
Citation: Zhang, W.; Qu, K.; Kang, Z.;

Hu, S. A Multi-Task Knowledge-

Tracking Model with a Novel

Representative Approach to Problem

Difficulty and Student Ability. Appl.

Sci. 2023, 13, 4226. https://doi.org/

10.3390/app13074226

Academic Editor: Yu-Dong Zhang

Received: 3 March 2023

Revised: 20 March 2023

Accepted: 22 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Multi-Task Knowledge-Tracking Model with a Novel
Representative Approach to Problem Difficulty and
Student Ability
Wei Zhang, Kaiyuan Qu *, Zhaobin Kang and Sen Hu

Faculty of Artificial Intelligence Education, Central China Normal University, Wuhan 430079, China
* Correspondence: qu2020123592@mails.ccnu.edu.cn

Abstract: Question difficulty and student ability are important factors that affect students’ correct
answers. Because existing knowledge-tracking models fail to consider these factors, they cannot
accurately predict the results of students’ answers. In order to explore question difficulty and student
ability information more accurately and to improve the accuracy of model prediction, this paper
proposes a multi-task knowledge-tracking model (MTLKT) with a novel representative approach
to question difficulty and student ability. The model first used the idea of multi-task learning to
share underlying information and parameters, to jointly train, and to obtain an information difficulty
representation vector consisting of skill difficulty and question difficulty. Then, combined with
student learning process, a performance bias function was introduced to improve the attention
mechanism and obtain a vector for student current knowledge state and a vector for question-solving
performance, thus obtaining a vector for student ability information representation. Finally, the above
vectors were concatenated and input into the model as a new representative embedding vector. The
experimental results of three real-world data sets showed that our model had great improvement in
the evaluation criteria of AUC and ACC and had a better predictive performance than the existing
advanced knowledge-tracking models.

Keywords: knowledge tracking; multi-task learning; attention mechanism; education data mining;
deep learning

1. Introduction

Knowledge tracking is a technology that models students according to their answers
in the past to obtain their current knowledge mastery. Its goal is to retrieve potential
learning rules from students’ learning trajectories by simulating student modeling. In recent
years, knowledge-tracking technology has been widely used in online education systems
to track the changes in students’ knowledge mastery, learning behavior characteristics,
and individual differences in ability levels to provide personalized learning guidance for
different students and improve learning efficiency.

The key to knowledge-tracking technology is to accurately grasp the situation of
students in the process of answering questions, and the difficulty of questions and student
ability are two important factors that affect whether students answer questions correctly.
On the one hand, different skills have different difficulties, and different questions contain-
ing the same skill also have different difficulties. The difficult information contained in
questions greatly influences whether students can give correct answers [1,2]. On the other
hand, with the dynamic change in students’ answering processes, the specific performance
of a student in answering is an important reflection of their ability. It is difficult to accu-
rately evaluate students’ ability levels without considering the impact of students’ specific
performances on their current ability.

Existing knowledge-tracking methods often ignore the above factors or do not consider
them in a comprehensive enough manner in the modeling process. Considering any of the

Appl. Sci. 2023, 13, 4226. https://doi.org/10.3390/app13074226 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074226
https://doi.org/10.3390/app13074226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8177-0220
https://doi.org/10.3390/app13074226
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074226?type=check_update&version=1


Appl. Sci. 2023, 13, 4226 2 of 18

above influencing factors in isolation or insufficiently makes it difficult to model students
accurately. For example, the pre-trained PEBG model [3] extracts high-level information,
such as the relationship between questions and skills, the relationship between skills
and skills, and the difficulty of questions, but does not consider the change in student
ability. The CKT [4] model based on convolutional neural networks takes into account the
differences in students’ a priori knowledge, as well as learning ability, and takes a student’s
answer performance over a period of time as his knowledge mastery level. However, the
model ignores the differences caused by the different difficulties of different questions. The
context-aware AKT knowledge-tracking model [5] uses a monotonic attention mechanism
to calculate the attentional weights between questions and obtains a student’s knowledge
state through weighted aggregation, but the modeling process does not take into account
the impact of answer performance on student ability and is not sufficiently considered.
Although these models perform well in prediction, they ignore certain factors and have
great potential for improvement in prediction accuracy.

It is a major challenge for current research to consider the above factors in the mod-
eling process, to dig deeper into the difficulty information of questions, and to extract
information about student ability accurately. Therefore, this paper proposes a multi-task
knowledge-tracking model (MTLKT) based on a novel question difficulty and student abil-
ity representation method. We specifically build a question information difficulty extraction
module, which uses the idea of multi-task learning to share the underlying information and
parameters, to jointly train, and to obtain an information difficulty representation vector
composed of skill difficulty and question difficulty. We build a student ability extraction
module. With the introduction of a performance bias function to enhance the weight of
questions with good performance and weaken the weight of questions with poor perfor-
mance, our study reflects the influence of students’ specific response performances on
student current state and ability to improve the attention mechanism and obtain a student
current knowledge state vector and a question-solving performance vector. Once summed,
we can obtain a vector representing student ability information.

In summary, the contributions of this paper are as follows:

• A new information difficulty representation method is proposed, which includes
both question difficulty information and skill difficulty information, uses multi-task
learning to fully exploit the potential correlation information between the two, and
provides a more comprehensive representation of information difficulty.

• A new representation of student ability is proposed, which includes information on
student knowledge state, as well as information on student performance in solving
questions. The attention mechanism is improved by combining the student learn-
ing process, and student response performance is considered when calculating the
attention weights to model student ability more accurately.

• A new embedding vector representation method is designed, which splices the ques-
tion difficulty information vector and the student ability information vector to form
a new embedding vector that incorporates more abundant feature information and
alleviates the underfitting problem of the model due to the sparse interaction records.

• Experiments on several publicly available data sets show that our model outper-
forms the comparison model. The ablation experiment proves the effectiveness of the
model components.

2. Related Works

At present, knowledge-tracking models can be divided into two types: knowledge-
tracking models based on probability graphs and knowledge-tracking models based on
neural networks. These are respectively introduced in the following.

Regarding knowledge-tracking models based on probability graphs, ZA Pardos
proposed Bayesian knowledge-tracking using a machine-learning algorithm [6], which
had good interpretability but required manual skill annotation by human experts and
was costly.



Appl. Sci. 2023, 13, 4226 3 of 18

With regard to knowledge-tracking models based on neural networks, in recent years
with the development of deep neural network technology, C Piech input students’ inter-
active records into LSTM [7] or RNN models and used hidden states of neural networks
to represent students’ knowledge states, proposing deep knowledge tracking (DKT) [8].
Compared with the previous Bayesian knowledge-tracking model, the improvement in
AUC evaluation metrics was close to 20%, which also has allowed a wide range of schol-
ars to see the huge development potential of deep knowledge tracking. Yeung et al. [9]
improved DKT by adding regularization terms into the loss function, which alleviated
the problem of large fluctuation in student state prediction in DKT. Zhang proposed the
DKVMN (dynamic key-value memory network) [10] model in 2016, which used a static
matrix to store skills and a dynamic matrix to update students’ mastery of the skills after
answering each question. The DKVMN model solved the drawback of the DKT model,
which could not extract students’ mastery of each skill well. Liu S in [11] used a hierar-
chical memory network to simulate long-term and short-term memory and restore the
human memory mechanism in a knowledge tracking task. Pandey S in [12] proposed a
relationship-aware self-attentive mechanism by which the forgetting behavior of students
was simulated. Nakagawa and several other scholars in [13–15] applied graph neural net-
works to the knowledge tracking domain to enhance the prediction by using the powerful
expressive power of graph neural networks. In general, deep-learning-based knowledge
tracing and its improved models show significant performance improvements compared to
the Bayesian knowledge-tracking model but suffer from the problem of not being able to
fully learn effective features when interaction records are too sparse due to limitations of
their structure.

