Language identification technology has developed considerably in the last decade.
New deep learning frameworks provide new opportunities for the development of lan-
guage identification research [5]. Recently, people have become increasingly concerned
about language identification in real and complex scenes. As the core front-end processing
module for multilingual intelligent speech processing tasks, language identification can
be used in multiple fields, such as automatic speech recognition, speech translation, and
speech generation. In noisy multilingual overlapping speech, even the human ear may not
be able to accurately identify contents, the clean single speech-based model is not efficient
for overlapped voices. Therefore, it is necessary to separate overlapped speeches before
identifying or understanding the contents.

This study proposes language identification feature extraction technology based on a
squeeze–excitation [6] and multi-scale residual [7] network (SE-Res2Net), which improves
the feature extraction method of the baseline model and greatly improves the recognition
performance of the original language identification algorithm. Experiments were conducted
on the AP17-OLR [8] dataset and a multilingual cocktail party dataset. The accuracy, recall,
and F1 values were improved over the baseline model, and the robustness of the model
was also improved compared to other models.

2. Related Work

As a front-end technology for speech signal processing, language identification plays
a vital role in speech recognition and other related fields, mainly speech translation, pub-
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lic safety, and multilingual dialogue systems [9]. Language identification is a typical
classification problem, and different features can have different influences. As a result,
the corresponding model for each language is trained and saved based on the appro-
priate algorithm [10]. In the recognition process, the features are first extracted and fed
into the classification model, and the language type of the speech signal is determined
based on the similarities [11]. Traditional acoustic models, such as the Gaussian mixture
model–universal background model (GMM-UBM) [12], the hidden Markov model (HMM),
etc. [13], were used for language identification, but these often require an extensive number
of training parameters to capture the feature space’s complexity. To address this issue,
Campbell et al. [14] employed the SVM algorithm to classify the GMM mean supervector of
speech (GMM-SVM). Language scholars also developed a language identification method
that utilizes i-vectors [15]. This approach involves obtaining i-vectors from speech and
employing a back-end discrimination algorithm for language identification. By utilizing
this method, the complexity of multilingual modeling can be reduced while still achieving
exceptional performance.

In recent years, researchers used deep learning to extract the deep bottleneck fea-
tures (DBF) [16] of speech signals. This method used i-vectors instead of acoustic features
and GMM-UBM to capture language information more effectively. However, it also in-
creases the complexity of the model. Researchers have subsequently proposed end-to-end
language identification systems based on different neural network architectures. Firstly,
Lopez-Moreno et al. [5] applied deep neural networks (DNNs) to short-time language
identification. Gonzalez-Dominguez et al. [17] proposed a long and short-term memory
recurrent neural network (LSTM-RNN) for automatic language identification, which ef-
fectively solved the problem of gradient disappearance in RNNs. Still, the model was
complex and time-consuming. Fernando et al. [18] built an end-to-end language identifica-
tion system based on bidirectional LSTM (BiLSTM), which effectively takes into account
the past and future information of speech. Padi et al. [19] used a bidirectional gated re-
current unit (GRU) network for multi-categorical language identification, which has a
more straightforward structure and improved recognition rate compared to the Bi-LSTM
network. Another popular approach for language identification is a convolutional neural
network (CNN) [20], which extracts local features from speech signals and enhances lan-
guage identification. CNNs are trained on the spectral map of the raw audio signal. This
method involves end-to-end learning with minimal pre-processing, as the neural network
can directly map the original data to the final output without relying on the traditional
machine learning pipeline.

In 2016, Wang et al. [21] applied an attention mechanism model to language identifica-
tion systems. This mechanism selects the most relevant speech features for language identi-
fication and improves the recognition performance of the network. In 2017, Bartz et al. [22]
combined a convolutional network with a recurrent neural network (CRNN) for language
identification and proposed a CNN-BiLSTM network [23], which achieved higher accuracy.
Although BiLSTM does improve the recognition accuracy, it has some problems, such
as an inability to parallelize operations and poor modeling of the effects of hierarchical
information. To address these issues, Romero et al. in 2021 [24] proposed an encoder ap-
proach based on the “transformer architecture” applied to the language identification task
using speech-directed information. In the same year, H Yu et al. applied the unsupervised
learning speech pre-training method [25] to the language identification system. In 2022 [26],
Nie Y et al. proposed a BERT-based language identification system (BERT-LID) to improve
language identification performance, especially on short speech segments. Recently, target
language extraction has been introduced as a new task [27], which treats the cocktail party
problem as a multilingual scenario that separates all of the voices of people speaking in the
target language from the rest of the voices at once. A recent study [28] extended this task
to multiple target languages and extracted all the speech signals as one specific language.
Based on previous research, another study [29] proposed the blind language separation
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task, which separates overlapping speech by language. These methods can be clearly seen
in Table 1 below.

