
Citation: Al-Ghamdi, S.; Al-Khalifa,

H.; Al-Salman, A. Fine-Tuning

BERT-Based Pre-Trained Models for

Arabic Dependency Parsing. Appl.

Sci. 2023, 13, 4225. https://doi.org/

10.3390/app13074225

Academic Editor: Kuei-Hu Chang

Received: 14 February 2023

Revised: 24 March 2023

Accepted: 25 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Fine-Tuning BERT-Based Pre-Trained Models for Arabic
Dependency Parsing
Sharefah Al-Ghamdi * , Hend Al-Khalifa and Abdulmalik Al-Salman

College of Computer and Information Sciences, King Saud University, P.O. Box 2614, Riyadh 13312, Saudi Arabia;
hendk@ksu.edu.sa (H.A.-K.); salman@ksu.edu.sa (A.A.-S.)
* Correspondence: sharefah@ksu.edu.sa

Abstract: With the advent of pre-trained language models, many natural language processing tasks
in various languages have achieved great success. Although some research has been conducted
on fine-tuning BERT-based models for syntactic parsing, and several Arabic pre-trained models
have been developed, no attention has been paid to Arabic dependency parsing. In this study,
we attempt to fill this gap and compare nine Arabic models, fine-tuning strategies, and encoding
methods for dependency parsing. We evaluated three treebanks to highlight the best options and
methods for fine-tuning Arabic BERT-based models to capture syntactic dependencies in the data.
Our exploratory results show that the AraBERTv2 model provides the best scores for all treebanks
and confirm that fine-tuning to the higher layers of pre-trained models is required. However, adding
additional neural network layers to those models drops the accuracy. Additionally, we found that
the treebanks have differences in the encoding techniques that give the highest scores. The analysis
of the errors obtained by the test examples highlights four issues that have an important effect on
the results: parse tree post-processing, contextualized embeddings, erroneous tokenization, and
erroneous annotation. This study reveals a direction for future research to achieve enhanced Arabic
BERT-based syntactic parsing.

Keywords: syntactic parsing; dependency parsing; fine-tuning methods; machine learning; neural
networks; deep learning; language models; Arabic natural language processing

1. Introduction

Syntactic parsing is an automatic analysis of natural language that defines the gram-
matical arrangements of words and their relationships by assigning a syntactic structure
to a sentence [1,2]. In dependency representation, the parse tree describes the syntactic
structure using binary relations called dependencies. Each relation is composed of two
lexical words arguments: the dependent (modifier) word and the head word [3]. Syntactic
analysis aids in the meaning comprehension of a sentence for most natural languages.
Therefore, it is a critical level of analysis for other natural language processing (NLP)
applications, such as machine translation, information extraction, and generation [4–6].
Dependency parsing is a challenging task for morphologically rich languages with free
word order, long-distance, and non-projective dependencies [7].

Arabic is a Semitic language that is considered to possess a rich morphology and com-
plex syntax [8,9]. Recent research has focused on investigating the diverse approaches to
dependency parsing and has strived to improve the parsers’ accuracy for several languages
in a multilingual manner [10,11]. However, no profound study has been conducted on
dependency parsing using neural network techniques for Arabic compared to Amharic,
Tamil, Greek, German, and Turkish [12–17].

This study investigated several directions related to dependency parsing as a sequence
labeling problem. Specifically, we fine-tuned Bidirectional Encoder Representations from
Transformers (BERT) for Arabic parsing. We further provide a number of comparisons
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between existing BERT-based pre-trained Arabic models, different fine-tuning techniques,
and three encoding methods for the position of the head token. A comprehensive explo-
ration of these aspects is presented and discussed. To present research gaps and priorities
for improvement, four weaknesses were argued, namely, the parse tree post-processing,
contextualized embeddings, erroneous part of speech (POS) annotation, and erroneous tok-
enization. The exploration findings indicate that Arabic dependency parsing as sequence
labeling using a fine-tuned, BERT-based, pre-trained model could achieve promising results.
In addition, comparisons and discussions were conducted on three Arabic treebanks, which
are presented later in this paper. Our work provides researchers with explored choices for
Arabic dependency parsing as a sequence labeling problem.

The main contributions of this paper are summarized in the following two goals:

• Examining the different aspects of fine-tuning BERT-based models for syntactic depen-
dency analysis of the Arabic language.

• Identifying the models and methods that provide the best results and highlighting
their weaknesses.

The remainder of this paper is organized as follows. Section 2 introduces background
knowledge regarding the Arabic language and dependency parsing as a sequence labeling
problem, as well as an overview of BERT-based models. Section 3 presents the related
work. The corpora and their statistics are presented in Section 4. Section 5 explores the
used methodology. The evaluation results are discussed in Section 6. The error analysis is
introduced in Section 7, followed by the conclusions and future work in Section 8.

2. Background

This section introduces the Arabic language and its varieties, the formulation of
dependency parsing as a sequence labeling problem, and BERT pre-trained language
models.

2.1. Arabic Language

Arabic is a Semitic language spoken primarily in Arab countries. It is divided into
three types: Dialect Arabic (DA), Modern Standard Arabic (MSA), and Classical (Traditional
or Quranic) Arabic (CA). These forms differ in morphology, syntax, and lexical mixes. In
addition, Arabic is generally a free word request language, although the essential word
order in Arabic is verb-subject-object (VSO). This causes difficulty in NLP tasks, especially
syntactic parsing [18].

Less-resourced languages, such as classical Arabic, the ancient form of Arabic, need
more attention from the NLP community. Therefore, in [19], we constructed the Classical
Arabic Poetry Dependency treebank (ArPoT). In contrast, in this work, we have explored
the dependency parsing for different Arabic treebanks using models pre-trained on the
Arabic language variants: MSA, CA, and a mix of MSA, DA, and CA.

2.2. Sequence Labeling for Dependency Parsing

Most NLP tasks can be directly considered multiclass classification problems (sequence
tagging) because they are classified into pre-defined categories. For example, Name Entity
Recognition (NER) identifies each entity as a person, organization, or place. Further, in
part-of-speech (POS) tagging, the words are categorized as noun, verb, preposition, and so
on. However, in the case of dependency syntactic parsing, the problem is more challenging
because syntactic analysis is the task of mapping the sequence of words to its parse tree.