To address the shortcomings of deep-knowledge-tracking models, many scholars have
made improvements:

Xia Sun considered the characteristics of students’ behavior and learning ability in
DKVMN-LA [16], dynamically simulated student ability, and improved the accuracy of
prediction, but failed to conduct an in-depth exploration of question information. The
EKT [17] model Liu Qi proposed was based on the DKT model and used the text informa-
tion of the question to enhance the representation of the question, alleviating the model
underfitting problem caused by sparse interactive records, but the model lacked research on
student ability. In addition, there have also been attempts to incorporate an attention mech-
anism [18] into knowledge-tracking models to improve the performances of the models,
such as SAKT and [19] SAINT [20] using a Transformer [21] model based on a self-attention
mechanism to assign weights to previous responses to extract key information, as well
as Shi et al. in [22], who improved the attention calculation of a Transformer model by
considering the time interval between answers, thus simulating the forgetting behavior of
students and optimizing student modeling.

Overall, all of the above models have made good progress in the area of knowledge
tracking, but there is much room for improvement in prediction performance due to a lack
of adequate consideration of question difficulty, as well as student ability.

3. The Proposed Method

In this section, we describe the MTLKT model in detail, which consisted of three
modules: an information difficulty extraction module, a student ability extraction module,
and a prediction module. In the information difficulty extraction module, in order to have
a more comprehensive and abundant embedding representation of information difficulty,
more fine-grained question information, such as response time, number of hints, etc., was
input into the module, and then an information difficulty representation vector consisting
of skill difficulty and question difficulty was obtained using the idea of multi-task learning
to share the underlying information and parameters for joint training.

In the student ability extraction module, the attention mechanism was improved by
introducing a performance bias function to increase the weight of questions with good
performance and decrease the weight of questions with poor performance to reflect the



Appl. Sci. 2023, 13, 4226 4 of 18

influence of a student’s specific performance on student ability. We also used the Phi
coefficient, which measures the relationship between two variables, as the correlation
coefficient between skills and used the obtained correlation coefficients and attention
weights to weight the aggregated skill interaction records and question interaction records,
respectively, to obtain a vector for student current knowledge state and a vector for question-
solving ability. We then added the two vectors to obtain a vector for student ability.

The input of the prediction module was the output vector of the above two modules
and the predicted question identification, and the output was the predicted response result,
which was divided into 1 and 0, representing correct and incorrect responses, respectively.

The model structure is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 19 
 

and a prediction module. In the information difficulty extraction module, in order to have 

a more comprehensive and abundant embedding representation of information difficulty, 

more fine-grained question information, such as response time, number of hints, etc., was 

input into the module, and then an information difficulty representation vector consisting 

of skill difficulty and question difficulty was obtained using the idea of multi-task learning 

to share the underlying information and parameters for joint training. 

In the student ability extraction module, the attention mechanism was improved by 

introducing a performance bias function to increase the weight of questions with good 

performance and decrease the weight of questions with poor performance to reflect the 

influence of a student’s specific performance on student ability. We also used the Phi co-

efficient, which measures the relationship between two variables, as the correlation coef-

ficient between skills and used the obtained correlation coefficients and attention weights 

to weight the aggregated skill interaction records and question interaction records, respec-

tively, to obtain a vector for student current knowledge state and a vector for question-

solving ability. We then added the two vectors to obtain a vector for student ability. 

The input of the prediction module was the output vector of the above two modules 

and the predicted question identification, and the output was the predicted response re-

sult, which was divided into 1 and 0, representing correct and incorrect responses, respec-

tively. 

The model structure is shown in Figure 1. 

 

Figure 1. Model structure diagram. 

3.1. Information Difficulty Extraction Module 

A multi-task learning approach was used in this module to obtain an information 

difficulty representation vector. Multi-task learning is an inductive migration method that 

Figure 1. Model structure diagram.

3.1. Information Difficulty Extraction Module

A multi-task learning approach was used in this module to obtain an information
difficulty representation vector. Multi-task learning is an inductive migration method that
leverages domain-specific information implicit in the training signals of multiple related
tasks to improve the predictive performance and generalization of models [23]. It is an
effective method for improving the performance of natural language-processing tasks and
has been widely used in several natural language-processing tasks [24,25]. Therefore, we
used this method to enrich the representation of the information difficulty vector.

The model was trained in two stages: first on a shared, multi-task coding layer and
then on supervised, multi-task learning training using the labeled data of each task and the
corresponding loss function.



Appl. Sci. 2023, 13, 4226 5 of 18

3.1.1. Task Selection

The key to improving the effectiveness of multi-task learning is to find suitable mul-
tiple tasks for co-training. The stronger the correlation between various tasks, the more
influential the co-training.

In this section, multiple attribute features of the question were predicted as multiple
tasks, and the difficulty of the question was predicted as the main task. We needed to
find the secondary task that had the strongest correlation with the main task first. The
correlation between two tasks in multi-task learning could be expressed by the Pearson
coefficient between the labels of the two tasks, and the larger the correlation coefficient, the
stronger the correlation between the tasks.

The Pearson coefficient is a statistic used to measure the strength of a correlation
between two variables, and the Pearson coefficient is calculated as follows:

ρX,Y =
E(XY)− E(X)E(Y)√

E
(

X2
)
− E2(X)

√
E(Y2)− E2

(
Y2
) (1)

where X represents the question difficulty label, and Y represents other labels, including skill
difficulty, number of hints, and number of attempts. In Table 1, we also show the meanings
of these different features. Since the original data set did not contain the two features of
question difficulty and skill difficulty, we obtained these two features by analyzing and
processing the data set, which were calculated as follows:

questiondifi
=

question i = 1
Ni

(2)

skilldifj =
Skill j = 1

Nj
(3)

Table 1. Feature Introduction.

Name Description

question_dif Difficulty of a question, defined as the percentage of questions
answered correctly out of the total number of responses to a question

skill_dif Difficulty of a skill, defined as the percentage of questions containing
a skill that are answered correctly

attempt_count Number of student attempts on a specific question
hint_total Total number of hints contained in a question

overlap_time Amount of time a student spends on a question

The difficulty of question i is calculated as the number of correct answers to question i
divided by the total number of answers to question i. The difficulty of skill j is calculated as
the number of correct answers to questions containing skill j divided by the total number
of answers to questions containing skill j.

In Figure 2, we show the magnitude of the Pearson coefficients between these features
and the question difficulty features (0.8–1 is a very strong correlation, 0.6–0.8 is a strong
correlation, and 0.2–0.4 is a weak correlation). Finally, we selected the skill difficulty feature
that had the strongest correlation with the question difficulty feature and used predicting
the skill difficulty contained in a question as an auxiliary task.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19 
 

attempt_count Number of student attempts on a specific question 

hint_total Total number of hints contained in a question 

overlap_time Amount of time a student spends on a question 

 

Figure 2. Correlations between different characteristics. 