Table 1. Characteristics of different language identification technologies.

Proposed Algorithm Features

GMM-UBM [12]

The method of combining SDC features with a Gaussian mixture
model–general background model is proposed,

but it requires a large number of parameters, and the training
data are usually insufficient.

GMM-SVM [14] SVM algorithm is proposed to classify the GMM mean
super-vector of speech.

i-Vector [15] Language identification using i-vector obtained from speech
combined with a back-end discrimination algorithm

DBF [16]
Replaces the traditional GMM-UBM combined with acoustic

features, which can effectively characterize linguistic information
and make language more easily distinguishable.

DNN [5] First proposed application of deep neural networks to language
identification tasks.

LSTM-RNN [17] This method effectively solved the problem of gradient
disappearance in RNNs.

BiLSTM [18] This method effectively takes into account the past and future
information of speech.

GRU [19] GRU has a more straightforward structure and improved
recognition rate compared to the Bi-LSTM network.

CNN [20] CNN extracts local features of speech signals and effectively
improves language identification.

Attention mechanism [21]
Through the attention mechanism, the more valuable information
for language identification in speech features is obtained, and the

effect of language identification is improved.

CRNN [22] The combined network extracts richer speech feature information,
thus improving the accuracy of language identification.

Transformer [24] Transformer architecture can perform parallel computation and
extract deeper and richer feature information.

Pre-trained [25] The pre-trained model can obtain better discriminative
representation and make full use of unsupervised data.

BERT-based [26]
The study extended the original BERT model by taking the

phonetic posterior grams (PPGs) derived from the front-end
phone recognizer as input.

In this study, we took the CNN-CBAM-BiLSTM [30] network based on the dual atten-
tion mechanism convolutional block attention module (CBAM) as the baseline model and
improved it with the SE-Res2Net network by proposing a multi-scale language identifi-
cation method. This study constructed a multilingual cocktail party dataset to simulate a
multilingual cocktail party scene considering the complex acoustic scenarios in real life,
and comparative experiments were also conducted on this dataset with different models.

3. Algorithm Model Structure
3.1. Algorithm Module
3.1.1. SE-Res2Net-CBAM-BiLSTM Network

This study proposes a SE-Res2Net-CBAM-BiLSTM language identification method
that combines the compressed excitation multi-scale residual (SE-Res2Net) module and
CBAM. The SE-Res2Net module can extract features in parallel through multiple branches



Appl. Sci. 2023, 13, 4235 4 of 16

and adaptively weigh different channels so as to improve the performance and general-
ization ability of the network. These advantages can help the SE-Res2Net-CBAM-BiLSTM
network to better understand and extract image features so as to achieve better performance
in language identification tasks. The network block diagram is shown in Figure 1.
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Figure 1. Block diagram of the SE-Res2Net-CBAM-BiLSTM language identification model structure.

Specifically, on the basis of the CBAM-BiLSTM network, the SE-Res2Net multi-scale
feature extraction module was added, and a language identification network with a multi-
scale mechanism was built to improve the network’s feature expression ability. First, feature
extraction is performed to convert speech into corresponding spectral features, and then
the spectral features are used as input to extract multi-scale features through the SE module
and Res2Net module. In the multi-scale extraction module, the network’s description
ability is further enhanced, and the feature representation is clearer. Then, it is sent to the
CBAM module to assign different weights to the channel and spatial dimensions of the
feature map so as to derive features useful for language identification. Finally, the output
of the CBAM module is sent to the tile layer through the full connection layer, and finally,
the language classification is realized through the softmax classifier.

