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Abstract: Multi-source uncertainties yielded by randomness, spatial variability and cross-correlation
of soil parameters severely affect the realization of random fields. However, current studies rarely
account for these simultaneously, leading to inevitable bias in random field simulation and subse-
quent structure analysis. In this paper, copula-based cross-correlated random fields for transversely
anisotropic soil slope are proposed. Firstly, based on the traditional probabilistic method and random
field theory, the effect of the cross-correlation of soil parameters on the random field is compre-
hensively analyzed. Then copulas, which mainly characterize the dependent structures of random
variables, are further expanded to connect multivariate random fields. Four special algorithms
associated with Gaussian, Frank, Plackett and No. 16 copulas are subsequently developed. At last,
the performance and effectiveness of copula-based cross-correlated random fields are illustrated
by means of assumed and engineering slope cases. The results show that the proposed method is
amenable to characterizing spatial variability comprising multiple cross-correlated soil parameters
of transversely anisotropic slope. Soil profiles can be represented with a relatively high accuracy.
Moreover, the performance of copula-based CCRF is simultaneously governed by margins, cross-
correlated coefficients and copulas. The proper selection of these crucial factors can considerably
reduce multi-source uncertainties. Overall, the proposed method could provide a useful guideline
for accurately modeling cross-correlation random fields of soil slope.

Keywords: spatial variability; cross-correlated random fields; transverse anisotropy; copula

1. Introduction

Due to internal material composition, stress environment, sedimentary conditions,
weathering degree and burial conditions, natural soil materials show obvious randomness
and spatial variability [1–6]. It is widely acknowledged that these two features make the real
distribution of soil parameters more complex and trigger inevitable uncertainties [4,7–10].
Ignoring such uncertainties would lead to considerable deviation in geotechnical structure
analyses, such as slope reliability. Therefore, it is essential that the accurate simulation of
soil parameters with consideration of multisource uncertainties be conducted.

At present, the random variable model (RVM) and random field model (RFM) are
commonly utilized to simulate spatially variable geotechnical parameters [11–14]. RVM
assumes that each soil parameter in the same layer is homogeneous [11]. Its randomness
and spatial variability are mainly characterized by random variables obeying specific
probability distribution types, such as truncated normal (TN), lognormal (LN), truncated
Gumbel (TG) and Weibull (WB) distributions [9,15]. However, soil parameters at any space
location are supposed to be mutually independent of each other. This obviously does not
reflect the real soil state. RFM is known to play an important role in modeling the spatial
variability of soil parameters, and was first proposed by Vanmarcke in 1977 [13]. Compared
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to RVM, it can account for the spatial correlation in the study area and can better describe
spatial variability. Presently, great effort has been made in the generation of random fields
of soil parameters [16–23]. For instance, Napoli et al. [19] studied rock slope stability by
combining RFM with limit equilibrium methods. Pandit et al. [20] used the Fourier series
method to generate an anisotropic random field. Yang et al. [21] combined the K-L series
expansion method, the polynomial chaos expansion method and the Markov Chain Monte
Carlo method to simulate spatially variable slopes. Liu et al. [22] simulated the spatially
variable soil and carried out slope reliability analysis by the three-dimensional stochastic
finite element method. Jiang et al. [23] established an effective non-stationary random field
model for undrained shear strength parameters.

It is worth noting that the correlation of soil parameters is a crucial characteristic
of the random field, including autocorrelation and cross-correlation [24]. The former
characterizes the correlation of individual soil parameters at different spatial locations,
mainly determined by the autocorrelation structure of soil parameter. The latter maintains
that soil parameters also tend to be dependent on each other at a given spatial location
or in neighborhoods. Both of them act as crucial constraints when simulating random
fields. Many studies have claimed that interdependency among soil parameters could
affect the distribution of random fields [4,24]. The challenge then for the geotechnical
engineer is to model the spatially variable behavior of soil parameters that exhibit complex
correlations. Unfortunately, cross-correlation is seldom considered in the simulation of
random fields, which inevitably leads to huge bias in the generation of random fields. Such
bias may further develop and expand in subsequent geotechnical structure analysis. These
challenges highlight the significance of characterizing the spatial variability of soil profiles
accounting for both autocorrelation and cross-correlation. Thus, a need to quantify both
spatial variability and cross-correlation of soil parameters has arisen.

Fortunately, similar but limited efforts have been undertaken by some scholars [7,25,26].
Fenton and Griffiths [7] decomposed correlation matrices of parameters by Cholesky de-
composition, and then simulated the cross-correlated random field (CCRF) using lower
triangular matrices. Cho [25] assumed that all random fields have similar autocorrelation,
and then used the cross-correlation coefficient to characterize the CCRFs of c and φ. How-
ever, according to probability theory, correlation coefficient cannot accurately represent the
correlation structure among random variables. Such treatment obviously does not cater to
the real spatial distribution of soil parameters. More efforts must be made to describe the
correlation problem involving multiple-parameter random fields.

Copula theory has been gradually introduced to bridge the gap between individual
margin and joint distribution [27–29]. It is capable of measuring complex interdependencies
among random variables. To date, various related achievements have been made [9,14,15].
Presently, few studies have made attempts to expand copulas to characterize the relation-
ship among multiple random fields [24,30,31]. Zhu et al. [24] proposed a framework of
multivariate CCRF for geotechnical parameters. Subsequently, Wang and Li [30] discussed
the application of copula theory in random field simulation. On the basis of these, Ma-
soudian et al. [31] established a framework of multivariable CCRF under rainfall conditions
by using copulas. However, similar studies on copula-based CCRF remain sparse. The
performance and effectiveness of CCRF deserve to be further studied. On the other hand,
previous studies mainly focused on Gaussian CCRFs. The effects of the non-Gaussian-
dependent structure of soil parameters on anisotropic CCRF have seldom been reported.
Therefore, more thorough efforts need to be taken to explore this controversial area.

To compensate for the aforementioned drawbacks, this paper is mainly intended to
propose a new CCRF simulation method based on copulas. The remainder of the paper is
organized as follows: brief introductions of random field theory and the copula theorem
are elaborated in Sections 2 and 3, respectively; Section 4 establishes four algorithms asso-
ciated with different candidate copulas; the overall simulation procedure of transversely
anisotropic CCRF is displayed in Section 5; then the performance of the proposed method
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is verified by means of an assumed soil slope and two engineering slope cases in Section 6;
lastly, some outstanding conclusions are drawn in Section 7.

2. Random Field Theory
2.1. Overview

A random field, H(z, ω), is defined as a random function of variables z ∈ Ω, where Ω
is the geometry of the spatial domain, and ω is a coordinate in the sample space [30,32]. At
a given spatial coordinate, H(z0, ω) is a random variable that defines the spread in H at
x0. For a given outcome, H(x, θ0) defines a realization of the field, which is a deterministic
function in x. A specific random field H(z, ω) is usually based on its marginal distribution
H (z, ω) ~ f (µ(z), σ(z)) and autocorrelation function (ACF) ρ(z, z′) = ρ(‖z-z′‖, δ), where
µ(z) = E[H(z, ω)] and σ2(z) = E[(H(z, ω) − µ(z))2] are the mean and variance, respectively;
‖z-z′‖ is the relative distance between any two points in the field, and δ is the scale of fluc-
tuation (SOF). Different types of anisotropic random fields have different autocorrelation
functions. As for two-dimensional random fields, the SOFs can be divided into horizontal
and vertical, defined as δh and δv, respectively. According to previous studies [33,34], δh
belongs to 10–80 m and δv is 0.2–6 m. The mean value µ(z), variance σ2 and CDF F(z) can
be obtained from the in-situ data. When µ(z) and σ2 are assumed to be unchanged with
soil depth, this is called a stationary random field.