3.1.2. Module Inputs 

We took the question identification 𝑞𝑖 and the skill identification 𝑠𝑖 contained in the 

question, as well as the time sequence of answering the questions 𝑡𝑖 and the number of 

hints ℎ𝑖, as the input of this module. The above elements then passed through the embed-

ding layer and were mapped to a vector in the potential space, yielding the question em-

bedding vector Q̃ ∈ 𝑅𝑑 , the skill embedding vector S̃ ∈ 𝑅𝑑, the time vector for answering 

questions T̃ ∈ 𝑅𝑑 , and the embedding vector for the number of hints H̃ ∈ 𝑅𝑑, where d is 

the dimensionality of the mapping. 

3.1.3. Position Encoding 

Sequence processing in the attention mechanism relied on location encoding and the 

location information of the contained sequence elements. The position encoding of the 

model in this paper used an absolute position-encoding method, that is, the position en-

coding of the sine and cosine functions [21]. For a length d at a position pos in the sequence, 

the value of dimension i in the position-encoding vector is as follows: 

PEpos,2i = sin (
pos

10,000
2i
d

) (4) 

PEpos,2i+1 = cos (
pos

10,000
2i
d

) (5) 

where i ∈ (0, 1, 2…d/2). After generating the location code, it was combined with the em-

bedded representation vector in an additive manner. 

3.1.4. Shared Layer 

The shared layer consisted of a multi-head attention layer, a normalization layer, and 

a forward feedback layer. The input was obtained by summing each embedding vector 

with the position encoding Pi: 

 O = Q̃ + S̃ + T̃ + H̃ + Pi  (6) 

where O ∈ 𝑅𝑑 . 
Multi-head self-attentive layer. In the self-attentive mechanism, Q is usually used to 

denote the query, K denotes the key, and V denotes the value. The attention weights were 

calculated by first dotting Q and K. After that, to prevent the result from being too large 

to affect the subsequent gradient propagation, the dotted product result was divided by 

√𝑑 and, finally, input to the SoftMax function for normalization. The attention weights 

are calculated as follows: 

Figure 2. Correlations between different characteristics.



Appl. Sci. 2023, 13, 4226 6 of 18

3.1.2. Module Inputs

We took the question identification qi and the skill identification si contained in the
question, as well as the time sequence of answering the questions ti and the number
of hints hi, as the input of this module. The above elements then passed through the
embedding layer and were mapped to a vector in the potential space, yielding the question
embedding vector Q̃ ∈ Rd, the skill embedding vector S̃ ∈ Rd, the time vector for answering
questions T̃ ∈ Rd, and the embedding vector for the number of hints H̃ ∈ Rd, where d is
the dimensionality of the mapping.

3.1.3. Position Encoding

Sequence processing in the attention mechanism relied on location encoding and
the location information of the contained sequence elements. The position encoding of
the model in this paper used an absolute position-encoding method, that is, the position
encoding of the sine and cosine functions [21]. For a length d at a position pos in the
sequence, the value of dimension i in the position-encoding vector is as follows:

PEpos,2i = sin

(
pos

10, 000
2i
d

)
(4)

PEpos,2i+1 = cos

(
pos

10, 000
2i
d

)
(5)

where i ∈ (0, 1, 2 . . . d/2). After generating the location code, it was combined with the
embedded representation vector in an additive manner.

3.1.4. Shared Layer

The shared layer consisted of a multi-head attention layer, a normalization layer, and
a forward feedback layer. The input was obtained by summing each embedding vector
with the position encoding Pi:

O = Q̃ + S̃ + T̃ + H̃ + Pi (6)

where O ∈ Rd.
Multi-head self-attentive layer. In the self-attentive mechanism, Q is usually used to

denote the query, K denotes the key, and V denotes the value. The attention weights were
calculated by first dotting Q and K. After that, to prevent the result from being too large
to affect the subsequent gradient propagation, the dotted product result was divided by√

d and, finally, input to the SoftMax function for normalization. The attention weights are
calculated as follows:

Attention(Q, K, V) = softmax

(
QKT
√

d

)
V (7)

When we predicted the information related to question t, we should only consider the
interaction information of the first t − 1 questions, so we used the upper triangle mask to
mask the information of the subsequent positions.

headi = Softmax

(
Mask

(
QiK

T
i√

d

))
Vi (8)

Qi =
[
qi

1, · · · , qi
t
]
= OWQ

i
Ki =

[
ki

1, · · · , ki
t
]
= OWK

i
Vi =

[
vi

1, · · · , vi
t
]
= OWV

i

(9)



Appl. Sci. 2023, 13, 4226 7 of 18

The multi-head attention layer projected Q, K, and V into different potential spaces
through different matrices WQ, WK, and WV to capture rich feature information to form
different heads and stitched these information heads together.

Multihead(Q, K, V) = Concat(head1, head2 . . . headiWO
)

(10)

Feed forward layer. Since the output of the input vector after the multi-headed self-
attentive layer was still a linear combination, we used a feed forward layer to convert the
linear combination to a nonlinear combination. The feed forward layer consisted of two
linear transformations activated by a ReLU function to add nonlinearity to the model.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (11)

where x = Multihead(Q, K, V), and W1, W2, b1, b2 are the weight matrices and bias vectors,
which are continuously updated in training.

Residual connect. He introduced the concept of residual connect in [26], where the
primary role of residual linking was to propagate low-level features to higher levels, which
made it easier for the model to utilize low-level information. Residual connection is a
common deep-learning technique that builds deeper networks in a more stable manner.

Normalization layer. The input information was normalized after passing through
the multi-head attentive layer and the feed forward layer. The research of Ba J L in [27]
showed that a neural network could be more stable and fast by normalizing the input, and
gradient disappearance and explosion could be prevented simultaneously.

3.1.5. Task-Specific Layer

The information was input to different task-specific layers after sharing the underlying
parameters through the shared layer, which consisted of a feedforward layer and a linear
layer. In this paper, we predicted the question difficulty and the skill difficulty to obtain the
information difficulty representation vector of the prediction question. First, we prepro-
cessed the original data and eliminated the questions and skills whose interactive records
were less than 10 times. Then, we took the difficulty of the question dq and difficulty of the
skill ds as the label of a task. The error Ldq between d̃q and dq and the error Lds between d̃s
and ds were calculated by the mean square loss function MSEloss, and the parameters of
the model were continuously optimized by backpropagation.

Ldq = 1/t
t

∑
i=1

(
dq − d̃q

)2
(12)

Ldq = 1/t
t

∑
i=1

(
ds − d̃s

)2
(13)

Usually, the easiest way to calculate the total loss of multi-task learning is to add up
the losses of multiple tasks or manually set the weight parameter wi:

loss(t) = ∑
i

wiLi(t) (14)

However, this method is not only time-consuming but also cannot solve the problem
effectively. For example, if the gradient of task A is large with a small weight wA, wA
continues limiting the model from better learning task A until the end of the training, so
the weight wi needs to be continuously changed during the training process:

loss(t) = ∑i wi(t)Li(t) (15)

During the training process, the different convergence rates of different tasks lead to an
inability to achieve the best results when training together at the same time, and this imbal-



Appl. Sci. 2023, 13, 4226 8 of 18

ance caused by different convergence rates is mainly manifested as the gradient imbalance
during backpropagation. Therefore, we used the optimization method of GradNorm [28]
to improve the above problem. GradNorm enables different tasks to be trained at similar
rates by dynamically adjusting the magnitude of the backpropagation gradients of different
tasks. Table 2 illustrates some of the symbolic concepts in the GradNorm method.