3.1.2. Feature Extraction

Sound waves are produced by the vibration of the vocal cords. A speech signal is
a time-domain signal that changes in time and amplitude. It can be seen as the sum of
periodic signals with different frequencies. It is usually transformed from the time domain
to the frequency domain by Fourier transform for analysis [31]. In order to better represent
the characteristics of the sound, the acoustic signal needs to be converted into a computer-
recognizable form of acoustic feature vectors. Commonly used acoustic feature extraction
methods include the mel frequency cepstral coefficient (MFCC), frequency domain features
(FBANK), the linear predictive cepstral coefficient (LPCC), etc. [32]. This study adopted
the method of extracting the features of the speech spectrogram through experiments.
The spectrogram can retain the feature information of the original speech signal more
completely, which conforms to the characteristics of human hearing. A schematic diagram
of the language spectrum is shown in Figure 2.
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Figure 2. Structure of the language map.

As seen in the speech spectrum diagram, there are horizontal lines, vertical lines, and
scrambled patterns, each of which has a different representation. The horizontal line is
a resonance peak, the vertical line is a fundamental tone in the speech signal, and the
clutter’s depth indicates the noise energy distribution. The frequency and bandwidth of
the horizontal lines can determine the frequency and bandwidth of the corresponding
resonance peaks. The existence of horizontal lines in an audio signal’s speech spectrum
indicates whether it is a turbid tone. The vertical bars are perpendicular to the time axis,
and each one represents a fundamental tone. The speech spectrogram shows the basic
information of the speech signal and can be studied with image processing methods.

3.1.3. Residual Network

The residual neural network (ResNet) [33] was proposed by Kai-Ming He, Xiang-Yu
Zhang, Shao-Qing Ren, and Jian Sun at Microsoft Research. ResNet uses residual blocks
to improve the traditional convolution neural network, the network structure is shown in
Figure 3. In the traditional network, each layer has a series of convolution, activation, and
pooling operations, and the input of each layer is the output of the previous layer. In the
residual block, there are two branches: one is identity mapping, and the other is nonlinear
mapping. The identity mapping passes the input to the output directly. The nonlinear
mapping transforms the input into a residual through convolution, activation function, and
pooling. Then it adds the residual and input to obtain the output. The residual block can
learn the difference between input and output and fit the data better.
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As can be seen from the above diagram: x is the input of the residual block, which is
then copied into two parts, one of which is fed into a weight layer for inter-layer operations
(equivalent to feeding x into a function for mapping), resulting in F(x). The other part is
used as a branching structure, and the output is still the original x. Finally, the outputs
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of the two parts are superimposed (F(x) + x) and then processed through the activation
function. This is the basic structure of the entire residual block. F(x) = y− x is also called
the residual term, and it is easier to obtain the−x > y mapping close to a constant mapping,
e.g., by learning the residual term F(x) to zero than it is by stacking the neural network
layers directly. Using the residual structure allows the network to be deeper, converge faster,
and optimize more easily, while having fewer parameters and less complexity compared to
previous models. This residual structure solves the degradation problem of deep networks
that are difficult to train. Applicable to a wide range of computer vision tasks, the entire
residual structure can be defined formally as y = F(x, {Wi}) + x, where F(x, {Wi}) refers
to the fitted residual mapping. In the figure above, there are two fully connected layers, i.e.,
F = W2σ(W1x), where δ refers to the non-linear activation function ReLU. When F and x
are of the same dimension, they can be added directly element by element, but if they are
different, it is necessary to add another linear mapping to x, mapping it to a vector of the
same dimension as F. At this point, the whole residual structure is y = F(x, {Wi}+ Wsx),
where Ws is a matrix used for dimension matching.

3.1.4. Res2Net Module

Nankai University proposed a new way of constructing convolutional networks
Res2Net [7], which is achieved by constructing hierarchical connections inside a single
residual block. Res2Net is the original ResNet with the middle 3 × 3 convolution replaced
by the red part on the right, which is at least directly connected without going through
3 × 3 convolutions. At most, it will go through three 3 × 3 convolutions, which is the
reason it seems to be wilder than the original structure. This is shown in Figure 4a,b below.
After a 1 × 1 convolution, we partition the feature mapping uniformly into subsets of
feature mappings, denoted by xi, where i ∈ {1, 2, . . . ,s}. Compared to the input features,
each feature submap Xi has the same spatial size but one-third of the number of channels,
excluding x1, and each xi has a corresponding 3 × 3 convolutional transformation, denoted
by Ki(). The outputs of the feature subgraphs Ki() and Xi are summed and fed to Ki−1().
Thus, yi can be written as:

yi =


xi i = 1;

Ki(xi) i = 2;
Ki(xi + yi−1) 2 < i ≤ s.

