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Abstract: This study has been performed to reveal the main characteristics of operating a direct
current (DC) plasma-chemical reactor (PChR) designed for hazardous waste treatment. The PChR
employs thermal plasma as the operating environment. The investigations presented in this paper
were conducted to study the electrical and energy characteristics of the plasma torch and plasma-
chemical reactor during the destruction of inorganic waste. The PChR is equipped with a plasma
torch with a nominal capacity of 50 kW and a free-burning arc. The zone of heat release from the
atmospheric pressure DC arc cathode and arc anode (melted waste) spot is combined with the area of
chemical reactions. The plasma torch (PT) parameters vary in the range of arc current I = 120–180 A,
arc voltage U = 250–280 V, arc length x = 0–100 mm, and gas flow rate G = 1–3 g/s at atmospheric
pressure, using air as the plasma-forming gas. The experimental results confirmed that plasma
technology has several advantages over conventional incineration, including higher temperatures,
heat source independence from the waste being processed or additional fuel, and a shorter exposure
time in the high-temperature area. It was determined that the arc current increases with increasing
arc length. With increasing arc length, the initial part begins to operate in a turbulent regime. This
study determines the dependence on the heat flux transferred by electrons to the anode on the arc
current. The convective heat flux density distribution over the anode heating spot was measured
and discussed.

Keywords: plasma; plasma torch; plasma reactor; free burning arc; waste treatment; heat transfer;
current-voltage characteristics

1. Introduction

One of the most important issues in preserving the surrounding environment is the dis-
posal and recycling of domestic and industry-generated waste. The processing of waste must
be considered the essential link between the artificial technosphere, which generates the most
significant part of the waste, including harmful and environmental [1,2]. However, until now,
all broadly available waste management technologies have not satisfied modern require-
ments. For the sustainable management of natural resources and to reduce environmental
pollution, it is necessary to seek new, environmentally friendly methods and technologies
for storing, recycling, or recovering energy from all types of waste (industrial, household,
or hazardous).

The technologies currently in use are insufficient for attaining the main objectives
declared in the EU directives. In particular, waste containing harmful or toxic substances
requires high temperatures for recycling. Thermal decomposition techniques are primarily
used for this purpose. However, low-temperature pyrolysis or heat treatment (incineration)
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is unsuitable for decomposing such waste. At temperatures of 450–800 ◦C (pyrolysis) or up
to 1000 ◦C (burning), new toxic compounds such as dioxins, furans, and other hazardous
substances may form [3], which are much more harmful than the initial product. To fully
counteract the effects of harmful substances on the environment and human health, it is
necessary to recycle them at significantly higher temperatures, reaching 1100–1700 ◦C. At
such temperatures, the molecules of the toxic compounds are broken into atoms, radicals,
electrons, and positive ions, and simple harmless substances are formed with decreasing
temperature. Thermal plasma technology is best suited for this purpose. Waste is usually
destroyed using arc plasma generated by a plasma torch. The main advantage of plasma
waste recycling (when compared to physiochemical or biological recycling) is its versatility,
allowing for the decomposition of any kind of waste [4–11]. Therefore, waste processing
technology using plasma energy sources was studied experimentally in the present work.

All hazardous waste decomposition facilities are subject to high-risk and special tech-
nical, occupational safety, and environmental requirements. They can only be guaranteed
using modern scientific and technical knowledge and precision measuring equipment. The
main requirement for a waste decontamination plant is not the only achievement of limited
emissions of toxic substances after neutralization, which should not exceed permissible
levels. Emissions must be minimized in all cases of the destruction process. This is possible
when a processed substance is broken down into harmless compounds for humans and the
environment. This study requires an experimental procedure to determine the necessary
temperature, main and additional gas flow rates, and composition needed for chemical
reactions (O2, H2, water vapor, etc.) to analyze the exhaust gas and solids formed and then
start the industrial neutralization of the given material.