Table 2. Notations.

Notations Description

W Neural network parameters of the shared layer.
G(i)

w (t) L2 norm of the gradient of the band weight loss wi(t)Li(t) for task i on W.
Gw(t) Average gradient norm across all tasks at training time t.
L̃i(t) Loss ratio for task i at time t. L̃i(t) is a measure of the inverse training rate of task i.
ri(t) Relative inverse training rate of task i.

To dynamically adjust the weight wi(t), we needed to put the gradient norms of
different tasks under the same metric to obtain their relative gradient size. GW(t) was used
to measure the norm of the average gradient at time t and, thus, determine the relative
gradient, and ri(t) was used to balance the gradient. If ri(t) was larger, the gradient of
task i was larger to speed up task training. Therefore, the gradient norm objective of task
i was GW(t) × ri(t), and the loss function Grad Loss of the weight function wi(t) was
further obtained:

Grad Loss = ∑i

∣∣∣Gi
W(t)−GW(t)× ri(t)

∣∣∣ (16)

L̃i(t) =
L̃i(t)

AVG
[
∑ L̃i(t)

] (17)

Grad Loss = ∑i

∣∣∣Gi
W(t)−GW(t)× ri(t)

∣∣∣ (18)

Therefore, there were two kinds of losses in the multi-task learning module: 1. The
loss of tags was used to update the predicted results. 2. The loss of weight gradient was
used to update the weight of each task.

3.2. Student Ability Extraction Module

In this paper, the abstract concept of student ability was embodied as their knowledge
state and their ability to solve questions.

Student knowledge state and question-solving ability change dynamically with stu-
dent problem-solving process. Therefore, we obtained the weight of the correlation between
the current question and the historical questions by exploring the correlation between the
current question and the historical questions, as well as the correlation between the skill
and the historical skills. Finally, the weight was used to aggregate the embedded vector
of the question and the embedded vector of the skill, and the two vectors were added to
obtain the ability vector for students.

3.2.1. Module Input

In this paper, we fused the skill identification si and the question identification qi
with the answer yi, and then we could obtain the ei and xi. Through the embedding layer,
we could obtain a skill interaction embedding vector ẽ ∈ R2d and a question interaction
embedding vector x̃ ∈ R2d.

ei = si + yi ∗ Es (19)

Xi = qi + yi ∗ Eq (20)

Es and Eq respectively represent the total numbers of skills and questions.



Appl. Sci. 2023, 13, 4226 9 of 18

3.2.2. Knowledge State Vector Acquisition

Because different students have different understandings and applications of skills,
the relationship between skills in different data sets was not fixed, so it was more practical
to calculate the correlation between them through the interaction of skills in specific data
sets. Specifically, we used the Phi coefficient φ to calculate the correlation between two
skills. First, we built the following contingency Table 3:

Table 3. A contingency table for two skills: i and j.

Skill j
Incorrect Correct Total

Skill i Incorrect n00 n01 n0∗
Correct n10 n11 n1∗

Total n∗0 n∗1 n

Where Skill i appears before Skill j and only considers the latest right and wrong
situation, n00, n01, n10, n11 represent, respectively, that i and j are both wrong, i is wrong and
j is right, i is right and j is wrong, and i and j are both right. The Φ coefficient is calculated
as follows:

φi,j =
n11n00 − n01n10√

n1∗n0∗n∗1n∗0
(21)

The value of the Φ coefficient was between −1 and 1, with higher values representing
a more significant influence of exercise i on exercise j. After obtaining the skill relevance
coefficient, we multiplied it with the skill embedding vector ẽi and accumulated it to obtain
the student knowledge state vector K ∈ R2d:

K =
t−1

∑
i=1

φi,tẽi (22)

3.2.3. Question-Solving Ability Vector Acquisition

In this paper, we calculated the relevance weights of the current question and historical
questions through an attention mechanism and mapped the question embedding qt to
be predicted as a query vector and the historical interaction records as a key-and-value
vector, and we made a dot product calculation. Considering that students’ behavioral
characteristics (e.g., time spent on the problem or number of attempts) reflect their ability
to a certain extent, the shorter the time spent on a problem (or the fewer attempts), the
better the students’ mastery of the question, and the longer the time spent on a problem (or
the more attempts), the less the students’ mastery of a question. Therefore, we improved
the formula for calculating attention weights by multiplying the performance bias function
f (x) with the original formula: the attention weights were calculated by strengthening the
weights of questions that were well-mastered and decreasing the weights of questions that
were poorly mastered. The specific calculation method is as follows:

atti,t = softmax(αi,t) =
exp(αi,t)

∑t−1
i=1 exp(αi,t)

(23)

αi,t =

(
WQet

)T ·WKxi√
d

f (b− θ) (24)

f (b− θ) =
1

1 + e(b−θ)
(25)

where WQ and WK are the mapping matrices of the query and key, respectively. f (b− θ)
denotes the performance bias function, in which θ denotes the average response time
for a question and b denotes the actual response time of a student on a question. The



Appl. Sci. 2023, 13, 4226 10 of 18

function took the value of 1/2 when a student’s actual performance equaled the expected
performance. In contrast, the value of the function tended toward 1 (0) when a student’s
performance was much higher (lower) than the expected performance. After obtaining the
weight att, we multiplied and aggregated the weight with the historical question interaction
embedded vector x̃i to obtain the performance vector L ∈ R2d of the student in the current
time step:

L =
t−1

∑
i=1

atti,t x̃i (26)

3.2.4. Prediction Module

After the information difficulty extraction module, we obtained the skill difficulty
representation vector ds ∈ Rd and the question difficulty representation vector dq ∈ Rd.
After the student ability extraction module, we obtained the knowledge state vector K ∈ R2d

and the question-solving ability vector L ∈ R2d. Finally, by concatenating the above
vectors with qt (current predicted question embedding vector), we obtained the embedding
vector Z ∈ R4d:

Z =
(
ds + dq

)
⊕ (K + L)⊕ qt (27)

Then, the vector Z was input into the multi-layer perceptron (MLP) to predict the
questions to be answered by the current student.

layerl
t = ReLU

(
Wl layerl−1

t + bl
)

(28)

yt = Sigmoid
(

Wl layerL−1
t + bl

)
(29)

where l denotes the layer of the multilayer perceptron, layer0
t = Z, and Wl and bl denote the

weight matrix and bias vector of the lth layer, respectively. The error between the predicted
value yt and the true value ỹt was calculated using a binary cross-entropy loss function,
and the model parameters were optimized with the Adam optimizer. The loss values are
calculated as follows:

L = −
t

∑
i=1

(ỹi log yi + (1− ỹi)) log(1− yi)) (30)

4. Experiment and Analysis

In this section, we conduct sufficient experiments to verify the following three questions:
(RQ1) How does the MTLKT model perform compared to current, mainstream

knowledge-tracking models?
(RQ2) How do the various modules in the MTLKT model affect the model

prediction results?
These questions are answered in the following section after some basic experimental

setups are described.