2.2. Transversely Anisotropic Random Field

A stationary random field can be divided into two types: isotropic random field
and anisotropic random field [35]. In the former, the material properties and SOF are
independent of the direction. In contrast, the latter is characterized by the direction-
dependency of SOF, which is represented by the main SOF δ1, the secondary SOF δ2 and
the direction angle ϕ. The spatial variation of random variables is the smoothest along the
direction of δ1, and the roughest in the direction of δ2. A transversely anisotropic random
field is a special case of the anisotropic random field. Soil parameters change smoothly in
the direction of δ1, and faster in the direction of δ2.

To characterize isotropic and transversely anisotropic random fields, SOF and ACF
must be formulated. As for ACF, theoretical ACFs are generally employed to approximate
the autocorrelation. Notably, exponential ACF is the most commonly used in geotechnical
engineering. In this paper, soil parameters are also assumed to obey an exponential auto-
correlation structure.

The formulation of SOF in the isotropic case is circular and direction-independent,
namely, δ1 = δ2. Then, the theoretical formulation of SOF δϕ at directional angle ϕ can be
expressed as below [35]:

δϕ = δ1 = δ2 (1)

The corresponding exponential ACF is:

ρ = exp

[
−2

√
∆x2 + ∆y2

δϕ

]
(2)

where ∆x and ∆y, respectively, represent absolute horizontal and vertical distances between
two spatial locations.

As for anisotropic random fields, the formulation of SOF is generally assumed as an
ellipse and is parameterized by using δϕ, δ1 and δ2.(

δϕ cos ϕ
)2

δ2
1

+

(
δϕ sin ϕ

)2

δ2
2

= 1 (3)
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Via trigonometric transformation, Equation (3) can be transformed as

δ2
ϕ

1
1+tan2 ϕ

δ2
1

+
δ2

ϕ
tan2 ϕ

1+tan2 ϕ

δ2
2

= 1 (4)

Let
tan ϕ =

∆y
∆x

(5)

Substituting Equation (5) into Equation (4) yields√(
∆x
δ1

)2
+

(
∆y
δ2

)2
=

√
∆x2 + ∆y2

δϕ
(6)

According to the definition of a transversely anisotropic random field, the spatial
variation of random variables is the smoothest in the direction of δ1, and the roughest in the
direction of δ2. Assuming that the formulation of SOF is elliptical, δϕ can be expressed as

δϕ =

√
δ2

1δ2
2
(
1 + tan2 ϕ

)
δ2

2 + δ2
1 tan2 ϕ

(7)

The corresponding exponential ACF is:

ρ = exp

[
−2

√
∆x2

δ2
1

+
∆y2

δ2
2

]
(8)

2.3. Discretization of Transversely Anisotropic Random Field

The discretization method is crucial to the construction of a random field. At present,
several approaches have been provided to approach this, such as the local average method,
covariance matrix decomposition method, Fourier transform method and Karhunen–Loève
series expansion method. Due to its capability of dealing with space transformation
problems, covariance matrix decomposition is adopted to discretize random fields.

The autocorrelation matrix Ma can be established by discretizing the random field at
the centroid of random field elements [24]:

Ma =


1 ρ(∆x12, ∆y12) · · · ρ(∆x1ne , ∆y1ne)

ρ(∆x21, ∆y21) 1 · · · ρ(∆x2ne , ∆y2ne)
...

...
. . .

...
ρ(∆xne1, ∆yne1) ρ(∆xne2, ∆yne2) · · · 1

 (9)

wherein ρ represents the autocorrelation coefficient between any two locations; ∆xij and
∆yij represent the absolute horizontal and vertical distances between the centroids of the
i-th and the j-th elements; ne is the number of elements.

Via the Cholesky decomposition method, Ma can be decomposed into the product of
lower triangular matrix L and its transpose:

L · LT = Ma (10)

Via L, the standard normal random field HG can be obtained:

HG = L · Z (11)

wherein Z is the independent standard normal random variables. With the aid of the mean,
standard deviation and margins of random variables, HG can be transformed into the
expected non-normal random field.
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In this paper, the transversely isotropic random field with an exponential correlation
structure is studied. Substituting Equation (8) into Equation (9) yields the autocorrelation
matrix of transversely anisotropic random fields. According to Equations (10) and (11), an
independent standard Gaussian random field HIAG can be obtained by setting µ = 0 and
σ = 1. Figure 1 shows a standard normal random field in a 100 × 100 grid, where δ1 = 20
and δ2 = 2, respectively. Given the mean, standard deviation and probability distribution,
the independent transversely isotropic standard normal random field HIAG in Figure 1 can
be transformed into the desired non-Gaussian field.
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3. Copula Theory

F1(X1), F2(X2), . . . , and Fm(Xm) are marginal distributions of random variables
X = (X1, X2,· · · , and Xm). Via Sklar’s theory, the joint CDF FX(X1, X2,· · · , Xm) can be
expressed by an unique copula function C [27]:

FX(X) = C[(F1(X1), F2(X2), · · · , Fm(Xm); θ] (12)

wherein C is uncorrelated with each margin; θ represents the copula parameter.
Specifically, while X is mutually independent, Equation (12) can be rewritten as

FX(X) =
m

∏
j=1

Fj(Xj) (13)

By differentiating Equation (12), the joint PDF fX(X1, X2,· · · , and Xm) can be derived:

fX(X) = D[F1(X1), F2(X2), · · · , Fm(Xm); θ]
m

∏
j=1

f j(Xj) (14)

where in f 1(x1), f 2(x2), . . . , and fm(xm) are marginal PDFs of X and D(·) is the copula PDF;
when variables are mutually independent, D(·) = 1.

Table 1 gives some candidate copulas commonly used in soil slope analysis. It is noted
that the copula parameter θ is crucial to constructing the copula. Commonly, maximum
likelihood estimation is used to estimate θ, as expressed below [27].

L(θ) =
n

∏
i=1

D(u1, u2, · · · um; θ) =
m

∏
j=1

∂mC(u1, u2, · · · , um; θ)

∂u1∂u2 · · · ∂um
(15)
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wherein u1, u2, . . . , and um can be represented by transforming X from original space into
rank space, as shown below.

u(i)
j =

rank(X(i)
j )

n + 1
, i = 1, 2, · · · , n (16)

Table 1. CDFs and PDFs of candidate copulas.