The parse tree in dependency treebanks is a directed graph that shows each token
in the sentence as dependent on only one other token (its head). Moreover, it specifies
the syntactic relation between the token and its head. Thus, the dependency parsing task
classes are defined depending on the length of sentences and the syntactic reactions used
in the treebank annotation. Each token requires a label (class) containing information
about the head token’s position and the syntactic dependency relation. The head position
indicates the index of the head (parent) token of the dependent token in the parse tree of
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a sentence. The second part is the syntactic dependency relation between the dependent
token and its head. Thus, the concatenation of the head position and the dependency
relation forms one class in the classification problem.

Strzyz et al. [20] encoded the dependency tree as a sequence of labels, where each
token Ti in the sequence T0, . . . , Tn is associated with a particular label of the form (xi @ li),
where xi encodes the position of Ti’s head, and li is the dependency relation label between
Ti and its head. Three of the four encoding types for xi that were applied by Strzyz et al. [20]
were evaluated in this study: naive positional encoding, relative positional encoding, and
relative POS-based encoding. These three methods were chosen because they can represent
non-projective dependencies that exist in Arabic sentences. Figure 1 shows the three applied
encodings on an Arabic parse tree from the ArPoT treebank, whereas Table 1 lists them,
along with the explanation of labels.
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Figure 1. Types of encoding on an example for Arabic parse tree from ArPoT [19,20]. 1 In this work,
we applied Arabic to Buckwalter transliteration using CAMeL Tools at: https://github.com/CAMeL-
Lab/camel_tools (accessed on 4 February 2023).

Table 1. Head position encoding methods with an explanation of labels.

Identifier Encoding Label Label Meaning

E1 Naive positional 4@OBJ Id of the head is 4, and the syntactic relation is OBJ

E2 Relative positional R@2@MOD The head is the second right (R) token, and the
syntactic relation is MOD

E3 Relative POS-based −1@VRB@MOD The head is the first left token that has VRB pos tag,
and the syntactic relation is MOD

2.3. BERT Pre-Trained Language Models

In the NLP community, large-scale unlabeled corpora are utilized, and self-supervised
learning is employed to produce deep pre-trained models, such as GPT and BERT, which
capture linguistic knowledge from the text. The development of such pre-trained models
has risen to prominence following the early emergence of pre-training shallow networks,
such as Word2Vec and GloVe, to capture the semantic meanings of words, as well as the
development of Transformers architectures [21].

The introduction of BERT, a bidirectional deep Transformer, has significantly de-
veloped the field of pre-trained models. Adapting BERT for certain NLP tasks can be
accomplished in two stages: pre-training and fine-tuning [22]. In this work, we primarily
applied Arabic pre-trained language models and fine-tuned them for a token-level NLP
subtask, which is the syntactic dependency parsing. We tuned the token classifier to assign
a syntactic dependency label to each token in the input sentence.

For Arabic, there are several publicly available BERT-based pre-trained language
models. To select a proper pre-trained language model for syntactic dependency parsing,
we compared nine BERT-based models, as shown in Table 2.

https://github.com/CAMeL-Lab/camel_tools
https://github.com/CAMeL-Lab/camel_tools
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Table 2. Pre-trained language models.

Model Name * Variants Ref.

Camel-MSA CAMeL-Lab/BERT-based-arabic-camelbert-msa MSA [23]
Camel-CA CAMeL-Lab/BERT-based-arabic-camelbert-ca CA [23]
Camel-mix CAMeL-Lab/BERT-based-arabic-camelbert-mix MSA/DA/CA [23]

multilingual BERT-based-multilingual-uncased MSA [22]
Arabic asafaya/BERT-based-arabic MSA [24]

AraBERTv1 aubmindlab/BERT-based-AraBERTv01 MSA [25]
AraBERTv2 aubmindlab/BERT-based-AraBERTv02 MSA [25]

ARBERT UBC-NLP/ARBERT MSA [26]
GigaBERT lanwuwei/GigaBERT-v4-Arabic-and-English MSA [27]

* Model name as in: https://huggingface.co (accessed on 24 October 2021).

3. Related Work

This section discusses recent work on syntactic parsing using pre-trained language
models, including BERT for sequence labeling and fine-tuning for various downstream
tasks. The need for exploring BERT fine-tuning for syntactic dependency parsing is empha-
sized for its potential in improving Arabic syntactic parsers.

Compared to transition- and graph-based methods, Strzyz et al. [20] showed that it
is possible to obtain fast and accurate parsers using a conventional BILSTM-based model
for sequence labeling. However, the study was conducted only on the English language.
Later, Vilares et al. [28] cast parsing as sequence labeling, and then with just pre-trained
encoders, syntactic parsing models were presented. The work compared different pre-
trained architectures, such as GloVe, word2vec, FastText, ELMO, and BERT, on an English
treebank only. The fully tuned BERT surpassed existing sequence tagging parsers on the
same English dependency treebank. The paper gave a modest presentation of the scores
for some of the dependency relations in the Treebank, such as obj, advmod, det, and nsubj,
but did not analyze why recognizing some relations was more accurate than others, and
there was no in-depth analysis of the dataset errors.

Recent work [13] explored the use of BERT models jointly with a MALT parser for
transition-based dependency parsing of Tamil, a morphologically rich, agglutinative lan-
guage. The results show that appropriate vector representations from BERT trained on
Indic languages directly improve the overall parser performance.

An abundance of recent work has evaluated the fine-tuning of pre-trained language
models for downstream tasks. Fine-tuning BERT-based Arabic pre-trained language models
for sequence labeling problems has shown great success in named entity recognition, POS
tagging, sentiment analysis, dialect identification, and poetry meter classification [23,29].
Consequently, an investigation of BERT fine-tuning methods for syntactic dependency
parsing is also needed. This will provide a foundation for improving the development of
Arabic syntactic parsers.

From an analytical perspective, several studies [30–32] have attempted to understand
and explain what occurs during BERT fine-tuning. Merchant et al. [30] explained the
extent to which the layers were affected during the fine-tuning process. The results show
that, unlike natural language inference and reading comprehension, dependency parsing
reconfigures most of the BERT models and involves deeper changes to the encoder (more
top layers of BERT are affected).

In this work, we intend to explore the Arabic dependency parsing as a sequence label-
ing problem. We aim to identify the optimal selections to perform syntactic dependency
parsing by fine-tuning BERT-based pre-trained Arabic models. To implement this task, we
aim to identify the best head position encoding method, pre-trained model, and fine-tuning
strategy. Moreover, we present a detailed analysis of the errors given by the optimal parsing
model to understand what happened during fine-tuning, and we shed light on the reasons
for the weaknesses of the chosen model.

https://huggingface.co
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4. Corpora

Our experiments were conducted on three Arabic dependency treebank datasets:
the Prague Arabic dependency treebank (PADT) [33], the conversion of the Penn Arabic
Treebank (ATB) part2 v3.1 [34] as part of the Columbia Arabic Treebank (CATiB), and the
dependency treebank for Classical Arabic poetry (ArPoT v1.0) [19].