4.1. Data Sets

This paper chose three data sets commonly used in the field of knowledge tracking:
Assistments09, Assistments12, and Assistments17. These three data sets are collected from
the real data of the ASSISTments online learning platform, The complete information is
shown in the Table 4, and there are some examples of datasets are shown in Table 5. In
order to obtain higher quality and clean data, we first cleaned the data set: we deleted
items containing null values and duplicates, we deleted skill identifications and question
identifications with less than five interactive records (to ensure adequate records to calculate
difficulty coefficients), we deleted items that took too long to answer, and we randomly



Appl. Sci. 2023, 13, 4226 11 of 18

selected 5000 students from the Assistment12 data set with too many students. The
processed data set information is given in the following.

Table 4. Data set statistics.

Data Set Assistments09 Assistments12 Assistments17

Number of students 4151 5000 1709
Number of skills 123 260 102
Number of questions 15,680 38,052 3162
Number of records 325,600 1,000,964 942,816
Number of records/Number of skills 2647 3850 9067
Number of records/Number of questions 21 26 298

Table 5. Some of the questions in the data set.

Question Question Text Skill

e1 Solve x:2|x + 6|+ 7 = 4x + 6 + 4 Linear Equations

e2 Solve x:x2 + 3x− 28 = 0 Quadratic Equations

e3 Evaluate
√

28 Square roots

e4 What are the factors of 5 Division

4.2. Evaluation Metrics

The evaluation indices used in this experiment were Area Under the Curve (AUC) and
Accuracy (ACC). AUC is the area enclosed by coordinates and axes under the ROC curve.
Receiver operating characteristic curves are in the vertical and horizontal coordinates of
the true positive rate (True Positive Rate) and the false positive rate (False Positive Rate),
respectively. The area under the curve usually ranges from 0.5 to 1, and the higher the
value range, the better the performance of the model.

4.3. Compared Models

DKT-Q [4]. The most classical model of deep knowledge tracking uses a long short-
term memory network (LSTM) or a recurrent neural network (RNN) to predict. Unlike the
original DKT model with knowledge skill identification as the input, this paper chose to
use the question identification as the input for DKT.

DKVMN-Q [16]. A dynamic key-value memory network is used to update student
knowledge status at each time step.

CKT [4]. Student prior knowledge and learning rate are considered in modeling the
student state, which enriches the student characteristics.

SAKT [8] is a knowledge-tracking model based on an attention mechanism.
SAINT [10] is a knowledge-tracking model based on a Transformer, but the question

identifications, as well as the responses, are separated and entered into an encoder and
decoder in the Transformer, respectively.

PEBG [3] is a pre-trained model for mining the relationship between questions and
skills. In this paper, we also used a multilayer perceptron as the prediction layer of PEBG.

4.4. Experimental Environment and Parameter Setting

The experiment in this paper was conducted in the following environment: a Windows
10 operating system and an Intel (R) Core (TM) i5-9300H CPU. The model in this paper was
implemented using Pytorch framework, the maximum sequence length was set to 100 in
the Assistments data set, and if there were fewer questions than the maximum, the padding
token was 0. The Adam [25] optimizer was used, the learning rate was set to 1 × 10−3, the
embedding of the matrix representation vector dimension was set to 128, the feed-forward
layer dimension was 200, the number of multi-headed attention layer heads was 8, the
number of layers of the multilayer perceptron was 2, the intermediate layer dimension was



Appl. Sci. 2023, 13, 4226 12 of 18

128 dimensions, the number of samples for each batch of training was 128, and the training
was iterated 50 times.

The compared models used the publicly available codes in their respective papers and
the hyperparameter settings.

4.5. Comparsion and Analysis of Experimental Results
4.5.1. Display of Experimental Results (RQ1)

The experimental results are shown in Table 6.

Table 6. Performance of each model on different data sets.

Data Sets
Assistments09 Assistments12 Assistments17

AUC ACC AUC ACC AUC ACC

DKT-Q 0.7141 0.6985 0.7012 0.6834 0.7314 0.7210
DKVMN-Q 0.6961 0.6543 0.7000 0.6710 0.7211 0.7059

CKT 0.7340 0.7155 0.7180 0.7150 0.7403 0.7004
SAKT-Q 0.7322 0.6953 0.7472 0.7083 0.7507 0.7322
SAINT-Q 0.7432 0.7231 0.7501 0.7138 0.7533 0.7026

PEBG 0.7649 0.7360 0.7710 0.7423 0.7789 0.7521
MTLKT 0.7703 0.7659 0.7780 0.7542 0.7860 0.7653

From the table, we concluded that:

(1) Compared with the six comparison models, the experimental results of the model
in this paper on the three data sets were optimal, and the AUC values of the 09, 12,
and 17 data sets were 0.7703, 0.7780, and 0.7860, respectively. In the experiment, the
performance of the model on the 17 data set was better than other data sets because
the interaction records of the Assistment17 data set were relatively dense, which was
more conducive to model learning and training.

(2) The model in this paper improved 7.68% in AUC and 7.08% in ACC (in the Assist-
ments12 data set) compared to the classical DKT model. It was also observed in
Figure 3 that the attention-based knowledge-tracking models SAKT and SAINT out-
performed the recurrent-neural-network-based DKT model in terms of results because
the recurrent neural network suffered from information loss when the interaction
sequence was too long, which affected the prediction results. The SAINT model out-
performed SAKT because it used a deeper level of attention network, which was better
for the model to capture the complex relationship between questions and responses.
The model outperformed the SAINT model on all three data sets because we consid-
ered both question difficulty and student ability and designed an embedding vector
containing both factors into the prediction layer so that the model could learn more
effective features for prediction, thus alleviating the problem of model underfitting
due to sparse data sets and, ultimately, improving the accuracy of prediction. We also
improved the calculation of attention weights based on student answer performance,
which made the calculation of attention weights more reasonable.

(3) As shown in Figure 4, the results of this model also outperformed the CKT model
based on convolutional neural networks, with increases in the AUC values of 3.63%,
6%, and 4.57% for the three data sets, as well as of 5.04%, 3.92%, and 6.49% for ACC,
respectively. The CKT attempts to consider students’ prior knowledge and the effect
of learning rate on students’ answers in the model. However, in considering these
factors, only the answer result is used as an evaluation indicator, i.e., the author
believed that the student could fully master the questions answered correctly. This
approach, which considers only the effect of answer results on student ability, is not
accurate and objective because it ignores the difficulty levels of different questions.
Therefore, the model in this paper, which fully considered the information on the
difficulty of the questions, worked better.



Appl. Sci. 2023, 13, 4226 13 of 18

(4) As shown in Figure 5, Compared with the pre-trained PEBG model, MTLKT per-
formed better when using the same prediction layer, increasing by 0.54%, 0.7%, and
0.71%, respectively, for AUC and 2.99%, 1.19%, and 1.32%, respectively, for ACC. A
PEBG is dedicated to discovering advanced information between questions and skills,
and it considers the cross-relationships between questions and skills, where a question
contains multiple skills and a skill is related to multiple questions. A PEBG solves
the sparsity problem by constructing a question–skill bipartite graph to extract the
explicit and implicit relationships between topics and skills. However, in this paper,
we only considered single-skill questions, which means that a question contained
only one skill. Therefore, the method of constructing a dipartite graph in a PEBG does
not capture enough information. In addition, although a PEBG also considers infor-
mation difficulty, it only considers the difficulty of the questions themselves, ignoring
the difficulty of the skills included in the questions, and thus, it does not provide
a comprehensive representation of information difficulty. Finally, a PEBG extracts
information only between questions and skills and ignores information about student
ability, whereas question difficulty and student ability are the two most important
factors that must be considered to predict whether students can answer correctly. By
combining the above information, it can be concluded that the proposed embedding
vector incorporating information difficulty and student ability information was more
suitable for the knowledge-tracking task.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

(2) The model in this paper improved 7.68% in AUC and 7.08% in ACC (in the Assist-

ments12 data set) compared to the classical DKT model. It was also observed in Figure 

3 that the attention-based knowledge-tracking models SAKT and SAINT outper-

formed the recurrent-neural-network-based DKT model in terms of results because 

the recurrent neural network suffered from information loss when the interaction se-

quence was too long, which affected the prediction results. The SAINT model outper-

formed SAKT because it used a deeper level of attention network, which was better 

for the model to capture the complex relationship between questions and responses. 