(1)

It is worth noting that each 3 × 3 convolution operator Ki() may receive feature
information from all feature partitions

{
xj, j ≤ i

}
. Each time a feature is decomposed by a

3 × 3 convolution operator, the output may have a receptive field larger than xj. Due to
the combinatorial explosion effect, the output of the Res2Net module contains different
numbers and different combinations of receptive field sizes/scales. In the Res2Net module,
the decomposition is processed in a multi-scale manner, which facilitates the extraction of
global and local information. To better fuse information at different scales, we combine all
splits together and pass them through a 1 × 1 convolution. The splitting and cascading
strategy allows for more efficient forced convolution to enhance processing. To reduce
the number of parameters, we omit the convolution of the first split, which can also be
considered a form of feature reuse. In this work, s was used as the control parameter for
the scale size.

The Res2Net module achieves better feature extraction and higher classification accu-
racy by adding multiple branches with different scales and adopting multi-scale feature
fusion. Multi-scale refers to multiple available receptive fields with finer granularity.
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3.1.5. SE-Res2Net Module

In 2020, J. Hu et al. [6] proposed the squeeze-and-excitation network (SENet) to obtain
different weights on the channel dimension of the feature map to highlight important
features and ignore useless features. Figure 5 shows the structure of the SE module
network.
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The diagram above shows the network structure of the SE module. Given an input X
with a feature channel count of C, a feature with a feature channel count of C is obtained
by a series of general transformations. The previously obtained features are also rescaled
by the following three operations: (1) The squeeze operation reduces the features to a
single number per channel by compressing them spatially. This gives a global view of
each channel. The output has the same dimension as the input channels. (2) The excitation
operation is a gating mechanism similar to that in recurrent neural networks. The weights
of each feature channel are generated by a parameter W, where the parameter w is learned
to explicitly model the correlation between the feature channels. (3) The scaling operation is
where the output of the weight by excitation is considered as the importance of each feature
channel after feature selection. The weights of each feature channel are then multiplied one
by one with the previous features to complete the original features and reconstructed in the
channel dimension.

To prevent channel grouping from losing inter-channel correlation, the output y
of the Res2Net module is fed into the SE module. The network structure is shown in
Figure 6. In this module, the features y ∈ Rw×h×b×c are first compressed into y

′ ∈ R1×1×1×c

using global average pooling. Then, the correlation between channels is fitted using
fully connected layers and finally normalized using a sigmoid activation function. Thus,
the weight vector of the channels is f c = σ(FC(δ(FC(y′)))), where FC denotes the fully
connected layer, σ denotes the ReLU function, and δ denotes the sigmoid function. The
output of the SE module is f = f ′ + x. The rescaling of the original features in the channel
dimension is implemented inside the residual unit to complete the feature adjustment.
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finally, the input x of the residual unit is connected to the output f ′ of the residual unit by
means of a jump connection to obtain the output of the SE-Res2Net module as f ′ = f c · y.
The fusion of the SE module after the 1 × 1 convolution allows the advantages of the SE
module to be enhanced by reassigning different weights to the channel features, eliminating
invalid features, and allowing the single-layer features to be used to maximum effect. The
SE-Res2Net module designed in this paper can emphasize the residual mapping, promote
the convergence of the network, and improve the stability of the model.
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3.1.6. Bidirectional Long- and Short-Term Memory Network (BiLSTM)

The BiLSTM network consists of a forward and a backward LSTM, a bi-directional
network structure. The forward LSTM learns messages before the current moment, and the
backward LSTM learns messages after the current moment, so the network can learn the
temporal background information contained in the speech sequence, thus making up for
the shortcomings of CNN networks. The BiLSTM network [34] consists of four parts: the
input layer, the forward LSTM, the backward LSTM, and the output layer, and its network
structure is shown in Figure 7.
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In the BiLSTM network structure in Figure 4, inputt−1, inputt, and inputt+1 denote the
inputs at moments t− 1, t, and t + 1, respectively, and outputt−1, outputt, and outputt+1
denote the outputs corresponding to moments t− 1, t, and t + 1, respectively. The for-
ward LSTM refers to the calculation of the output corresponding to the forward moments
along the forward order of the moments. Backward LSTM means calculating the output
corresponding to the reverse moment along the reverse order of moments, and finally,
calculating the output of both together as the final output at the corresponding moment.
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3.1.7. Convolutional Block Attention Module (CBAM)

We use the CBAM [35] attention layer after SE-res2Net to focus on the features related
to language and generate distinctive feature representations for language identification.
The advantage is that we use attention to measure how important each high-level feature is
for the language difference instead of simply aggregating a bunch of features over time.