Copula C(u,v; θ) c(u,v; θ) θ

Gaussian Φθ

(
Φ−1(u), Φ−1(v)

)
Φ
(

Φ−1(u2)−θΦ−1(u1)√
1−θ2

)
[–1, 1]

Plackett
S−
√

S2−4uvθ(θ−1)
2(θ−1) , S = 1 + (θ − 1)(u + v) 1

2 −
1+(θ−1)u1−(θ+1)u2

2
{
[1+(θ−1)(u1+u2)]

2−4u1u2θ(θ−1)
} 1

2 (0, +∞)\{1}

Frank − 1
θ ln
[
1 + (e−θu−1)(e−θv−1)

e−θ−1

]
e−θu1 (e−θu2−1)

(e−θ−1)+(e−θu1−1)(e−θu2−1) (−∞, +∞)\{0}

No. 16
1
2

(
S +
√

S2 + 4θ
)

,

S = u1 + u2 − 1− θ
(

1
u1

+ 1
u2
− 1
) 1

2

(
1 + θ

u2
1

)[
1 + S(S2 + 4θ)

− 1
2

]
,

S = u1 + u2 − 1− θ
(

1
u1

+ 1
u2
− 1
) [0, +∞)

For simplification, the logarithm form of lnL(θ) is computed based on the follow-
ing equation

ln L(θ) =
m

∏
j=1

D(u1, u2, · · · um; θ) =
m

∑
j=1

ln D(u1, u2, · · · um) (17)

Via solving Equation (17), the maximum likelihood estimator θ̂ML that satisfies
ln L(θ̂ML) ≥ ln L(θ) can be obtained.

∂ ln L(θ)
∂θ

= 0 (18)

From Equations (12) and (14), it can be found that different copulas describe different
dependent structures. Therefore, the optimal copula should be sieved out first. Generally,
the Akaike Information Criterion (AIC) [36] and Bayesian Information Criterion (BIC) [37]
are adopted to sieve out the proper candidate copula, as briefly expressed below,

AIC = 2k− 2
m

∑
j=1

ln D(u1, u2, · · · , um) (19)

BIC = k · ln n− 2
m

∑
j=1

ln D(u1, u2, · · · , um) (20)

where k is the number of parameters concerning the estimated model. The model associated
with minimum AIC and BIC scores is considered the preferable candidate.

4. Simulation of CCRF from Copula Aspect
4.1. Cross-Correlation of Soil Parameters

As aforementioned, soil parameters show two types of correlations, namely, auto-
correlation and cross-correlation, as demonstrated in Figure 2. The former characterizes
the correlation of individual soil parameters at different spatial locations, mainly deter-
mined by the autocorrelation structure of the parameter. In this paper, exponential ACF
is used to replace it. The latter maintains that soil parameters also tend to be dependent
on each other at a given spatial location or neighborhoods, commonly measured by their
cross-correlation coefficients. For example, c and φ, which are key parameters affecting
slope stability, have been proven to be negatively correlated. This implies that c and φ
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should appear dependently in any spatial location. Therefore, to consider the spatial vari-
ability and cross-correlation simultaneously, all these parameters should be simulated as
cross-correlation random fields, as shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 27 
 

Frank 
1 ( 1)( 1)

ln 1
1

u ve e

e

 



− −

−

 − −
− + 

− 

 
1 2

1 2

( 1)

( 1) ( 1)( 1)

u u

u u

e e

e e e

 

 

− −

− −−

−

− + − −
 (-∞,+∞)\{0} 

No.16 

, ( )21
4

2
S S + + , 

1 2

1 2

1 1
1 1S u u

u u

 

= + − − + − 
 

 

 

 

1

2 2
2

1

1
1 1 ( 4 )

2
S S

u




−   
+ + +   

  
,

1 2

1 2

1 1
1 1S u u

u u

 

= + − − + − 
 

 

[0, +∞) 

4. Simulation of CCRF from Copula Aspect 

4.1. Cross-Correlation of Soil Parameters 

As aforementioned, soil parameters show two types of correlations, namely, autocor-

relation and cross-correlation, as demonstrated in Figure 2. The former characterizes the 

correlation of individual soil parameters at different spatial locations, mainly determined 

by the autocorrelation structure of the parameter. In this paper, exponential ACF is used 

to replace it. The latter maintains that soil parameters also tend to be dependent on each 

other at a given spatial location or neighborhoods, commonly measured by their cross-

correlation coefficients. For example, c and ϕ, which are key parameters affecting slope 

stability, have been proven to be negatively correlated. This implies that c and ϕ should 

appear dependently in any spatial location. Therefore, to consider the spatial variability 

and cross-correlation simultaneously, all these parameters should be simulated as cross-

correlation random fields, as shown in Figure 2. 

       RF of x1 x1i x1j

       RF of x2 x2i x2j

Auto-correlation

f(x1,x2)

Auto-correlation

f1(x)

f2(x)

Location i Location j

C
ro

ss
-c

o
rr

el
a

ti
o

n

CCRF

C
ro

ss
-c

o
rr

el
a

ti
o

n

Location i Location j

 

Figure 2. Schematic diagram of correlations among soil parameters. 

Some scholars have studied such cross-correlation and claimed that the heterogene-

ity and cross-correlation of soil profiles severely affect the stability of geotechnical struc-

tures. Fenton and Griffiths [7] decomposed correlation matrices of parameters using the 

Cholesky decomposition method, and then simulated the CCRF using lower triangular 

matrices. Cho [25] assumes that all random fields simulated in the same space have the 

same ACF. Then, the cross-correlation coefficient was used to characterize the cross-cor-

relation between random fields of c and ϕ. The influence of cross-correlation on slope re-

liability was properly accounted for. However, according to copula theory, the correlation 

coefficient cannot accurately capture the correlation structure among parameters. To solve 

this problem, copula theory can be introduced to quantify the cross-correlation of soil pa-

rameters. Copulas are able to measure complex interdependencies among soil parameters. 

This might be expanded to make up for the deficiency of the traditional cross-correlation 

coefficient in simulating CCRF. To this end, copulas are intended to link individual ran-

dom fields, as illustrated in the next section. 

4.2. Transformation of CCRF by Copulas 
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Some scholars have studied such cross-correlation and claimed that the heterogeneity
and cross-correlation of soil profiles severely affect the stability of geotechnical structures.
Fenton and Griffiths [7] decomposed correlation matrices of parameters using the Cholesky
decomposition method, and then simulated the CCRF using lower triangular matrices.
Cho [25] assumes that all random fields simulated in the same space have the same ACF.
Then, the cross-correlation coefficient was used to characterize the cross-correlation be-
tween random fields of c and φ. The influence of cross-correlation on slope reliability was
properly accounted for. However, according to copula theory, the correlation coefficient
cannot accurately capture the correlation structure among parameters. To solve this prob-
lem, copula theory can be introduced to quantify the cross-correlation of soil parameters.
Copulas are able to measure complex interdependencies among soil parameters. This might
be expanded to make up for the deficiency of the traditional cross-correlation coefficient in
simulating CCRF. To this end, copulas are intended to link individual random fields, as
illustrated in the next section.