The model outperformed the SAINT model on all three data sets because we consid-

ered both question difficulty and student ability and designed an embedding vector 

containing both factors into the prediction layer so that the model could learn more 

effective features for prediction, thus alleviating the problem of model underfitting 

due to sparse data sets and, ultimately, improving the accuracy of prediction. We also 

improved the calculation of attention weights based on student answer performance, 

which made the calculation of attention weights more reasonable. 

 

Figure 3. Comparison with attention mechanism model. 

(3) As shown in Figure 4, the results of this model also outperformed the CKT model 

based on convolutional neural networks, with increases in the AUC values of 3.63%, 

6%, and 4.57% for the three data sets, as well as of 5.04%, 3.92%, and 6.49% for ACC, 

respectively. The CKT attempts to consider students’ prior knowledge and the effect 

of learning rate on students’ answers in the model. However, in considering these 

factors, only the answer result is used as an evaluation indicator, i.e., the author be-

lieved that the student could fully master the questions answered correctly. This ap-

proach, which considers only the effect of answer results on student ability, is not 

accurate and objective because it ignores the difficulty levels of different questions. 

Therefore, the model in this paper, which fully considered the information on the dif-

ficulty of the questions, worked better. 

0.7322

0.7472 0.7507
0.7432

0.7501 0.7533

0.7703
0.778

0.786

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Assistment09 Assistment12 Assistment17

SAKT SAINT MTLKT

Figure 3. Comparison with attention mechanism model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19 
 

 

Figure 4. Comparison with convolutional-based model. 

 

(4) As shown in Figure 5, Compared with the pre-trained PEBG model, MTLKT per-

formed better when using the same prediction layer, increasing by 0.54%, 0.7%, and 

0.71%, respectively, for AUC and 2.99%, 1.19%, and 1.32%, respectively, for ACC. A 

PEBG is dedicated to discovering advanced information between questions and skills, 

and it considers the cross-relationships between questions and skills, where a ques-

tion contains multiple skills and a skill is related to multiple questions. A PEBG solves 

the sparsity problem by constructing a question–skill bipartite graph to extract the 

explicit and implicit relationships between topics and skills. However, in this paper, 

we only considered single-skill questions, which means that a question contained 

only one skill. Therefore, the method of constructing a dipartite graph in a PEBG does 

not capture enough information. In addition, although a PEBG also considers infor-

mation difficulty, it only considers the difficulty of the questions themselves, ignoring 

the difficulty of the skills included in the questions, and thus, it does not provide a 

comprehensive representation of information difficulty. Finally, a PEBG extracts in-

formation only between questions and skills and ignores information about student 

ability, whereas question difficulty and student ability are the two most important 

factors that must be considered to predict whether students can answer correctly. By 

combining the above information, it can be concluded that the proposed embedding 

vector incorporating information difficulty and student ability information was more 

suitable for the knowledge-tracking task. 

 

Figure 5. Comparison with pre-trained model. 

  

0.734

0.718

0.7403

0.7703
0.778

0.786

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Assistment09 Assistment12 Assistment17

CKT MTLKT

0.7649

0.771

0.7789

0.7703

0.778

0.786

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

Assistment09 Assistment12 Assistment17

PEBG MTLKT

Figure 4. Comparison with convolutional-based model.



Appl. Sci. 2023, 13, 4226 14 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19 
 

 

Figure 4. Comparison with convolutional-based model. 

 

(4) As shown in Figure 5, Compared with the pre-trained PEBG model, MTLKT per-

formed better when using the same prediction layer, increasing by 0.54%, 0.7%, and 

0.71%, respectively, for AUC and 2.99%, 1.19%, and 1.32%, respectively, for ACC. A 

PEBG is dedicated to discovering advanced information between questions and skills, 

and it considers the cross-relationships between questions and skills, where a ques-

tion contains multiple skills and a skill is related to multiple questions. A PEBG solves 

the sparsity problem by constructing a question–skill bipartite graph to extract the 

explicit and implicit relationships between topics and skills. However, in this paper, 

we only considered single-skill questions, which means that a question contained 

only one skill. Therefore, the method of constructing a dipartite graph in a PEBG does 

not capture enough information. In addition, although a PEBG also considers infor-

mation difficulty, it only considers the difficulty of the questions themselves, ignoring 

the difficulty of the skills included in the questions, and thus, it does not provide a 

comprehensive representation of information difficulty. Finally, a PEBG extracts in-

formation only between questions and skills and ignores information about student 

ability, whereas question difficulty and student ability are the two most important 

factors that must be considered to predict whether students can answer correctly. By 

combining the above information, it can be concluded that the proposed embedding 

vector incorporating information difficulty and student ability information was more 

suitable for the knowledge-tracking task. 

 

Figure 5. Comparison with pre-trained model. 

  

0.734

0.718

0.7403

0.7703
0.778

0.786

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Assistment09 Assistment12 Assistment17

CKT MTLKT

0.7649

0.771

0.7789

0.7703

0.778

0.786

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

Assistment09 Assistment12 Assistment17

PEBG MTLKT

Figure 5. Comparison with pre-trained model.

4.5.2. Ablation Experiment and Visualization

In order to verify and analyze the effectiveness of the components in the model of this
paper, as well as the optimal parameter settings, ablation experiments were conducted in
this paper.

Information Difficulty Extraction Module Ablation

In this section, we replace the multi-task learning part of the information difficulty ex-
traction module in this model using two parallel Transformers (without sharing parameters
and inputs) to obtain the difficulty embedding vector of the predicted questions and the
difficulty embedding vector of the skills, respectively, while the rest of the model remains
the same as the original model. The results of the ablation experiments are shown in Table 7.

Table 7. Information difficulty extraction module ablation results.

Data Sets
Assistments09 Assistments12 Assistments17

AUC ACC AUC ACC AUC ACC

Compared Model 0.7550 0.7324 0.7669 0.7438 0.7800 0.7575

MTLKT 0.7703 0.7659 0.7780 0.7542 0.7860 0.7653

Elevation 1.53% 3.35% 1.11% 1.04% 0.6% 0.78%

From the results in the table, it can be concluded that the model with the information
difficulty extraction module had a better performance, and the improvement was especially
obvious for the Assistments09 data set. This may be due to the fact that the question-based
interaction records in the Assistments09 data set were more sparse (refer to Table 1), and the
multi-task learning allowed the model to learn more and richer features by sharing inputs
and underlying parameters, thus improving the prediction performance of the model.