Corpora Statistics

PADT is the largest corpus in this study, followed by CATiB and ArPoT. In Table 3,
we show the number of tokens in the training, development, and testing datasets for each
treebank, whereas Figure 2 shows the percentages of the data split for them.

Table 3. Fine-tuned datasets statistics.

Treebank All Training Development Testing

PADT 282,384 223,881 * 30,239 28,264
CATiB 169,319 135,219 * 16,972 * 17,128
ArPoT 35,459 28,506 2771 4182

* These statistics before some tokens were excluded from sentences that exceeded the maximum length of BERT
(512).
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Figure 2. Data split into training, development, and testing for each dataset.

PADT and CATiB are MSA newswires text, whereas ArPoT is for CA verses. PADT is
in the Universal Dependencies annotation style [33], whereas CATiB and ArPoT follow the
annotation rules of [35]. However, unlike ArPoT, CATiB contains the “PNX” POS tag for
punctuation, because ArPoT sentences are unpunctuated. Further, CATiB has one token
with the “UNK” POS tag, which means the (unknown) type. Table 4 shows the number of
POS tags and dependency relation labels for each treebank.

Table 4. POS tags and Dependency Relations Labels in each dataset.

Treebank POS Tags Dependency Relations Labels

PADT 16 33
CATiB 6 * 8
ArPoT 5 8

* Without “UNK” tag.

The percentages of POS tags and dependency relation labels for all corpora are pre-
sented in Figure 3. The left column (a, c, and e) for the POS tags and the right column
(b, d, and f) show the dependency relation labels. The distributions show the nature of
the language, where some POS tags and dependency relations are more common than
others. In Section 7, we study the results of parser accuracy on unbalanced distribution for
different types of tokens. More detailed statistics of the corpora used for fine-tuning are
presented in Table 5, including:
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1. Sentences: the number of sentences in the corpus.
2. Max_L: the maximum length for the corpus sentences.
3. Avg_L: the average number of tokens for sentences divided by the total number of

words (tokens) in the corpus.
4. Max_DL: the maximum dependency length (distance between dependents and heads).
5. Avg_DL: the average dependencies length.
6. TTR: the type–token ratio (TTR), which is the total number of unique words (types)

divided by the total number of words (tokens) in a corpus.
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Table 5. Number of sentences (Sentences), maximum sentence length (Max_L), average sentence
length (Avg_L), maximum dependencies length (Max_DL), average dependencies length (Avg_DL),
and TTR type–token ratio (TTR).

PADT CATiB ArPoT

Sentences 7664 2591 2400 *
Max_L 398 609 68
Avg_L 36.85 65.28 14.77

Max_DL 397 479 46
Avg_DL 4.07 4.21 2.07

TTR 9.34 9.5 28.26
* After sentence alignment in [19] for 2685 verses.

Generally, sentences in CATiB are longer than those in PADT, and ArPoT sentences
are the shortest because of the nature of classical verses. In addition, the average length of
dependencies in CATiB is larger. For the lexical variety measured by TTR [36], ArPoT has
more vocabulary variety.

5. Methodology

This section describes our methodology, including the evaluation metrics and a de-
tailed description of the experimental results. In this study, we aimed to demonstrate
the best possible options for fine-tuning BERT models for Arabic dependency parsing by
conducting the following experiments.

• The most effective head position encoding method for each treebank is identified in
Section 6.1.

• The accurate pre-trained model for the syntactic parsing task on each corpus was
differentiated by tuning all Arabic pre-trained models under study. In the first ex-
periment, head position encoding methods with higher scores were utilized. In this
process, out-of-vocabulary (OOV) words and the average number of tokens per word
(P/W) created by tokenizers were verified (see Section 6.2).

• A comparison of fine-tuning techniques is presented in Section 6.3. Based on the
previous sections of the experiments, we utilized the best encoding method and
pre-trained model for each treebank.

For evaluation metrics, two standard evaluation metrics for dependency parsing
were used: unlabeled attachment score (UAS), which represents the percentage of tokens
assigned to the correct head, and labeled attachment score (LAS), which is the percentage
of tokens assigned to both the correct head and the correct dependency label between the
token and its head [37]. In addition, in some sections, the label score (LS) was used as the
number of correct labels for dependency.

In all experiments, we relied on the training code for [28], but we allowed multiple
roots while it was seen in the corpora. We used GPU in Google Colab and conducted the
experiments in April 2022 (before the Python packages upgrading in November 2022, in
case of future reconsideration). The same experimental settings were applied in all runs:
maximum length = 512, batch size = 8, epoch = 10, and learning rate = 5 × 10−5.

6. Evaluation and Discussion

Several experiments have been carried out to evaluate the dependency parsing for
Arabic as a sequence labeling problem by fine-tuning the BERT-based pre-trained models.
First, the three encoding methods presented in Section 2.2 were evaluated to measure their
parsing accuracy on MSA and CA treebanks. Then, in Section 2.3, comparison studies
were performed on nine different BERT-based Arabic models. Finally, three fine-tuning
techniques were compared using the optimal selections from the first two experiments.
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6.1. Choosing the Best Encoding Method

Although the encoding of the head position is a great step towards simplifying syn-
tactic parsing as a sequence labeling problem, the effect of a wide variety of labels on the
parser accuracy requires more investigation. Generally, the number of labels (classes) in
the dataset is a key factor affecting the accuracy of the classification models [38,39]. Thus,
during the exploration of the best encoding, we shed light on the number of different labels
using each of the methods under study (see Section 2.2).

The specifications of each dataset, such as sentence length (number of tokens’ ids),
number of POS tags, and number of dependency relations, provide a diversity of encoding
labels (classes). Therefore, we presented the number of labels for each dataset in Table 6. It
shows that encoding method E1 produces more classes than E2 and E3 for all treebanks.
On the other hand, E2 carries fewer labels for ArPoT, and E3 carries fewer labels for PADT
and CATiB. In response, the results of fine-tuning the BERT-based models using the three
labeling methods in Table 7 show that the smaller the number of labels, the more accurate
the classifier. E2 reported a higher UAS/LAS for ArPoT, and E3 reported the best results for
PADT and CATiB. Therefore, we named the models in the following sections using ArPoTE2,
PADTE3, and CATiBE3. CAMeL BERT-based pre-trained models have been utilized here:
Camel-CA for the classical corpus (ArPoT) and Camel-MSA for the newswire corpora
CATiB and PADT.