4.2. Transformation of CCRF by Copulas

As discussed in the previous section, a dependence structure exists among soil parame-
ters. Random fields corresponding to different soil parameters are therefore correlated with
each other. However, the cross-correlation coefficient matrix cannot accurately represent
the cross-correlation between random fields. The key issue to be solved in this section
is how to connect the independent standard normal random fields HIAG with a specific
correlation structure or a copula function. In essence, simulating CCRF is still a construction
process of the joint distribution of multiple random variables, which obey the specified
dependence structure. Therefore, HIAG can be first converted into an independent standard
uniform random field HCAU. Then, multivariate CCRFs can be constructed according to
the predefined copula.

The general framework for generating a cross-correlation standard uniform random
field HCAU based on copula function is as follows.

The proposed copula-based CCRF is advantageous in that it can efficiently capture the
interdependency of soil parameters. If required, (H1

CAU, H2
CAU, · · · , Hi

CAU) can readily
be converted into expected non-Gaussian random fields by giving the mean, standard
deviation and marginal probability distribution of soil parameters.

It is worth noting that dependent structures characterized by different copulas are
severely different. This implies that the CCRFs simulated by different copulas also differ
from each other. Care must be taken to ensure the selected copula matches the target interde-
pendency of soil parameters. Such matching is commonly achieved through goodness-of-fit
tests. Namely, Algorithm 1 should be modified to cater to real spatial correlation based on
specific copulas. Fortunately, several efforts have been made by us and other researchers.
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Gaussian, Plackett, Frank and No. 16 copulas, as shown in Table 1, have been proven to
be able to match the requirements. To this end, the four candidates are also employed to
exploit transversely anisotropic CCRF in the subsequent sections.

Algorithm 1 Simulation algorithm of copula-based standard uniform CCRF

(1) Define the correlation structure between multivariate correlation standard uniform random
fields as Ci = C (H1

CAU, H2
CAU, · · · , Hi

CAU), where i = 2, 3, · · · , n;
(2) Extract H1

IAU from the standard uniform distribution U(0, 1), let H1
CAU = H1

IAU;
(3) Extract H2

CAU from C2 (H2
CAU|H1

CAU);
(4) Similarly, extract Hn

CAU from Cn (Hn
CAU|H1

CAU, H2
CAU, · · · , Hn−1

CAU).

4.3. Gaussian Copula-Based CCRF

In the previous section, a framework of copula-based standard uniform CCRF has
been established. As soil parameters obeying Gaussian copula, the simulation approach of
Gaussian Copula-based CCRF is displayed in Algorithm 2.

Algorithm 2 Simulation algorithm of Gaussian copula-based CCRF

(1) Define the independent standard normal random fields of x and y as HIAG = [ Hx
IAG, Hy

IAG ]T.
(2) Perform Cholesky decomposition on the correlation coefficient matrix θ composed of Gaussian
copula parameter θ to obtain the lower triangular matrix L0.
(3) Let HCAG = L0HIAG, then the cross-correlation standard normal random fields
HCAG = [Hx

CAG, Hy
CAG ]T can be obtained.

(4) Let HCAU = Φ(HCAG), where Φ(·) is the CDF of the standard normal distribution, and the
cross-correlation standard uniform random fields of x and y can be obtained
HCAU = [Hx

CAU, Hy
CAU ]T.

(5) Define Fx
−1(·) and Fy

−1(·) as the inverse functions of the CDF of x and y, respectively. Perform
isoprobabilistic transformation on HCAU to obtain the cross-correlation non-normal random fields
of x and y HCAN = [Hx

CAN, Hy
CAN ]T = [Fx

−1(Hx
CAU), Fy

−1(Hy
CAU)]T.

4.4. Plackett Copula-Based CCRF

As soil parameters obeying the Plackett copula, the simulation approach of the Plackett
copula-based CCRF is shown in Algorithm 3.

Algorithm 3 Simulation algorithm of Plackett copula-based CCRF

(1) Define the independent standard normal random fields x and y HIAG = [Hx
IAG, Hy

IAG ]T.
(2) Let HIAU = Φ(HIAG), then the independent standard uniform random fields of x and
y HIAU = [Hx

IAU, Hy
IAU]T can be obtained.

(3) Define a = Hy
IAU (1−Hy

IAU), b =θ +a(θ−1)2, c = 2a (Hx
IAUθ2 + 1-Hx

IAU) + θ (1–2a0),
d = θ1/2[ θ + 4aHx

IAU(1−Hx
IAU)(1−θ)2 ]1/2.

(4) Let Hx
CAU = Hx

IAU, Hy
CAU = [c-(1–2Hy

IAU)d ]/2b, and obtain the cross-correlation standard
uniform random fields x and y HCAU = [ Hx

CAU, Hy
CAU]T.

(5) Use Fx
−1(·) and Fy

−1(·) to perform isoprobabilistic transformation on HCAU = [Hx
CAU, Hy

CAU].
Then the cross-correlation non-normal random fields of x and
y HCAN = [Hx

CAN, Hy
CAN ]T = [Fx

−1(Hx
CAU), Fy

−1(Hy
CAU)]T can be obtained.

4.5. Frank Copula-Based CCRF

As soil parameters obeying the Frank copula, the simulation of the Frank copula-based
CCRF can be implemented by Algorithm 4.
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Algorithm 4 Simulation algorithm of Frank copula-based CCRF

(1) Define the independent standard normal random fields of x and y HIAG = [Hx
IAG, Hy

IAG ]T.
(2) Let HIAU = Φ(HIAG), then the independent standard uniform random fields of x and
y HIAU = [Hx

IAU, Hy
IAU]T can be obtained.

(3) Let Hx
CAU = Hx

IAU, Hy
CAU be inversely calculated according to the Frank copula, as shown

below:

HCAU
y = − 1

θ ln
[

1+HIAU
y (e−θ−1)

e−θHIAU
x −HIAU

y (e−θ HIAU
x −1)

]
(4) Solve the above equation in (3) to get the cross-correlation standard uniform random fields
HCAU = [Hx

CAU, Hy
CAU]T of x and y.

(5) Use Fx
−1(·) and Fy

−1(·) to perform isoprobabilistic transformation on HCAU = [Hx
CAU, Hy

CAU].
Then the cross-correlation non-normal random fields of x
and y HCAN = [Hx

CAN, Hy
CAN ]T = [Fx

−1(Hx
CAU), Fy

−1(Hy
CAU)]T can be obtained.

4.6. No. 16 Copula-Based CCRF

As soil parameters obeying No. 16 copula, the simulation of No. 16 copula-based
CCRF can be carried out by Algorithm 5.

Algorithm 5 Simulation algorithm of No. 16 copula-based CCRF

(1) Define the independent standard normal random fields of x and y as HIAG = [ Hx
IAG, Hy

IAG ]T.
(2) Let HIAU = Φ(HIAG), then the independent standard uniform random fields of x and
y HIAU = [Hx

IAU, Hy
IAU]T can be obtained.

(3) Let Hx
CAU = Hx

IAU, Hy
CAU be calculated according to the following equation:{

HIAU
y = 1

2 (1 + θ/(HIAU
x )

2
)
[
1 + S(S2 + 4θ)− 1/2

]
S = HIAU

x + HCAU
y − 1− θ(1/HIAU

x + 1/HCAU
y − 1)

(4) Solve equations in (3) to get the cross-correlation standard uniform random fields
HCAU = [Hx

CAU, Hy
CAU]T of x and y.