Student Ability Extraction Module Ablation

In this section, we show how the improved attention mechanism in the student
competence module affected the performance of the model and how different behavioral
characteristics in the performance bias function affected the status of students.

MTLKT-NA: Represents calculating weights between vectors without using the atten-
tion mechanism in the model, instead simply adding up the historical interaction embedded
vectors to obtain the current knowledge state of the students.

MTLKT-A: Indicates that attention mechanisms were used but performance bias
functions were not.

MTLKT-attempt: Represents the use of a student’s “number of attempts” as a param-
eter in the bias function to improve the attention mechanism.



Appl. Sci. 2023, 13, 4226 15 of 18

From the experimental results in Table 8, we could conclude that the use of the attention
mechanism improved the accuracy of the model, and the introduction of the performance
bias function with appropriate improvements to the attention mechanism could better
simulate the impact of student behavioral performance on knowledge state during the
question-answering process, thus improving the accuracy of the prediction. MTLKT used
“response time “as a parameter in the performance bias function, the performances for all
three data sets were higher than that of MTLKT-attempt, and the “response time” was more
representative of student performance than their “number of attempts”. It had a greater
impact on student knowledge state.

Table 8. Student ability extraction module ablation results.

Data Sets
Assistments09 Assistments12 Assistments17

AUC ACC AUC ACC AUC ACC

MTLKT-NA 0.7503 0.7322 0.7630 0.7318 0.7739 0.7524
MTLKT-A 0.7596 0.7406 0.7685 0.7355 0.7704 0.7555

MTLKT-attempt 0.7658 0.7528 0.7710 0.7423 0.7765 0.7605
MTLKT 0.7703 0.7659 0.7780 0.7542 0.7860 0.7653

Visualization of attention weights

To better visualize the effects of the performance bias function, we randomly selected
five students (S1–S5) from the test set and visualized their attention weights between the
11th question and first 10 questions (title number indicates order, not specific title) as
a heatmap (Figures 6 and 7). At the same time, the performances of these students in
answering these questions are given in Table 9. The contents of the table are the differences
between the students’ answer times and the average time. Negative numbers indicate
that the time spent on the questions was lower than the average time. Positive numbers
indicate that the time spent on the questions was higher than the average time (for display
purposes, the sizes of the data are divided by 1000).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 19 
 

 

Figure 6. Initial attention weights. 

 

Figure 7. Attention weights after using performance bias function. 

5. Conclusions 

In order to extract the information difficulty of questions and student ability infor-

mation accurately and to use the above information to simulate student modeling, predict 

student answer results, and grasp knowledge mastery level, this paper proposed a multi-

task knowledge-tracking model (MTLKT) with a novel representative approach to ques-

tion difficulty and student ability. We used the idea of multi-task learning to share the 

underlying parameters and information, fully explore the potential relationship between 

question difficulty and skill difficulty, and enrich the expression of question information 

difficulty. At the same time, considering that student answer performance is an important 

reflection of their ability, we improved the attention mechanism by combining student 

answer performance and optimizing the calculation of attention weights so that the mod-

eling of student ability was more in line with the law of learning. We conducted compar-

ative experiments on three data sets, and the experimental results showed that the 

Figure 6. Initial attention weights.



Appl. Sci. 2023, 13, 4226 16 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 19 
 

 

Figure 6. Initial attention weights. 

 

Figure 7. Attention weights after using performance bias function. 

5. Conclusions 

In order to extract the information difficulty of questions and student ability infor-

mation accurately and to use the above information to simulate student modeling, predict 

student answer results, and grasp knowledge mastery level, this paper proposed a multi-

task knowledge-tracking model (MTLKT) with a novel representative approach to ques-

tion difficulty and student ability. We used the idea of multi-task learning to share the 

underlying parameters and information, fully explore the potential relationship between 

question difficulty and skill difficulty, and enrich the expression of question information 

difficulty. At the same time, considering that student answer performance is an important 

reflection of their ability, we improved the attention mechanism by combining student 

answer performance and optimizing the calculation of attention weights so that the mod-

eling of student ability was more in line with the law of learning. We conducted compar-

ative experiments on three data sets, and the experimental results showed that the 

Figure 7. Attention weights after using performance bias function.

Table 9. The difference between student performance and average performance.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

S5 −10.5 −1.5 +8 −1 +0.1 +1 +0.5 +6 −0.6 −2
S4 +7.4 −8 +10.4 −0.4 −14.6 +3 −3.8 −6 0 +12
S3 +16.5 −3.6 −4.6 −12.2 +1.4 −3 +0.5 +1 +12.4 −8.4
S2 −5.2 +30 +1.8 −10.2 −5.4 +17.2 −7 −20 −6.2 +5
S1 −22 +13 +18 +16 +15 −60.5 +14 +29 −5 −17.5

It can be seen from the three red boxes in Figure 6 that, without using the performance
bias function, the three questions of Q2, Q4, and Q8 in the answer record of student S2
had the same attention weight of 0.08. From Figure 7, we can see the specific performance
of student S2 on these three questions. Among them, the performance on Q2 was lower
than the average performance, while the performances on Q4 and Q8 were better than the
average performance. Therefore, after using the performance bias function, we can see that
the attention weight of Q2 decreased by 0.07, while the attention weights of Q4 and Q8
increased by 0.02 and 0.07, respectively.

The weights of other questions were also adjusted according to the students’ perfor-
mances shown in Table 9. The experimental results show that the improved attention
mechanism after introducing the performance bias function could more accurately mine
the relationship between the students’ questions, as well as enhance the interpretability.

5. Conclusions

In order to extract the information difficulty of questions and student ability informa-
tion accurately and to use the above information to simulate student modeling, predict
student answer results, and grasp knowledge mastery level, this paper proposed a multi-
task knowledge-tracking model (MTLKT) with a novel representative approach to question
difficulty and student ability. We used the idea of multi-task learning to share the underly-
ing parameters and information, fully explore the potential relationship between question
difficulty and skill difficulty, and enrich the expression of question information difficulty.
At the same time, considering that student answer performance is an important reflec-
tion of their ability, we improved the attention mechanism by combining student answer
performance and optimizing the calculation of attention weights so that the modeling



Appl. Sci. 2023, 13, 4226 17 of 18

of student ability was more in line with the law of learning. We conducted comparative
experiments on three data sets, and the experimental results showed that the performance
of MTLKT was better than those of the comparison models. Meanwhile, we also conducted
ablation experiments on each module of the model, and the experimental results proved
the effectiveness of each module.

In future work, we will try to introduce knowledge mapping, graphical neural net-
works, and other techniques to explore the correlations between skills and questions in
order to improve the accuracy of model prediction and provide personalized teaching
tutoring and educational resource recommendation for students.

https://github.com/Shehan29/FRC-2014.

Author Contributions: Conceptualization, W.Z. and K.Q.; methodology and implementation, Z.K.
and S.H.; writing—original draft preparation, K.Q.; writing—review and editing, W.Z., K.Q., Z.K.
and S.H. All authors have read and agreed to the published version of the manuscript.

Funding: Research on the intelligent comprehensive assessment of computational thinking for the
key competence Supported by National Natural Science Foundation of China (NO. 61977031).