Table 6. Number of labels in each treebank using three head position encodings.

E1 E2 E3

PADT 4513 2017 1793
CATiB 1923 563 297
ArPoT 305 164 173

Table 7. Average UAS/LAS over 5 runs on development (DEV) and test datasets using three head
position encodings.

Treebank (Model)
DEV TEST

E1 E2 E3 E1 E2 E3

PADT (Camel-MSA) 64.25/60.65 81.79/77.46 83.12/79.00 85.48/55.40 82.18/77.77 83.06/79.17
CATiB (Camel-MSA) 46.88/45.89 83.89/82.40 86.35/85.23 44.26/43.07 83.75/82.20 86.52/85.33
ArPoT (Camel-CA) 64.63/57.77 78.74/70.77 75.47/70.28 64.39/58.38 78.91/72.39 76.70/72.06

6.2. Choosing the Best BERT Model

The Arabic BERT-based models were evaluated on the corpora (PADT, CATiB, and
ArPoT), and the UAS/LAS for the testing datasets are presented in Table 8. In our obser-
vations, the most accurate model among the nine fully tuned models was Ara-BERTv2.
This corresponds to the results of [23], where AraBERTv2 was the best for six other NLP
subtasks. Furthermore, the dependency parsing task is sensitive to the language variants
of the pre-trained model. For instance, Camel-MSA and Camel-CA have the same setup,
but they are trained on different Arabic variants, MSA and CA, respectively. Hence, the
UAS/LAS of the fine-tuned Camel-MSA model on the MSA corpora (PADT and CATiB)
is higher than that of the Camel-CA model. On the other hand, the fine-tuned Camel-CA
model performed better on the Classical Arabic corpus (ArPoT). Similarly, the multilingual
model (multilingual) reported worse scores for all corpora. Table 9 displays the Arabic
training datasets used for pre-training the BERT-based models under study.
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Table 8. Test UAS/LAS for all Arabic pre-trained models under study using the best encoding
methods for each treebank.

TEST UAS/LAS

Model PADTE3 CATiBE3 ArPoTE2

Camel-MSA 83.10/79.17 86.47/85.29 78.72/71.83
Camel-CA 80.78/76.60 84.95/83.32 79.65/72.21
Camel-mix 82.37/78.37 85.64/84.35 78.48/71.95

multilingual 74.02/68.54 76.22/72.50 72.33/60.71
Arabic 80.02/76.52 82.65/80.59 73.58/64.30

AraBERTv1 82.76/78.82 86.76/85.57 77.76/70.95
AraBERTv2 84.03/80.26 87.54/86.41 79.79/74.13

ARBERT 80.37/76.11 78.31/75.95 75.06/66.19
GigaBERT 80.41/76.06 83.29/81.28 73.39/62.31

Table 9. Data sources for the Arabic BERT-based models pre-training.

Source\Model Camel-MSA Camel-CA Camel-mix Multilingual Arabic AraBERTv1 AraBERTv2 ARBERT GigaBERT
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
racy of the BERT-based model. 
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ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
racy of the BERT-based model. 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
racy of the BERT-based model. 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
racy of the BERT-based model. 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
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Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
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data size. Table 10 shows that training with larger data and vocabulary sizes does not 
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Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
racy of the BERT-based model. 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
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Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
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more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
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more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
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Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
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ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
racy of the BERT-based model. 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
racy of the BERT-based model. 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
racy of the BERT-based model. 
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To investigate the effect of the pre-training configurations on fine-tuning the depend-
ency parsing, we compared the pre-training settings of the models and the pre-training 
data size. Table 10 shows that training with larger data and vocabulary sizes does not 
necessarily lead to higher parsing accuracy. For instance, although ARBERT is trained on 
more than double the size of the pre-training data and vocabulary for AraBERTv1, it per-
formed worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP 
tasks where data size may not be an important factor in fine-tuning the performance. 
Looking at the pre-training objective and tokenizer in Table 10, we can see that they do 
not affect the model accuracy. They are the same in the case of the BERT-based models 
with a higher and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, 
focusing on the most accurate BERT-based model for all corpora (AraBERTv2), we can see 
that the training batches sizes are larger, which verifies the Anil et al. [40] proposed en-
hancement of using an increasing batch size schedule for pre-training to grow the accu-
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To investigate the effect of the pre-training configurations on fine-tuning the depen-
dency parsing, we compared the pre-training settings of the models and the pre-training
data size. Table 10 shows that training with larger data and vocabulary sizes does not nec-
essarily lead to higher parsing accuracy. For instance, although ARBERT is trained on more
than double the size of the pre-training data and vocabulary for AraBERTv1, it performed
worse on all corpora. This confirms the Inoue et al. [23] suggestion for other NLP tasks
where data size may not be an important factor in fine-tuning the performance. Looking
at the pre-training objective and tokenizer in Table 10, we can see that they do not affect
the model accuracy. They are the same in the case of the BERT-based models with a higher
and lower UAS/LAS (AraBERTv2 and multilingual, respectively). Therefore, focusing
on the most accurate BERT-based model for all corpora (AraBERTv2), we can see that the
training batches sizes are larger, which verifies the Anil et al. [40] proposed enhancement
of using an increasing batch size schedule for pre-training to grow the accuracy of the
BERT-based model.
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Table 10. Arabic BERT models configurations. MLM: masked language modeling. WWM: whole
word masking. SWM: sub-word masking. NSP: next sentence prediction. WP: word piece. SP:
sentence piece. MSL: maximum sentence length. TD: training duration.

Model
(MLM)

Pre-Training
Objective

Tokenizer Batch
Size MSL TD

(Days)
Total
Steps Words Data

Size
Vocabulary

Size

Camel-
MSA WWM + NSP WP 1024/256 128/512 ~4.5 1 M 12.6 B 107 GB 30 K

Camel-
CA WWM + NSP WP 1024/256 128/512 ~4.5 1 M 847 M 6 GB 30 K

Camel-
mix WWM + NSP WP 1024/256 128/512 ~4.5 1 M 17.3 B 167 GB 30 K

multilingual SWM + NSP WP - - - - - - 120 K
Arabic WWM + NSP WP 128 - - 4 M 8.2 B 95 GB 32 K
AraBERTv1 WWM + NSP SP 512/128 128/512 4 1.25 M 2.7 B 23 GB 60 K
AraBERTv2 WWM + NSP WP 2560/384 128/512 36 3 M 8.6 B 77 GB 60 K
ARBERT WWM + NSP WP 256 128 16 8 M 6.5 B 61 GB 100 K
GigaBERT SWM + NSP WP 512 128/512 - 1.48 M 10.4 B - 50 K

To explore the effect of OOV tokens on the parsing accuracy of fine-tuned BERT-based
models, we present the rate of OOV tokens generated by the tokenizers for each dataset
in Table 11.