(5) Use Fx
−1(·) and Fy

−1(·) to perform isoprobabilistic transformation on HCAU = [Hx
CAU, Hy

CAU].
Then the cross-correlation non-normal random fields of x and
y HCAN = [Hx

CAN, Hy
CAN ]T = [Fx

−1(Hx
CAU), Fy

−1(Hy
CAU)]T can be obtained.

5. Simulation Process of Transversely Anisotropic CCRF

To model ideal CCRFs, the random field is firstly discretized by the matrix decomposi-
tion method with consideration of the spatial variability of soil parameters. Then, copulas
are employed to model the cross-correlation of random fields. Thus, the multivariate CCRFs
are constructed to accurately represent the spatially variable soil profiles. The simulation
procedures of transversely anisotropic CCRF are as follows:

Step 1: Characterize the slope geometry and collect on-site data of mechanical param-
eters. Then the random variable X of the soil parameters and corresponding statistics can
be determined;

Step 2: Determine the optimal marginal distribution F(·) and copula function C(·)
of soil parameters. According to our previous studies, TN, LN, GB and WB are selected
as candidate margins. Gaussian, Plackett, Frank and No. 16 copulas are chosen to be
candidates. Via AIC and BIC, the optimal copulas and margins are sieved out;

Step 3: Establish a geometric model of the studied slope. Boundary conditions are set
and finite element meshes are divided. Then the finite element analysis model is established.
Slope stability analysis is carried out in the “job” module. Develop a MATLAB program to
extract the meshes, node coordinates and other related information from the “*.inp” file
automatically generated by ABAQUS;

Step 4: Substitute the node and element coordinates obtained in Step 3 into Equa-
tion (9) to calculate the autocorrelation matrix Ma. According to Equation (10), perform
Cholesky decomposition and obtain the lower triangular matrix L. Subsequently, indepen-
dent standard normal random fields HIAG are generated from Equation (11). It should be
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pointed out that the mesh size of CCRF model used in this paper is consistent with that of
the finite element model;

Step 5: According to the copula determined in Step 2, the corresponding CCRF
algorithm is selected. Then the cross-correlation standard uniform random fields HCAU are
established. Via the inverse function F−1(·) of the margins of soil parameters determined in
Step 2, HCAU is converted into the expected cross-correlation non-normal random fields
HCAN by isoprobabilistic transformation.

6. Numerical Illustrations

In this section, the performance of the proposed copula-based CCRF method is demon-
strated by means of three numerical examples. The first considers a classical c-φ soil slope.
The feasibility of the proposed method is validated. The effects of copulas, margins and the
difference between the cross-correlation and dependent structure are deeply explored using
this example. The second is the Chicago Congress Street cut slope with measured statistics
of soil parameters. The slope has four soil layers with different features. The performance
of the proposed method in modeling multi-layer CCRF is demonstrated. The last considers
the Papillion River Basin slope in the United States. A set of on-site observations of soil
parameters is available. The application of the proposed method is verified.

6.1. Example 1: Assumed c-φ Soil Slope
6.1.1. Profiles of c-φ Soil Slope

To illustrate the feasibility and effectiveness of the proposed copula-based CCRF,
a widely used assumed c-φ soil slope is adopted [3]. Figure 3 shows the geometry of
the studied slope, discretized by 1243 four-noded quadrilateral elements, wherein the
lower boundary is fixed, and the left and right boundaries are fixed horizontally. For
simplification, the influence of groundwater level is ignored here. Generally, soil parameters
c and φ show considerable randomness, spatial variability and cross-correlation. They are
therefore regarded as random variables, both of which are assumed to obey LN distribution.
Corresponding statistics are shown in Table 2. Other slope profiles are shown in Table 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 27 
 

tures. The performance of the proposed method in modeling multi-layer CCRF is demon-

strated. The last considers the Papillion River Basin slope in the United States. A set of on-

site observations of soil parameters is available. The application of the proposed method 

is verified. 

6.1. Example 1: Assumed c-ϕ Soil Slope 

6.1.1. Profiles of c-ϕ Soil Slope 

To illustrate the feasibility and effectiveness of the proposed copula-based CCRF, a 

widely used assumed c-ϕ soil slope is adopted [3]. Figure 3 shows the geometry of the 

studied slope, discretized by 1243 four-noded quadrilateral elements, wherein the lower 

boundary is fixed, and the left and right boundaries are fixed horizontally. For simplifica-

tion, the influence of groundwater level is ignored here. Generally, soil parameters c and 

ϕ show considerable randomness, spatial variability and cross-correlation. They are there-

fore regarded as random variables, both of which are assumed to obey LN distribution. 

Corresponding statistics are shown in Table 2. Other slope profiles are shown in Table 3. 

Distance (m)

E
le

v
at

io
n
 (

m
)

0 30252015105
0

5

10

15

 

Figure 3. Assumed c-ϕ slope. 

Table 2. Statistics and random field parameters of the assumed soil slope. 

Parameters μ COV Margin SOF Cross-Correlation 

c 10 kPa 0.3 Lognormal δh = 20 m, δv = 2 m 
ρc,ϕ = −0.5 

ϕ 30º 0.2 Lognormal δh = 20 m, δv = 2 m 

Table 3. The profiles of the assumed soil slope. 

Parameter Height Slope Angle Elastic Modulus Poisson’s Ratio Unit Weight 

Value 10 m 45° 35 MPa 0.35 20 kN/m3 

6.1.2. Simulation of CCRF 

In this section, bivariate CCRFs of c and ϕ are established according to Algorithms 1–

4. Then, their performances and differences are discussed in detail. 

Figures 4–7 respectively display the typical realizations of CCRFs associated with 

four candidate copulas. In the subfigures of the slope geometry, the depth of mesh color 

represents the magnitude of soil parameters. Namely, the deeper the color, the larger the 

value of c or ϕ. It is evident that spatially variable soil properties can be efficiently demon-

strated by the CCRF models. Soil parameters c and ϕ develop smoothly in the horizontal 

direction, but fluctuate severely in the vertical direction. This is mainly attributed to the 

domination of SOFs δh and δv. As δv is much smaller than δh (2 m vs. 20 m), c and ϕ fluctuate 

more severely in the vertical direction than in the horizontal direction, further indicating 

the reasonable characterization of spatial variability. In addition, it can also be clearly ob-

served from Figures 4–7 that as c develops a deeper color, the corresponding ϕ in the same 

location develops a lighter color, and vice versa. This indicates that a negative cross-cor-

relation exhibits between the two random fields. 
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Table 2. Statistics and random field parameters of the assumed soil slope.

Parameters µ COV Margin SOF Cross-Correlation

c 10 kPa 0.3 Lognormal δh = 20 m, δv = 2 m
ρc,φ = −0.5

φ 30◦ 0.2 Lognormal δh = 20 m, δv = 2 m

Table 3. The profiles of the assumed soil slope.