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The Assistments09 data set supporting this study was obtained
from https://sites.google.com/site/assistmentsdata/home/assistment2009-2010-data/skill-builder-
data-2009-2010 (accessed on 15 September 2022); the Assistments12 data set was obtained from
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect (accessed on
the 15 September 2022); the Assistments17 data set was obtained from https://github.com/Shehan2
9/FRC-2014 (accessed on the 15 September 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Minn, S.; Zhu, F.; Desmarais, M.C. Improving Knowledge Tracing Model by Integrating Problem Difficulty. In Proceedings

of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; IEEE:
Piscataway, NJ, USA, 2018.

2. Fang, J.; Zhao, W.; Jia, D. Exercise Difficulty Prediction in Online Education Systems. In Proceedings of the 2019 International
Conference on Data Mining Workshops (ICDMW), Beijing, China, 8–11 November 2019.

3. Liu, Y.; Yang, Y.; Chen, X.; Shen, J.; Zhang, H.; Yu, Y. Improving Knowledge Tracing via Pre-training Question Embeddings.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim
International Conference on Artificial Intelligence IJCAI-PRICAI-20, Yokohama, Japan, 7–15 January 2021.

4. Shen, S.; Liu, Q.; Chen, E.; Wu, H.; Huang, Z.; Zhao, W.; Su, Y.; Ma, H.; Wang, S. Convolutional Knowledge Tracing: Modeling
Individualization in Student Learning Process. In Proceedings of the SIGIR’20: The 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, Virtual, 25–30 July 2020; ACM: New York, NY, USA, 2020.

5. Ghosh, A.; Heffernan, N.; Lan, A.S. Context-Aware Attentive Knowledge Tracing. arXiv 2020, arXiv:2007.12324.
6. Pardos, Z.A.; Heffernan, N.T.T. Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing.

In Proceedings of the User Modeling, Adaptation, & Personalization, International Conference, Umap, Big Island, HI, USA,
20–24 June 2010; Springer: Berlin/Heidelberg, Germany, 2010.

7. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the Neural
Information Processing Systems, Montreal, QC, Canada, 8–11 December 2014; MIT Press: Cambridge, MA, USA, 2014.

8. Piech, C.; Spencer, J.; Huang, J.; Ganguli, S.; Sahami, M.; Guibas, L.; Sohl-Dickstein, J. Deep Knowledge Tracing. Comput. Sci.
2015, 3, 19–23.

9. Yeung, C.K.; Yeung, D.Y. Addressing Two Problems in Deep Knowledge Tracing via Prediction-Consistent Regularization. In
Proceedings of the Artificial Intelligence; ACM: New York, NY, USA, 2018.

10. Zhang, J.; Shi, X.; King, I.; Yeung, D.-Y. Dynamic Key-Value Memory Networks for Knowledge Tracing. In Proceedings
of the Web Conference, Perth, Australia, 3–7 April 2017; International World Wide Web Conferences Steering Committee:
Geneva, Switzerland, 2017.

11. Liu, S.; Zou, R.; Sun, J.; Zhang, K.; Jiang, L.; Zhou, D.; Yang, J. A Hierarchical Memory Network for Knowledge Tracing. Expert
Syst. Appl. 2021, 177, 114935. [CrossRef]

12. Pandey, S.; Srivastava, J. RKT: Relation-Aware Self-Attention for Knowledge Tracing. arXiv 2020, arXiv:2008.12736.

https://github.com/Shehan29/FRC-2014
https://sites.google.com/site/assistmentsdata/home/assistment2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
https://github.com/Shehan29/FRC-2014
https://github.com/Shehan29/FRC-2014
http://doi.org/10.1016/j.eswa.2021.114935


Appl. Sci. 2023, 13, 4226 18 of 18

13. Nakagawa, H.; Iwasawa, Y.; Matsuo, Y. Graph-based Knowledge Tracing: Modeling Student Proficiency Using Graph Neu-
ral Network. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Thessaloniki, Greece,
14–17 October 2019; ACM: New York, NY, USA, 2019.

14. Song, X.; Li, J.; Lei, Q.; Zhao, W.; Chen, Y.; Mian, A. Bi-CLKT: Bi-Graph Contrastive Learning based Knowledge. Tracing.
Knowl.-Based Syst. 2022, 241, 108274. [CrossRef]

15. Yang, Y.; Shen, J.; Qu, Y.; Liu, Y.; Wang, K.; Zhu, Y.; Zhang, W.; Yu, Y. GIKT: A Graph-based Interaction Model for Knowledge
Tracing. arXiv 2020, arXiv:2009.05991.

16. Sun, X.; Zhao, X.; Li, B.; Ma, Y.; Sutcliffe, R.; Feng, J. Dynamic Key-Value Memory Networks With Rich Features for Knowledge
Tracing. IEEE Trans. Cybern. 2021, 52, 8235–8245. [CrossRef] [PubMed]

17. Liu, Q.; Huang, Z.; Yin, Y.; Chen, E.; Xiong, H.; Su, Y.; Hu, G. EKT: Exercise-Aware Knowledge Tracing for Student Performance
Prediction. IEEE Trans. Knowl. Data Eng. 2021, 33, 100–115. [CrossRef]

18. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014,
arXiv:1409.0473.

19. Pandey, S.; Karypis, G. A Self-Attentive model for Knowledge Tracing. arXiv 2019, arXiv:1907.06837.
20. Choi, Y.; Lee, Y.; Cho, J.; Baek, J.; Kim, B.; Cha, Y.; Shin, D.; Bae, C.; Heo, J. Towards an Appropriate Query, Key, and Value

Computation for Knowledge Tracing. arXiv 2020, arXiv:2002.07033.
21. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
22. Pu, S.; Yudelson, M.; Ou, L.; Huang, Y. Deep Knowledge Tracing with Transformers. In Artificial Intelligence in Education; Springer:

Cham, Switzerland, 2020; pp. 252–256.
23. Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
24. Chaudhry, R.; Singh, H.; Dogga, P.; Saini, S.K. Modeling Hint-Taking Behavior and Knowledge State of Students with Multi-Task

Learning. In Proceedings of the International Conference on Educational Data Mining (EDM), Raleigh, NC, USA, 16–20 July 2018;
pp. 21–31.

25. Thung, K.H.; Wee, C.Y. A brief review on multi-task learning. Multimed. Tools Appl. 2018, 77, 29705–29725. [CrossRef]
26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016.
27. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
28. Chen, Z.; Badrinarayanan, V.; Lee, C.Y.; Rabinovich, A. GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep

Multitask Networks. arXiv 2017, arXiv:1711.02257.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.knosys.2022.108274
http://doi.org/10.1109/TCYB.2021.3051028
http://www.ncbi.nlm.nih.gov/pubmed/33531331
http://doi.org/10.1109/TKDE.2019.2924374
http://doi.org/10.1023/A:1007379606734
http://doi.org/10.1007/s11042-018-6463-x

	Introduction 
	Related Works 
	The Proposed Method 
	Information Difficulty Extraction Module 
	Task Selection 
	Module Inputs 
	Position Encoding 
	Shared Layer 
	Task-Specific Layer 

	Student Ability Extraction Module 
	Module Input 
	Knowledge State Vector Acquisition 
	Question-Solving Ability Vector Acquisition 
	Prediction Module 


	Experiment and Analysis 
	Data Sets 
	Evaluation Metrics 
	Compared Models 
	Experimental Environment and Parameter Setting 
	Comparsion and Analysis of Experimental Results 
	Display of Experimental Results (RQ1) 
	Ablation Experiment and Visualization 


	Conclusions 
	References