The attention layer is located after the bidirectional LSTM. The output of the bidirec-
tional LSTM is first passed through a softmax function to calculate the normalized weight
αt, calculated as shown in (2). The normalized weight αt is then weighted and summed
over ht to obtain the language representation c, as shown in (3).

αt =
exp(W·ht)

∑T
t=1 exp(W·ht)

(2)

c =
T

∑
t=1

αtht (3)

where W denotes the weight value, ht is the state at the current moment, and the language
representation c is derived by computing Equations (2) and (3) and then passed to the
all-connected layer to obtain a more profound representation of the language. A softmax
classifier maps the language representation to N different spaces for classification, where N
denotes the number of classes of the language.

The general network architecture of the convolutional chunk attention module is
shown in Figure 8.
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Given a feature map, the CBAM can serially generate attentional feature map infor-
mation in both the channel and spatial dimensions, and then the information from the
two feature maps is multiplied with the previous original input feature map for adaptive
feature correction to produce the final feature map.

As shown in the figure above, there is an input, a channel attention module, a spatial
attention module, and an output. The input features F ∈ RC×H×W , followed by the
channel attention module Mc ∈ RC×1×1, multiply the result of the convolution by the
original image, and the output of the channel attention module is used as input for the
two-dimensional convolution of the spatial attention module Ms ∈ R1×H×W , and then the
output is multiplied by the original image.

F′ = Mc(F)⊗ F (4)

F′′ = Ms(F′)⊗ F′ (5)

Equation (4) focuses on the features of the channel by keeping the channel dimension
constant and compressing the spatial dimension, focusing on the meaningful information
in the input image. Moreover, Equation (5) focuses on the features in the space by keeping
the spatial dimension constant, compressing the channel dimension, and focusing on the
location information of the target.
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3.2. Loss Function

Generally, to solve the category imbalance problem, a weighting factor α∈ [0, 1]
is added before each category in the loss function to reconcile the category imbalance.
Defining a in a similar way using p yields a binary balanced cross-entropy loss function.

CE(pt) = −αt log(pt) (6)

A larger imbalance between classes then results in the cross-entropy loss receiving
an impact during training. Losses from the misclassification of easily classified samples
account for the vast majority of the overall loss and dominate the gradient. Focal loss [36]
adds a moderator to the balanced cross-entropy loss function to reduce the weight of easily
classified samples, focusing on the training of difficult samples, as defined below.

FL(pt) = −αt(1− pt)
γ log(pt) (7)

where (1− pt)
γ is the modulation factor and γ ≥ 0 is the adjustable focus parameter.

4. Experiments and Discussion
4.1. Dataset

1© The Oriental language dataset used in this paper was provided by the AP17-OLR
competition [8]. In this paper, we used the following five languages for our experiments:
Mandarin (zh-cn), Vietnamese (vi-vn), Indonesian (id-id), Japanese (ja-jp), and Korean
(ko-kr). For each language, 1800 speech data were extracted and divided into a dataset
with a ratio of 7:2:1 (training set/validation set/test set), and the structure of the dataset is
listed in Table 2.

Table 2. Oriental language dataset structure.

Language Train Validation Test Total

zh-cn 1260 360 180 1800
id-id 1260 360 180 1800
ja-jp 1260 360 180 1800
ko-kr 1260 360 180 1800
vi-vn 1260 360 180 1800

2©Multilingual cocktail party dataset: We created a multilingual cocktail party dataset
based on the Oriental language dataset to simulate a real multilingual overlapping speech
scene. The process was as follows: First, we cut the original data into 4s segments. Second,
we randomly selected some speech for each language and split it into target and non-target
speakers. Third, we mixed them with different overlap rates according to the scenario
needs. The result was a multilingual cocktail party dataset. For the language identification
task, we assigned numerical labels to each language, such as “0” for “id-id”, “1” for “ja-jp”,
and so on.