Parameter Height Slope Angle Elastic Modulus Poisson’s Ratio Unit Weight

Value 10 m 45◦ 35 MPa 0.35 20 kN/m3
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6.1.2. Simulation of CCRF

In this section, bivariate CCRFs of c and φ are established according to Algorithms 1–4.
Then, their performances and differences are discussed in detail.

Figures 4–7 respectively display the typical realizations of CCRFs associated with
four candidate copulas. In the subfigures of the slope geometry, the depth of mesh color
represents the magnitude of soil parameters. Namely, the deeper the color, the larger
the value of c or φ. It is evident that spatially variable soil properties can be efficiently
demonstrated by the CCRF models. Soil parameters c and φ develop smoothly in the
horizontal direction, but fluctuate severely in the vertical direction. This is mainly attributed
to the domination of SOFs δh and δv. As δv is much smaller than δh (2 m vs. 20 m), c and φ
fluctuate more severely in the vertical direction than in the horizontal direction, further
indicating the reasonable characterization of spatial variability. In addition, it can also be
clearly observed from Figures 4–7 that as c develops a deeper color, the corresponding φ in
the same location develops a lighter color, and vice versa. This indicates that a negative
cross-correlation exhibits between the two random fields.
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The above ratiocinations can be further validated using the corresponding scatter
plots in Figure 8. As expected, all the four candidate copulas yield negative dependence
structures, which are consistent with the presented correlation direction. The copulas seem
to be sufficient to give an excellent description of the cross-correlation of soil parameters.
However, the realizations of CCRF and scatter plots of soil parameters associated with
different copulas are comparably inconsistent, especially for the No. 16 copula. Such
discrepancies with respect to Gaussian, Plackett and Frank copulas are comparatively
unobvious. These may further propagate and affect the final geotechnical structure analysis.
To this end, it can be concluded that different copulas correspond to different CCRF
models and interdependencies. The performance of copula-based CCRF is simultaneously
governed by dependent structures and cross-correlations of random variables.
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To further verify the differences of the algorithms, Table 4 compares the average
statistics of CCRFs via 1000 runs of algorithms. It can be observed that the cross-correlation
coefficients of simulated c’ and φ’ associated with four candidate copulas are −0.5031,
−0.4932,−0.4462 and−0.4879, which are almost similar to the original value of−0.5. Other
statistics, including µ, σ, and COV, are also consistent with the original values. Namely,
the proposed method recreates soil profiles similar to observations. This implies that the
proposed copula-based CCRF is capable of considering the randomness, cross-correlation
and spatial variability of soil parameters simultaneously, and effectively reflecting the real
state of soil profiles with a relatively high accuracy.

Table 4. Statistics of CCRF variables associated with candidate copulas.

Copulas ρ τ µc σc COVc µφ σφ COVφ

Gaussian −0.5031 −0.3519 10.0787 3.0053 0.2982 29.9707 5.9839 0.1997
Plackett −0.4932 −0.3739 10.0787 3.0053 0.2982 29.9686 5.9893 0.1999
Frank −0.4462 −0.3326 10.0787 3.0053 0.2982 29.9658 5.9739 0.1994
No.16 −0.4879 −0.4133 10.0787 3.0053 0.2982 29.8598 6.0121 0.2011

For comparison, Figure 9 shows a typical realization of random fields without con-
sidering the cross-correlation of soil parameters. It can be seen that a homogeneous slope
including two separate random field models is generated. Unlike Figures 6 and 7, c and
φ are located in the meshes irregularly and independently. This can be explicated by
corresponding scatter plots. In Figure 9c, the interdependency between c and φ is hardly
clear. The scatters appearing in slope domains entirely rely upon the margins of c and φ, in-
dicating that independent random fields are unable to describe the spatial cross-correlation
of soil parameters. Such deficiency may result in inevitable uncertainty in the realization
of spatially variable soil and subsequent geotechnical structure analysis. In contrast, the
copula-based CCRF might be a preferable solution for realizing desirable random fields.

6.1.3. Effect of Marginal Distribution on CCRF

In this section, different margins are employed to model PDFs of c and φ. Comparisons
among CCRFs associated with different margins are performed. A similar Gaussian copula
is adopted as a control. Lastly, the effect of marginal distribution on CCRF is discussed.

Figures 10–12 respectively display the typical realizations of CCRFs associated with
different candidate margins, namely, TN, TG and WB margins. The LN case is linked to
Figure 4. For comparison, cases in which c and φ respectively hold TN and LN margins
are also considered, as shown in Figure 13. Similar to Section 6.2, spatially variable soil
can be efficiently demonstrated by the proposed method. c and φ develop smoothly in the
horizontal direction and fluctuate severely in the vertical direction, reflecting their SOFs. In
addition, it can also be clearly observed that a negative cross-correlation emerges between
the two random fields. These observations are also successfully reproduced. It can also be
seen that the margins of c and φ play important roles in modeling their spatial distributions.
The ranges of c and φ with respect to different margins differ from each other. Comparably,
the TG margins in Figure 11 generate the largest ranges of c and φ. However, the ranges
yielded by TN margins in Figure 10 are almost similar to those induced by WB margins in
Figure 12. Such differences would lead to different simulation results and further affect the
final analysis of slope reliability.
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Figure 14 gives the scatter plots of four CCRFs. The LN case can be linked to Figure 8a.
As expected, all five candidate cases yield negative dependence structures, which are
consistent with the presented correlation direction. However, both the realizations of CCRF
and the scatter plots of soil parameters associated with different margins are comparably
inconsistent. This indicates that different margins correspond to different CCRF models.
This is mainly due to the fact that the variables of RF obeying a uniform distribution in
rank space are first yielded according to the Gaussian copula, and then transformed into
the original space through the corresponding margins. Different margins would inevitably
trigger differences in the generation of RFs. Therefore, the performance of copula-based
CCRF is simultaneously governed by margins and copulas.

To further verify the proposed method, Table 5 compares the statistics of 2000 random
variables generated by different margins. It can be inferred from Tables 4 and 5 that the
cross-correlation coefficients of simulated c’ and φ’ associated with five cases are −0.5238,
−0.4468, −0.5266, −0.5181 and −0.5031, which are very close to the original value of
−0.5. Other statistical characteristics are also consistent with the original values. Namely,
all five cases can recreate soil profiles similar to the observations. However, uncertain
margins might lead to a slight bias in the simulation of spatially variable soil. Before
implementing the proposed method, the margins of random variables should firstly be
properly determined.
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Table 5. Statistics of CCRF variables associated with candidate margins.