Table 11. The rate of OOV tokens indicated by each model over the fine-tuning data.

Camel-MSA,CA,mix Multilingual Arabic AraBERTv1 AraBERTv2 ARBERT GigaBERT

PADTE3 1.27 10.82 10.82 1.76 1.54 12.46 10.82
CATiBE3 0.15 17.10 14.71 2.59 0.32 18.42 14.71
ArPoTE2 0.00 3.43 3.43 0.00 0.00 3.43 3.43

In all corpora, the ratio of OOV produced by the CAMeL pre-trained models was
lower. This was followed by AraBERTv2, which was the most accurate on dependency
parsing. However, after checking the OOV tokens, we observed that punctuation is the
most common OOV given by the CAMeL BERT models (Camel-MSA and Camel-CA
Camel-mix) and AraBERT models (AraBERTv1 and AraBERTv2). Thus, these models did
not record any OOV tokens in the unpunctuated treebank (ArPoT).

In contrast, the rest of the models would identify very common words with
“Z/HAMZAH” as OOV, such as “úÍ@



” and “ 	

à@


”, because of encoding issue (We used to-

kenizer.convert_tokens_to_ids method rather than tokenizer.encode). Such particles are
essential for sentence comprehension and affect how the models understand a sentence.

In the same context, Table 12 shows the average number of sub-words (pieces per
word) given by the tokenizer of each model (We used pytorch-pretrained-bert, which gives
different tokenization than the transformers), where the lower value means that most words
are not divided into sub-words by the model tokenizer. Overall, the rates show that, on
average, the tokenizers did not split the word into more than one word. A higher rate of
pieces per word was recorded by the multilingual model on all treebanks. The ARBERT
model records the lowest splitting rate on PADT (mostly, each word is one token), where it
is trained on a 100 K vocabulary size. However, it was not as accurate as the AraBERT and
CAMeL models. This can result from the factors mentioned earlier, such as the OOV rate
and training batch size.
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Table 12. Average number of sub-words provided by each model’s tokenizer.

Camel-MSA,CA,mix Multilingual Arabic AraBERTv1 AraBERTv2 ARBERT GigaBERT

PADTE3 1.1 1.6 1.1 1.1 1.1 1.0 1.1
CATiBE3 1.2 1.5 1.1 1.1 1.1 1.1 1.1
ArPoTE2 1.3 1.7 1.2 1.4 1.2 1.1 1.2

Interestingly, the words in ArPoT exhibited a higher rate of splitting into more sub-
words than in the other two corpora. This is a result of classical vocabulary not being
utilized in MSA. For example, the AraBERTv1 tokenizer splits the word “XðYêÓ/collapse”

into three pieces: “YêÓ/cradle”, ” ð##”, and “X##”. The effect of tokenization that changes
word meaning will be discussed in Section 7.4.

6.3. Evaluation of the Tuning Techniques

While the BERT models are well-regulated and relatively complex, several research
papers have studied the modeling of their performance and investigated the need to tune
all the pre-trained layers to accomplish NLP tasks [31]. Merchant et al. [30] have shown that
dependency parsing requires tuning more layers to capture the syntactic information of the
English dataset. To explore Arabic treebanks, we evaluated the following three fine-tuning
techniques using the AraBERTv2 BERT model:

1. Full Tuning (FT): Further train the entire architecture of the pre-trained model on the
experimental datasets.

2. Full Freezing (FF): All layers of the pre-trained model are frozen and tested on the
datasets under study. In this case, the weights of the 12 layers are not updated.

3. Partial Freezing (PF): The weights of some layers of the pre-trained model are kept
frozen, while other layers are retrained.

We also examined the attachment of two neural network (NN) layers to the FT and
FF, and then trained the new model. Two types of neural networks have been explored,
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) [41,42]. FT+LSTM
and FF+LSTM are fully tuned and fully freeze models with two-layered BILSTM. In
contrast, FT+GRU and FF+GRU are fully tuned and fully freeze models with two attached
(GRU) layers.

Table 13 shows the results of testing the six models (FT, FT+LSTM, FT+GRU, FF,
FF+LSTM, and FF+GRU). It is noticeable that FT without attached NN layers recorded the
best UAS/LAS for all three treebank test sets. On the other hand, GRU layers performed
better than the LSTM layer, which is consistent with Alsaaran and Alrabiah’s results on the
Arabic NER task [29]. However, the fully tuned BERT model with a two-layered BILSTM
decoder achieved better results on the English treebank in [20].

Table 13. UAS/LAS on the test datasets for AraBERTv2 BERT model fully tuned (FT) and fully
freezes (FF) with and without additional layers (GRU and LSTM).

FT FT+LSTM FT+GRU FF FF+LSTM FF+GRU

PADTE3 84.03/80.26 82.90/78.92 83.64/79.74 65.30/60.25 72.54/67.72 75.44/70.98
CATiBE3 87.54/86.41 85.92/84.82 87.50/86.39 62.88/59.88 77.29/74.74 79.76/77.66
ArPoTE2 79.79/74.13 76.88/70.83 79.51/73.63 56.84/42.32 69.87/60.93 72.64/64.73

We tuned the BERT layers partially and tracked the model accuracy using partial
freezing of the bottom layers progressively. We froze one more layer in each run. Moreover,
we gradually tuned one more bottom layer for each run and reported the LAS of the model.
Figure 4a,b shows the results of both experiments, which correspond to the hypothesis
of [30] that the hierarchical nature of analysis requires additional layers to understand
syntactic dependencies.
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Figure 4. LAS of BERT-based pre-trained models on three corpora by (a) freezing an increasing
number of layers during fine-tuning and (b) fine-tuning at earlier layers.

More detailed scores for this experiment are listed in Table 14. Although fine-tuning
of the higher layers is required in all cases, some datasets converge in earlier layers. For
example, CATiB and ArPoT provided a higher UAS/LAS on the test dataset by tuning the
first 10 and 11 layers, respectively. On the other hand, the best scores on the PADT required
all 12 layers, which indicates full tuning. Moreover, the results show that excluding some
of the higher layers from the tuning process is more effective than full tuning, for example,
87.65/86.49 versus 87.54/86.41 for CATiB and 80.32/74.53 versus 79.79/74.13 for ArPoT.
Section 7 analyzes these errors from different perspectives.