4.2. Network Parameters

The experiments in this study were conducted in a Linux environment using Python as
the programming language, Pytorch as the deep learning framework, and CUDA version
11.4 on an NVIDIA GeForce GTX 3090 GPU and Intel(R) Xeon(R) Gold 6128 CPU @
3.40 GHz.

During the training and validation phases, the language identification network model
had a 224 × 224 spectral map as the input, a batch size of 32 × 32, and a learning rate of
0.0001, and we used the Adam optimizer and cross-entropy loss function. In each convo-
lutional layer, the sizes and numbers of convolutional kernels were (7 × 7.16), (5 × 5.32),
(3 × 3.32), and (3 × 3.32), respectively. The span of the convolution kernels was 1 and the
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padding was 0. The size of the convolution kernels in the pooling layer was 3, the span
was 2, and the padding was 0.

4.3. Performance Evaluation

The performance evaluation metrics used in the experiments were the accuracy, preci-
sion, recall, and F1 score values. When predicting a piece of speech, four statistical results
will appear, namely, the target language is judged as the target language (TP), the target
language is judged as the non-target language (FN), the non-target language is judged as
the target language (TN), and the non-target language is judged as the non-target language
(TN), as shown in Table 3.

Table 3. Results of statistical identification.

Confusion Matrix for Target and
Non-Target Languages

Predicted Value

TotalTarget
Languages

Non-Target
Languages

True value
Target languages TP FP P

Non-target languages TN FN N

Total T F -

According to Table 3, the calculation formulas of the accuracy, precision, recall, and F1
values can be obtained, as shown below.

Acc =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2× Precision× Recall

Precision + Recall
(11)

4.4. Experimental Results and Analysis

In this section, we used the SE-Res2-Net-CBAM-BiLSTM language identification
model proposed in this paper to carry out experiments on the Oriental Corpus and our
own multilingual cocktail party corpus. There were three experimental tasks.

Task 1: Three different models were selected and compared using the language
spectrogram as input features, and their experimental results are shown in Figure 9.

As can be seen in Figure 9, for the four different models, the SE-Res2Net-CBAM-
BiLSTM model had higher values than the other three models for the evaluation metrics
corresponding to the AP17-OLR dataset, with an accuracy of 97.64%. The results in this
paper show an accuracy improvement of about 3% compared to the baseline model CNN-
CBAM-BiLSTM. This is because we replaced the CNN network with the SE-Res2Net
network module in the baseline model. The SE-Res2Net network is a new multi-scale
backbone network structure that can represent multi-scale features at a fine-grained level
and increase the receptive field range of each network layer. These advantages can help
SE-Res2Net-CBAM-BiLSTM networks to better understand and extract features so as to
achieve better performance in language identification tasks.
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Figure 9. Comparison of experimental results under different models.

We conducted experiments on the CNN-CBAM-BiLSTM model and the SE-Res2Net-
CBAM-BiLSTM model using an Oriental language dataset. Figures 10 and 11 show the
accuracy and loss changes in the training and validation sets. Figure 10 shows the CNN-
CBAM-BiLSTM model’s curves, and Figure 11 shows the SE-Res2Net-CBAM-BiLSTM
model’s curves. The blue curves are for the training set, and the yellow curves are for the
validation set.
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Figures 10 and 11 show that on the CNN-CBAM-BiLSTM model, the accuracy and loss
curves fluctuate, and thus, affect the stability of the model. In contrast, on the SE-Res2Net-
CBAM-BiLSTM model, the accuracy and loss curve fluctuations were relatively minor and
more stable.
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Task 2: In this section, a comparative test on the multilingual cocktail dataset with a
100% overlap rate was carried out on the baseline model and the improved model. The
accuracy of the baseline model CNN-CBAM-BiLSTM was 64%, and the specific results are
shown in Table 4.

Table 4. Experimental results for multilingual cocktail party data with a 100% overlap rate.