Margins ρ τ µc σc COVc µφ σφ COVφ

TN −0.5238 −0.3682 10.297 2.995 0.2909 28.918 6 0.2075
TG −0.4468 −0.3682 10.293 3.132 0.3043 29.038 6.036 0.2079
WB −0.5266 −0.3682 10.29 2.999 0.2915 28.893 6.003 0.2078
LN and TN −0.5181 −0.3682 10.297 2.995 0.2909 28.963 6.024 0.2080

6.1.4. Effect of Correlation Coefficient on CCRF

In order to further reveal the effect of cross-correlation on the CCRF, Figure 15 gives the
variations of θ and ρc’,φ’ associated with different candidate copulas when the ρc,φ is changed
between [−0.9, −0.1]. It is apparent that as ρc,φ increases, all four copula parameters θ
increase accordingly. There is an obvious positive correlation between them. In addition,
the ρc’,φ’ values of random variables recreated by different copulas are basically consistent
with ρc,φ, indicating the accuracy of the copula-based CCRF method. It is noticeable that
there are slight differences among values of ρc’,φ’ corresponding to different copulas. This
is mainly attributed to the fact that the joint distribution constructed by different copulas is
different, although the same marginal distribution and correlation coefficient is employed.
These results highlight the limitations in constructing cross-correlation random fields with
cross-correlation coefficients. It is impossible to derive a unique cross-correlation structure
with cross-correlation coefficients.
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6.2. Example 2: Chicago Congress Street Cut Slope
6.2.1. The Profile of Chicago Congress Street Cut Slope

The geometry of the Chicago Congress Street cut slope [38] is shown in Figure 16. The
height of the slope is 14.3 m. The slope comprises four layers, i.e., backfill sand in the first
layer and three undrained clay layers beneath. The thickness of each layer is demonstrated
in Figure 16. The statistics of soil parameters in each layer are shown in Table 6, in the
which c and φ of the three clay layers are assumed to be random variables subjected to LN
margins. The cross-correlation coefficient ρc,φ is assumed to be −0.5.
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Table 6. Statistics of soil parameters of the Chicago Congress Street cut slope.

Soil Layer γ (kN/m3)
c (kPa) φ (◦)

Margin µc COVc Margin µφ COVφ

Sand layer 1 21.0 - 0 - - -
Clay layer 2 19.5 LN 55 0.37 LN 5 0.2
Clay layer 3 19.5 LN 43 0.19 LN 7 0.21
Clay layer 4 20.0 LN 56 0.20 LN 15 0.24

To model the spatial distributions of c and φ, seven simulation strategies of multi-layer
CCRFs are designed, as shown in Table 7. As for strategies 1–4, similar LN distributions
are adopted to model margins of c and φ, but different dependent structures, namely,
copulas, are utilized to realize the CCRF for the three clay layers. Strategy 4 assumes the
independent appearance of geotechnical parameters, that is, C(·) = 1. As for strategies 5–7,
similar combinations of copulas are assumed for three spatially variable layers, whereas
different PDF types are implemented to model the margins of c and φ. With the aid of
Algorithms 1–5, seven strategies are carried out, and the effects of uncertain copulas and
margins on the generated multi-layer CCRFs are analyzed.

Table 7. Simulation strategies of multi-layer CCRFs.

Strategies Margins Copulas

Strategy 1 (LN, LN) (Gaussian, Frank, Plackett)
Strategy 2 (LN, LN) (Frank, Gaussian, No. 16)
Strategy 3 (LN, LN) (Independent, Plackett, No. 16)
Strategy 4 (LN, LN) (Independent, Independent, Independent)
Strategy 5 (TN, TN) (Gaussian, Frank, Plackett)
Strategy 6 (TG, TG) (Gaussian, Frank, Plackett)
Strategy 7 (WB, WB) (Gaussian, Frank, Plackett)

6.2.2. Simulation of Multi-Layer CCRF

According to Table 7, seven typical realizations of multi-layer CCRFs associated
with different simulation strategies are derived, as shown in Figures 17–23. It should be
pointed out that all realizations are carried out based on the same seeds in rank space. It is
obvious that, except for strategy 4, the rest successfully generate multi-layer CCRFs with
the aid of copulas. Negative correlations can be clearly observed from their element colors,
illustrating the feasibility of the proposed method in modeling spatially variable multi-layer
soils. Moreover, strategies 1–4 yield the same RFs of c, which is due to the presence of the
same seeds in each realization in rank space. However, the corresponding RFs of φ are
considerably different from each other. Similar to the one-layer slope in Section 6, this is
attributed to the fact that different copulas characterize different dependent structures, and
therefore reproduce different CCRFs. From Figures 17 and 21, Figures 22 and 23, it can be
seen that uncertain margins also affect the simulation of multi-layer CCRFs. Under similar
dependent structures of geotechnical parameters, CCRFs transformed from standard space
by different marginal PDFs show some differences. Therefore, before the probabilistic
assessment of the slope system, deriving sufficient on-site observations of strata parameters
is essential.
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Figure 23. A typical realization of transversely anisotropic CCRF yielded by strategy 7. (a) Random
field of c. (b) Random field of φ.

Table 8 gives the statistics of multi-layer CCRFs associated with seven strategies. The
corresponding average errors of the statistics with respect to three clay layers are shown
in Figure 24. It can be seen that the average comprehensive errors of the seven cases are
4.62%, 4.96%, 10.72%, 23.87%, 6.47%, 5.96% and 7.14%, respectively. The statistics deduced
by copula-based CCRF are basically consistent with the real values shown in Table 6. This
demonstrates the accuracy of the proposed method in modeling multi-layer CCRFs for
spatially variable soils. Notably, strategies 3 and 4 show a relatively high bias. This can be
explained by the huge errors in the estimated ρc,φ values, as shown in Figure 24. In Strategy
3, the soil parameters of clay layer 1 are assumed to be independent variables, and yield
37.48% bias. This value under strategy 4 reaches 98.45% due to the neglect of dependent
structures in all three clay layers. It can be concluded that ignoring the interdependency of
soil parameters in the arbitrary layer of the slope would lead to significant deviation. Such
bias would rapidly expand, as more faulty operations take place.
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Table 8. Statistics of CCRF variables associated with different strategies.

Copulas Soil Layers µc COVc µφ COVφ ρ

Strategy 1
Layer 2 57.8521 0.3629 4.8705 0.2021 −0.5091
Layer 3 41.5108 0.1901 8.6453 0.2109 −0.4383
Layer 4 59.4741 0.1931 15.3436 0.2321 −0.5080

Strategy 2
Layer 2 57.8521 0.3629 4.8747 0.2073 −0.4639
Layer 3 41.5108 0.1901 8.6081 0.2112 −0.5181
Layer 4 59.4741 0.1931 15.0663 0.2375 −0.5602

Strategy 3
Layer 2 57.8521 0.3629 4.9316 0.1971 −0.0244
Layer 3 41.5108 0.1901 8.6091 0.2115 −0.4735
Layer 4 59.4741 0.1931 15.0663 0.2375 −0.5602

Strategy 4
Layer 2 57.8521 0.3629 4.9316 0.1971 −0.0244
Layer 3 41.5108 0.1901 8.7082 0.2040 −0.0098
Layer 4 59.4741 0.1931 16.1749 0.2279 0.0080

Strategy 5
Layer 2 58.0809 0.3468 4.8671 0.2055 −0.5254
Layer 3 41.4723 0.1970 8.4923 0.1738 −0.4457
Layer 4 59.4304 0.1885 15.3504 0.2365 −0.5116

Strategy 6
Layer 2 57.8589 0.3628 4.8763 0.1994 −0.4954
Layer 3 41.5646 0.1848 8.7449 0.2400 −0.4179
Layer 4 59.4177 0.1955 15.3251 0.2299 −0.4889

Strategy 7
Layer 2 57.9215 0.3550 4.8668 0.2071 −0.5243
Layer 3 41.4660 0.2018 8.3971 0.1535 −0.4396
Layer 4 59.3558 0.1849 15.3588 0.2365 −0.5031
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6.3. Example 3: Papillion River Basin Slope
6.3.1. Soil Profile

To validate the application of the proposed method, a set of on-site observations
of soil parameters in the Papillion River Basin slope, the United States, is adopted [39].
Figure 25 shows the scatters and corresponding empirical distributions of in-situ data from
the Papillion River Basin of Brassica. The statistics are shown in Table 9. The density is
assumed as a constant of 17 kN/m3. The effect of the water table is ignored here. To model
the Papillion River Basin slope with spatially variable c and φ, the same simplified slope
geometry as that in Section 6 is used here.
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Table 9. Statistics of soil parameters in Papillion River Basin slope.