Table 14. UAS/LAS of partial freezing (PF) on test datasets.

Frozen
Layers PADTE3 CATiBE3 ArPoTLR

Tuned
Layers PADTE3 CATiBE3 ArPoTLR

0 84.01/80.34 87.41/86.32 80.27/74.41 0 74.11/69.72 77.92/75.54 69.58/60.28
0–1 83.85/80.28 87.39/86.32 79.48/73.27 0–1 77.08/72.93 80.83/78.72 71.66/63.61
0–2 83.68/79.93 87.24/86.15 79.63/73.48 0–2 78.41/74.12 81.56/79.76 73.08/64.83
0–3 83.58/79.74 87.13/86.02 79.48/73.46 0–3 79.49/75.37 82.95/81.29 74.03/66.48
0–4 83.18/79.40 86.71/85.62 78.86/72.55 0–4 80.92/76.88 84.12/82.62 75.59/68.29
0–5 82.65/78.85 86.02/84.86 78.00/71.47 0–5 81.80/77.78 85.51/84.27 76.83/70.73
0–6 82.06/78.28 85.48/84.32 77.21/70.73 0–6 82.59/78.64 86.01/84.77 77.79/71.76
0–7 81.07/77.32 84.59/83.41 75.63/69.11 0–7 82.97/79.01 86.62/85.46 78.55/72.36
0–8 80.17/76.35 83.21/81.94 73.58/67.07 0–8 83.48/79.57 87.21/86.09 78.89/73.19
0–9 77.89/73.99 81.28/79.73 71.64/64.32 0–9 83.83/79.98 87.65/86.49 80.01/74.10
0–10 74.54/70.66 78.75/76.95 67.86/59.97 0–10 84.00/80.15 87.46/86.39 80.32/74.53
0–11 65.30/60.25 62.88/59.88 56.84/42.32 0–11 84.03/80.26 87.54/86.41 79.79/74.13

7. Error Analysis

This section examines the findings and highlights the major problems in our exper-
iments. To do so, we tracked the UAS and LS for each POS tag and each dependency
relation label in the dataset. These two scores show errors in the head assignment and
dependency relations labeling. Because some POS tags are presented in the fine-tuning
datasets more than others, we chose to explore whether rare POS tags would lead to lower
scores on parsing. Figure 5 shows the UAS and LS over each POS tag on the three treebanks
during the fine-tuning process. Tags and labels are listed in the figure’s legend from most
common to least common in the data, according to the statistics in Figure 3.
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Figure 5. UAS and LS over POS tags and dependency relations in each test dataset freezing an
increasing number of layers during fine-tuning. (a) PADT UAS. (b) PADT LS. (c) CATiB UAS.
(d) CATiB LS. (e) ArPoT UAS. (f) ArPoT LS.

Generally, full tuning improves the scores of most POS tags in the corpora. In addition,
it has been shown that the LS for dependency relation labeling (Figure 5b,d,f) is higher
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than the UAS for head finding (Figure 5a,c,e). For most POS tags, the LS of fully tuned
models is greater than 80%, whereas the UAS reaches less than 40% in some cases.

In terms of head finding, we discovered that several tags covering a significant number
of training examples, such as punctuation and particles (PUNCT in PADT and PRT in CATiB
and ArPoT), reported a lower UAS than other uncommon tags, such as symbols and proper
nouns (SYM in PADT and PROP in CATiB and ArPoT). This clearly indicates that the
spread of a POS type does not necessarily make head-finding for parser models more
precise. Due to the concatenation of the head position and relational dependencies in the
sequence model’s label (class), which results in various labels for the same token, prediction
is impaired. For example, although the punctuation token “.” in PADT and the particle
token “ð/w/and” in CATiB and ArPoT are frequent, the model accuracy for their label
prediction is relatively low (see Table 15).

Table 15. Most frequent tokens for common and uncommon POS tags in the corpora. TP: token ratio
of POS tag; C: common; UC: uncommon.

Treebank Token POS TP (Train-Dev) TP (Test) Labels Accuracy

PADT
% SYM (UC) 87.76 97.5 2 100
. PUNCT (C) 33.79 34.92 159 60.53

CATiB
Qå�Ó/mSr/Egypt PROP (UC) 4.81 3.75 16 100.0

ð/w/and PRT (C) 25.69 26.73 130 70.86

ArPoT
é<Ë @/Allh/God PROP (UC) 4.63 6.8 8 92.86

ð/w/and PRT (C) 22.43 21.28 28 62.19

In contrast, POS tags with syntactic labels that lean toward stability in most sentences
have a higher parsing accuracy. For example, although the SYM in PADT is a rare POS
tag in the test set, it achieved a high UAS score (97.5), even with full freeze layers. This
is because of the absence of variations in the SYM tokens. In the test set, the “%” tokens
constituted 97.5% of the total SYM tokens. These tokens are frequently led by prior number
tokens (−1@NUM) and always have an “nmod” dependency relation in the test sentence
(see Table 15).

To better understand the faults and effects of data instances on the tuned model’s
performance, we compared the LAS of the FT and FF models for all test sets of the corpora
(Figure 6a–c). These findings demonstrate that different tuning data for the same NLP task
drove various learning outcomes. For example, after full fine-tuning, the LAS is improved
for all test examples in CATiB, as shown in Figure 6b. However, the LAS on the fully tuned
model decreased in 2.1% and 2.6% of the PADT and ArPoT test instances, respectively. The
most drastic accuracy drop is seen in example 504 in PADT (−25% in LAS), followed by
example 269 in ArPoT (−23.08).
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Figure 6. LAS for Fully Tuned (FT) and Fully Freeze (FF) models on all test examples. (a) PADT. (b)
CATiB. (c) ArPoT.

Using the FT model, three degenerated examples in PADT and ArPoT (given in
Table 16) were reviewed. We revealed the following reasons for the four errors: parse tree
post-processing, contextualized embeddings, erroneous tokenization, and erroneous POS
annotation. Each of them is discussed in the following subsections with examples.

Table 16. Sample of degenerated test examples in PADT and ArPoT. Each example presented the
original sentence in Arabic, its transliteration, and its translation in English.