Languages Acc (%) Precision (%) Recall (%) F1 Score

zh-cn (Mandarin) 61.51 63.71 60.62 62.12
id-id (Indonesian) 58.72 58.42 59.43 58.92
ja-jp (Japanese) 67.91 66.31 70.02 68.11
ko-kr (Korean) 56.12 43.83 73.34 54.87
vi-vn (Vietnamese) 66.23 68.41 64.45 66.37

The improved SE-Res2Net-CBAM-BiLSTM model was used on a multilingual cocktail
party scenario in which the target language weight was 1.2 and the non-target language
weight was 1. When the overlap was set to 100%, the accuracy of the model was 75%, as
shown in Table 5.

Table 5. Experimental results of improved models on multilingual cocktail party data.

Languages Acc (%) Precision (%) Recall (%) F1 Score

zh-cn (Mandarin) 71.45 73.14 69.91 71.57
id-id (Indonesian) 69.42 68.52 70.13 69.32
ja-jp (Japanese) 79.14 77.41 81.24 79.37
ko-kr (Korean) 68.91 59.63 83.16 69.46
vi-vn (Vietnamese) 76.82 79.12 75.24 77.13

As seen in Tables 4 and 5, after using the model proposed in this article, the accuracy
of the model on the multilingual cocktail party dataset was significantly improved by 11%
compared to the baseline model. Thus, this also validates the effectiveness of the improved
model proposed in this paper.

Task 3: Comparison of loss functions. In the previous language identification model,
cross-entropy loss was used for classification, but it needed to take into account the prob-
lems of unbalanced data and confusion of languages. We used focal loss [36] to solve
this problem effectively and improved the model performance. The results of language
identification under different loss functions are shown in Table 6 below.

Table 6. Graph of language identification results with different loss functions.

Loss Function Model Acc (%) Precision (%) Recall (%) F1 Score

Cross-entropy loss CNN-CBAM-
BiLSTM

94.57 94.64 94.91 94.77
Focal loss 95.65 95.68 94.95 95.31

Cross-entropy loss SE-Res2Net-
CBAM-BiLSTM

96.26 96.11 95.07 95.59
Focal loss 97.31 96.97 96.86 96.91

As can be seen in Table 6, the model with the focal loss function performed better
when experimenting with both loss functions under the unified model. Compared to
the cross-entropy loss, the recognition accuracy under the focal loss was improved by
about 1%. Therefore, the experimental results show that the performance of the language
identification network using the focal loss function was better than that using the cross-
entropy loss function.

4.5. Limitation

This paper proposes a SE-Res2Net-CBAM-BiLSTM model, a language identification
method based on a multi-scale feature extraction network. This model improves the
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recognition performance compared to the baseline, but it still faces some difficulties in
dealing with multilingual overlapping speech scenarios. One of the reasons is that this
study only used public datasets and our synthesized multilingual cocktail dataset, which
simulated the situation of different energy ratios with only two speakers. However, actual
multilingual overlapping speech scenes are more complex and may involve three or more
speakers and languages. Therefore, future research can explore more realistic and diverse
datasets, as well as more advanced feature extraction and recognition techniques. The
aim of this paper was to propose a novel language identification method that can handle
multilingual overlapping speech effectively. We will continue to improve the performance
of the model while studying more complex multilingual cocktail party scenarios.

5. Conclusions and Future Work

In this paper, we propose an improved SE-Res2Net-CBAM-BiLSTM method that can
extract multi-scale features from speech signals. We evaluated our method on two datasets:
AP17-OLR, a public Oriental language dataset, and a multilingual cocktail party dataset
that we constructed with different energy ratios and speaker numbers. The experimental
results show that the language identification accuracy of the improved SE-Res2-Net-CBAM-
BiLSTM network on the AP17-OLR dataset was improved by about 3% compared to the
baseline model CNN-CBAM-BiLSTM. On a multilingual cocktail party dataset of a 100%
overlapped scenario, with a target language weight of 1.2 over the non-target language
weight of 1, the accuracy of the proposed model was improved by 11% compared to the
baseline model. In addition, the comparative experiments show that the accuracy, recall,
and F1 values of the model in this paper were improved over the other three models, and
the stable model performance indicates better robustness. Finally, different loss functions
were also compared, and the focal loss method produced better results.

In the future, we will design new model frameworks to improve the performance of
language identification networks. In addition, we will variously simulate multi-language
cocktail party scenarios and conduct joint training experiments on source separation and
language identification tasks.
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