Soil Parameters
Statistics

µ σ COV Pearson Kendall

c 13.68 10.27 0.7511 −0.716 −0.4857
φ 25.85 6.36 0.2460

6.3.2. Probability Distribution Estimation of Soil Parameters

To estimate the margins of soil profiles, goodness-of-fit tests, including k-s tests [40],
AIC and BIC, are carried out to sieve out the optimal marginal types, as shown in Table 10.
It can be seen that the LN distribution has the smallest Dn, AIC and BIC values. Therefore,
the optimal margin distribution for modeling the c and φ of silty sand in the Papillion River
Basin is LN.

Table 10. Goodness-of-fit test results of different margins.

Margins
c φ

Dn AIC BIC Dn AIC BIC

TN 0.2682 112.58 114.00 0.1548 101.06 102.48
LN 0.1367 105.11 106.52 0.1237 101.71 103.12
TG 0.2164 108.03 109.45 0.1320 103.48 104.90
WB 0.1817 108.73 110.14 0.1688 101.44 102.85

Subsequently, copula parameters are derived from the correlation coefficients shown
in Table 9. Different copulas are constructed to characterize the cross-correlation between c
and φ. The corresponding results of goodness-of-fit test are shown in Table 11. It can be
seen that the Gaussian copula exhibits the smallest AIC and BIC scores, indicating that the
Gaussian copula should be employed to characterize the cross-correlation between the c
and φ values of silty sand in the Papillion River Basin slope.

Table 11. AIC and BIC scores of different copulas.

Copulas Gaussian Plackett Frank No. 16

AIC −6.2223 −2.9015 −3.3795 3.2895
BIC −5.5143 −2.1934 −2.6714 3.9976

6.3.3. Simulation of CCRF for Soil Parameters

In this section, a transversely anisotropic CCRF of the studied slope is constructed. It
can be concluded from the previous section that the optimal margins of c and φ adopt the
LN distribution. The optimal model representing the dependent structure of c and φ is the
Gaussian copula. According to Algorithm 1 applied to the Gaussian-based CCRF proposed
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in Section 4, a transversely anisotropic CCRF can be generated. A typical realization of
this is shown in Figure 26. As expected, the spatial variability and cross-correlation of
soil parameters can be successfully reproduced. The RF variables are distributed simi-
larly to the measured data and can cover them well, demonstrating the efficiency of the
proposed method.
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Table 12 gives the statistics of CCRF variables associated with candidate margins and
copulas. The average comprehensive errors of the seven cases in Table 1 are 5.42%, 6.93%,
6.69%, 13.24%, 11.17%, 7.72% and 5.53%, respectively. The statistical characteristics of soil
parameters are basically consistent. The proposed copula-based CCRF approach can better
reflect the true distribution of cross-correlated soil profiles with a relatively high accuracy.
Obviously, Gaussian copula-based CCRF in conjunction with LN margins can reflect the
spatial distribution of soil parameters in the Papillion River Basin slope.

Table 12. Statistics of CCRF variables associated with candidate margins and copulas.

Margins Copula µc COVc µφ COVφ ρc,φ τc,φ

(LN, LN) Gaussian 14.1232 0.7055 23.6476 0.2466 −0.6255 −0.4945
(LN, LN) Plackett 14.1232 0.7055 23.4610 0.2513 −0.5815 −0.4755
(LN, LN) Frank 14.1232 0.7055 23.5756 0.2527 −0.5777 −0.4855
(LN, LN) No.16 14.1232 0.7055 23.4873 0.2622 −0.4617 −0.3938
(TN, TN) Gaussian 16.0378 0.5499 23.5136 0.2704 −0.7000 −0.4945
(TG, TG) Gaussian 14.9426 0.6617 23.7249 0.2364 −0.6355 −0.4945
(WB, WB) Gaussian 14.2407 0.7232 23.4831 0.2770 −0.7033 −0.4945

7. Conclusions

Aiming at simulating the spatial variability of cross-correlated soil parameters, this
paper proposes a method of simulating cross-correlated random fields for transversely
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anisotropic soil slopes based on copulas. Four algorithms of CCRF obeying different
dependent structures are established. The differences among CCRFs associated with
different copulas are comparatively demonstrated. The effects of the cross-correlation and
spatial variability of geotechnical parameters on the proposed copula-based CCRF are
deeply discussed. Lastly, the feasibility and efficiency of the proposed method are verified
by two examples. Some main conclusions can be drawn, as follows.

The distribution of random variables derived from independent random fields entirely
depends on marginal distribution, which cannot account for the interdependency of soil
parameters. On this account, independent random fields cannot reflect the real distribution
of soil profiles. Subsequent structural stability analysis is bound to cause large deviation
and uncertainty.

The copula-based CCRF accounts for the autocorrelation and cross-correlation of soil
profiles simultaneously. It can be interpolated within each element to represent spatially
variability. With the aid of the proposed method, the statistical characteristics of soil
parameters can be recreated to agree with the observations. Soil profiles can be reflected
with a relatively high accuracy.

The cross-correlation coefficient and copula affect the characterization of the depen-
dent structure of CCRFs. A unique dependent structure cannot be determined from the
marginal distribution and cross-correlation coefficient of soil parameters. Ignoring the
interdependency of soil parameters would lead to significant bias, which might further
expand as more negligence occurs. Therefore, it is not reasonable to construct the CCRF
only using cross-correlation coefficient, which is often the case in reality.

The performance of the copula-based CCRF is simultaneously governed by the de-
pendent structures and marginal distributions of random variables. Different copulas
correspond to different CCRF models and interdependencies. Uncertain margins of soil
parameters also affect the realizations of random fields. Before implementing the algorithm,
the copula and margins of soil parameters should be precisely determined.

In addition, the CCRFs constructed by different copulas are very different. More
algorithms derived from other copulas should be established to cater to various complicated
dependent structures. Meanwhile, the proposed method in this paper is non-intrusive. It
can therefore be employed in conjunction with the random finite element method. On this
basis, further advanced and efficient slope reliability methods should be investigated in the
future to reduce the computational burden caused by more and more complex algorithms.
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