No Corps Example

1 PADT
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A Saudi company sells pure gold underwear
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Held the first debate between the Democratic candidates for the presidency in the United States
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w fy nAtq kAn ASTlAm srAp hm lyAly >fnY AlqrH jl <yAd
Extermination of Ayad’s lofty was at Nateq’s nights when a surgeon killed most of them

7.1. Parse Tree Post-Processing

To ensure that the predicted sequence of labels forms a dependency tree (tree structure)
that is acyclic and has a root, we applied a post-processing algorithm for [28], with a
minor modification to accept multi-heads. Thus, the algorithm changed the labels that are
predicted correctly to meet the dependency tree requirements.
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This case is illustrated in Figure 7 for Example (1). The model correctly labels the
first token ( �

é»Qå
�
�/$rkp/company) with (+1@VERB@nsubj). The label means that the token

is headed by the first subsequent (+1) verb (VERB), which is (©J
�.
�
K/tbyE/sells) with the

dependency relation (nsubj) (Figure 7b). Because no token is predicted as a root, the parse
tree post-processing assigns the first token to the root and increases the error in the final
output (Figure 7c). The red dotted arrow indicates the impactful change.
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7.2. Contextualized Embeddings

The pre-trained BERT structure allows the model to be trained simultaneously, seeing
all the left and right contexts of a target word. Therefore, BERT contextualized word
embeddings offer high lexical semantics, in contrast to other language models [43]. This
is an innovation that is highly productive for most downstream NLP tasks. However,
in syntactic parsing, when the same context appears in different grammatical syntactic
structures, it will impact the performance of the parsing task. Such a problem arises in
predicting some test sentences in the fully tuned parsing models, as shown in Table 17.
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Table 17. Examples from the PADT and ArPoT test data that show the effect of contextualized
embeddings using obverse-related training sentences. Correct arrows are black, whereas blue arrows
indicate wrong assignments. Rectangles enclose the test tokens with incorrect predictions and similar
words in the training sentences. In both sentences, the other comparable words in the sequence
are shaded.

Test Example Training Example with Similar Words

1
PADT
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In Example 1, the verb “©J
�.
�
K/tbyE/(she)sells” is wrongly labeled with (−1@NOUN@acl).

This token does not occur in the training and development datasets, but a similar verb,
“©J
�. K
/ybyE/(he)sells”, has this label. Moreover, it is presented in a similar sequence to

“©J
�.
�
K

�
éK
Xñª�/sEwdyp tbyE/Saudi company sells”, which is “©J
�. K
 ø



XñîE
/yhwdy ybyE/Jewish

Rabbi sells”. This similar context pushed the model to assign the training token labeled to
the test token (−1@NOUN@acl). Thus, the verb token is headed by the first prior NOUN
token “ �

éK
Xñª�/sEwdyp/Saudi” rather than to the root of the parse tree.

The word “I. ë
	
YË@/Al*hb/gold” in the same example was incorrectly tagged with

(−1@VERB@obl), despite appearing 16 times in the training and development datasets
with the correct label (−1@NOUN@nmod). After a search for a related context, we find
a similar word, “ 	Q

	
KðQ�. Ë @/Albrwnz/Bronze”, that appears in a similar sequence with the

same posterior adjective “�ËA
	
mÌ'@/AlxAlS/Pure”. Therefore, the incorrect predicted label

(−1@VERB@obl) assigned “I. ë
	
YË@/Al*hb/gold” to the first left verb “©J
�.

�
K/tbyE/(she)sells”.

Example 2 demonstrates the impact of context on a longer sequence. As an illustration,
the phrase “ �

èYj
�
JÖÏ @

�
HAK
BñË@ ú

	
¯/fy AlwlAyAt AlmtHdp/in the united states” appears in the

training sentences 36 times with the correct spelling of “ú



	
¯/fy/and”, but only once with the

incorrect “ú
	
¯”. In 10 occurrences, the word “ �

HAK
BñË@/AlwlAyAt/states” was labeled with
(−1@NOUN@nmod), which is the desired label for the same word in the test sentence. How-
ever, only two instances incorrectly anticipated the label (−3@NOUN@obl). One of those
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two sentences is shown in the table. It includes similar words, such as the particle “È/li/for”

and the noun “ �
é�A



KQË @/Alr}Asp/presidency”, compared to “/ �

éËA¿ñË@AlwkAlp/Agency”.
Attributed to the manipulation of the word order for poetic imperatives and E2

syntactic label encoding, various labels for the same word are shown in the training data.
For example, the word “ú



ÍAJ
Ë/lyAly nights” occurs in the training and development sets

six times with four different labels. Moreover, none of them is the same as the gold
label for that word in example 3 of the ArPoT test set. However, the effect of similar
sequences that include similar embeddings leads to unseen (not the same as in training)
and incorrect (not the same as gold) labels for that word in the test example. To illustrate
such a case, in the training dataset, we find the word “ AÓñK
/ywmA/one day”, which

is preceded by the attached pronoun “ è/h/his”. In the test sentence, the similar word

“ú


ÍAJ
Ë/lyAly/nights” is also preceded by the attached pronoun “Ñë/h/their”. Moreover, we

find training sentences that include the noun word preceded by embeddings comparable
to “Ñë

�
è@Qå�/srAp hm/their lofty” in the test sentence, such as “ Aë ú



Í@ñÓ/mwAly hA/her

allies”, which are all (Õæ� @/noun) and (É�
�
JÓ Q�
ÖÞ

	
�/attached pronoun). In 37 instances, the

noun token proceeding with comparable embeddings is labeled (L@3@MOD), which is the
most common label for that case. Therefore, the word “ú



ÍAJ
Ë/lyAly/nights” is incorrectly

assigned to the third left token.

7.3. Erroneous POS Annotation

Because syntactic labeling on PADT was performed using E3 encoding schema (pre-
sented in Section 2.2), certain mistakes in the degenerated samples after fine-tuning demon-
strate the impact of inaccurate POS tagging of training data on prediction. In these cases,
the model generated a valid label; however, the incorrect POS annotation caused the result
to be recorded as an incorrect prediction.

For tokens in PADT that cannot be given a legitimate POS category for some reason,
the “X” POS tag is used [33]. Figure 8 illustrates the undesirable effects of using such a tag.
It displays that the “X” tag is improper for the two tokens “ �

èQ
	

£A
	
JÓ/mnAZrp/debate” and

“Èð@/Awl/first” in a phrase from Example 2 in Table 16. The fact is that the first is a noun
“NOUN”, and the second is an adjective “ADJ”. Additionally, although not being a verb in
this context, the confusing word “Y

�
®«/Eaqd/held” that occurs as the first noun of a news

title has the tag “VERB”. These errors lead to the following two incorrect predictions:

1. The model correctly labeled the adjective word “Èð@/Awl/first” with
(−1@NOUN@nmod). Thus, it should be headed by the preceding noun word
“Y

�
®«/Eaqd/held”. The algorithm assigned “Èð@/Awl/first” to the root since no

previous token with a “NOUN” POS tag is in the gold annotation (see Figure 8a).
2. The model correctly labeled the noun word “ �

èQ
	

£A
	
JÓ/mnAZrp/debate” with

(−1@ADJ@nmod); thus, it should be headed by the preceding adjective word
“Èð@/Awl/first”. The algorithm assigned “ �

èQ
	

£A
	
JÓ/mnAZrp/debate” to the root since

no previous token with an “ADJ” POS is in the gold annotation (see Figure 8b).



Appl. Sci. 2023, 13, 4225 19 of 22

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 22 
 

the training dataset, we find the word “يوما/ywmA/one day”, which is preceded by the 
attached pronoun “ه/h/his”. In the test sentence, the similar word “ليالي/lyAly/nights” is 
also preceded by the attached pronoun “هم/h/their”. Moreover, we find training sentences 
that include the noun word preceded by embeddings comparable to “هم  srAp/سراة 
hm/their lofty” in the test sentence, such as “ موالي ها/mwAly hA/her  allies”, which are 
all (اسم/noun) and (ضمير متصل/attached pronoun). In 37 instances, the noun token pro-
ceeding with comparable embeddings is labeled (L@3@MOD), which is the most common 
label for that case. Therefore, the word “ليالي/lyAly/nights” is incorrectly assigned to the 
third left token. 

7.3. Erroneous POS Annotation 
Because syntactic labeling on PADT was performed using E3 encoding schema (pre-

sented in Section 2.2), certain mistakes in the degenerated samples after fine-tuning 
demonstrate the impact of inaccurate POS tagging of training data on prediction. In these 
cases, the model generated a valid label; however, the incorrect POS annotation caused 
the result to be recorded as an incorrect prediction. 

For tokens in PADT that cannot be given a legitimate POS category for some reason, 
the “X” POS tag is used [33]. Figure 8 illustrates the undesirable effects of using such a 
tag. It displays that the “X” tag is improper for the two tokens “مناظرة/mnAZrp/debate” 
and “اول/Awl/first” in a phrase from Example 2 in Table 16. The fact is that the first is a 
noun “NOUN”, and the second is an adjective “ADJ”. Additionally, although not being a 
verb in this context, the confusing word “ عقد/Eaqd/held” that occurs as the first noun of a 
news title has the tag “VERB”. These errors lead to the following two incorrect predictions: 
1. The model correctly labeled the adjective word “اول/Awl/first” with 

(−1@NOUN@nmod). Thus, it should be headed by the preceding noun word 
-Awl/first” to the root since no previ/اول“ Eaqd/held”. The algorithm assigned/عقد “
ous token with a “NOUN” POS tag is in the gold annotation (see Figure 8a). 

2. The model correctly labeled the noun word “مناظرة/mnAZrp/debate” with 
(−1@ADJ@nmod); thus, it should be headed by the preceding adjective word 
 mnAZrp/debate” to the root since no/مناظرة“ Awl/first”. The algorithm assigned/اول“
previous token with an “ADJ” POS is in the gold annotation (see Figure 8b). 

 
Figure 8. Syntactic label prediction of two tokens (in (a,b)) with inaccurate POS annotation in test
example on PADT.

7.4. Erroneous Tokenization

Tokenization, a critical stage in NLP, separates raw text into words that help interpret
word sequences. In this investigation, poor tokenization undoubtedly affected the model’s
word interpretation and, thus, the syntactical analyzer’s performance. The first sub-word of
each tokenized word was employed in the preprocessing for sequence labeling during the
training phase. Therefore, when the model cannot comprehend the meaning of a sub-word,
it may mistakenly identify the sub-word as a verb rather than a noun.

The average of the sub-words produced by the tokenizers of the Arabic BERT models
is presented in Table 12 (Section 6.2). Because ArPoT verses words are based on an ancient
CA vocabulary, tokenizing them produces the highest number of sub-words. The syntactic
labeling for the CA verse (Example 3 in Table 16) shows a prediction mistake because of
incorrect tokenization. The word “ÐC¢�@/ASTlAm/extermination” is “É«A

	
¯ Õæ� @/gerund”,

which, according to Arabic grammar, must head the next noun in the sequence with a
“ �

é
	
¯A

	
�@



/IDF” syntactic relation. That means the expected label for “ �

è @Qå�/srAp/lofty” is
“L@1@IDF”; however, the tuned model incorrectly labels it with (L@2@SBJ) after the tok-
enizer deforms the “É«A

	
¯ Õæ� @/gerund” by splitting “ÐC¢�@/ASTlAm/extermination” into

“¡�@/AST“ and “ÐB/lAm”. Through investigation, we noticed that the most frequent
syntactic label for the second noun in the sequence “verb noun noun” is (L@2@SBJ), par-
ticularly when the first noun is an embedding for demonstrative pronouns and attached
pronouns, such as “ @

	
Yê» @

	
YëAêÒë/this-that-him- her-them” (see Figure 9). This indicates that

the model does not see the sub-word “¡�@/AST“ as “É«A
	
¯ Õæ� @/gerund”, but as demonstra-

tive pronouns or attached pronouns.
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8. Conclusions and Future Work

In this study, we explored the formulation of dependency parsing for the Arabic
language as a sequence labeling problem. We applied three encoding methods to the
dependent head position and studied nine Arabic BERT models using different fine-tuning
strategies. The effectiveness of the Arabic BERT models varied, but AraBERTv2 performed
better on the three studied treebanks. Moreover, because the number of classes (possible
labels) given by each dependent head position encoding method relies on the dataset
sentence length and annotation schema, there is no preferred encoding method or tuning
strategy. However, our experiments confirmed that tuning until the top layers of pre-trained
BERT models is required to capture the syntactic information of Arabic sentences.

We plan to work on future enhancements to address the faults stated in the results
analysis and to address the issues with the Arabic BERT-based sequence labeling parser.
For instance, we can conduct additional research to determine how improved tokenization
contributes to better BERT-based parsing. In order to reduce the impact of the labels modi-
fications in post-processing, we might also conduct a further search on how to effectively
verify and correct the tree structure of the labeled sequence.
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