Currently, the destruction of hazardous substances with a melting point higher than
1400 ◦C is very complicated and expensive using traditional technologies. In many cases,
arc plasma technologies are more economical and acceptable for ecological and environ-
mental protection. Thermal plasma is an excellent tool that significantly accelerates all
the processes involved in the processing and decomposition of materials. It is impor-
tant for recycling or disposing materials with high melting points. Plasma treatment is
a technology in which fundamental and applied science and manufacturing are strongly
interconnected. The thermal properties of plasma, such as the very high temperature and
the high concentration of energy in a small volume and the ability to be heated to the
required temperature of any gas, allow for processes that are not possible at moderate
temperatures at atmospheric pressure. The use of arc plasma generators (plasma torches)
in the industry enables the realization of many processes, such as reducing metal oxides,
the synthesis of nanoparticles of metals and materials with a very high melting point,
and many others, without the use of additional chemical processing. This process can be
realized using a unique plasma-chemical reactor (PChR) device. This technology is suitable
for small or large-scale production runs, and the process can be fully automated.

This technology can also be used to decontaminate a variety of harmful and haz-
ardous waste. High-temperatures and dense energy concentrations in a small volume
completely break down harmful substances into their components and decompose them
into environmentally friendly products. The technological circuit of this process is shown
in a diagram in Figure 1. An electrical arc at atmospheric pressure usually appears as a
constricted area of electrical and mechanical forces, which causes the plasma fluid to move
away from the arc column. Plasma-chemical reactions occur in the reactive zone of an arc
in the presence of a controlled amount of plasma-forming gas. The final product, consisting
of a vitrified glass-like substance, is collected at the bottom of the reactor and is used as
a raw material for a wide range of applications. The higher the temperatures reached by
the arc, the more efficient the conversion of organic waste into light organics and primary
elements [7,8,12,13].
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Figure 1. The diagram of plasma-chemical waste decomposition.

When plasma activating energy is applied, it is possible to increase the rate of chem-
ical reactions by hundreds of times and achieve stable, high average temperatures of
1800–2500 ◦C inside the PChR. However, developing new design equipment generating a
plasma arc for the treatment of hazardous waste or waste with high melting temperatures
(up to 1400 ◦C) is impossible without knowledge and understanding of the features of
high-temperature processes occurring in the gas discharge chamber of the PT and the PChR.

The gases used as heat carriers differ significantly in their energy characteristics.
Therefore, when selecting the forming plasma gas, it is necessary to consider the possibility
of obtaining high enthalpy values, using this gas as a chemical reagent, and the inertness
of the target products. In plasma-chemical reactors for material processing, a DC electric
arc operating in an argon (Ar) atmosphere is typically used [11]. However, it is well
known that, from an economic point of view, it is more beneficial to use high-enthalpy
gases such as nitrogen, air, or hydrogen [10,11,14]. Plasma torches with DC electric arcs
operating in an air or nitrogen atmosphere have been extensively studied [15–17]. However,
the characteristics of the free-burning arc in the air or the nitrogen ambient, which are
applicable to plasma-chemical reactors, have not been sufficiently studied. Therefore,
studying arc plasma behavior in an air atmosphere is beneficial.

The efficiency, heat transfer characteristics, and interaction between a plasma jet
and material in a PChR for waste destruction have been studied in many studies—for
example [2,9,11]. However, the electric arc characteristics and the energy balance at the
plasma torch anode were mainly investigated while working with an argon arc. A particular
interest also appeared in the energy exchange between the plasma arc and the surface; the
arc efficiency is higher when a plasma jet interacts with a flat surface. It is also well known
that high-temperature argon gas has relatively low enthalpy and is a poor conductor of
heat and electricity. Therefore, the use of a high-enthalpy molecular gas, such as air or
nitrogen, for material processing using plasma technology is more advantageous [18,19]. In
many papers, the authors solving fundamental energy production problems, environmental
protection, public health, etc. have appropriately selected a plasma source. However, the
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application of plasma sources requires very complicated, expensive, and energy-receptive
fundamental and applied investigations, which are necessary to create new and very
effective PT. Sometimes, when plasma technology is investigated as a waste treatment tool,
it is not easy to apply similarity theory or numerical simulation laws.

Modern waste recycling and disposal methods are based on high-technology processes
of their gasification with the production of synthesis gas [14,20,21] or two-stage combustion
using steam, gas, combined-cycle turbines, or gas engines to generate electricity [18,21–24].
This second high-temperature stage guarantees the complete neutralization of processed
products from the formation of dioxins and furans. So, the emissions from modern power
plants burning waste are several times lesser in terms of volume and harmfulness than
emissions from gas- or coal-fired thermal power plants.

The high thermal energy density of the electric arc allows for reaching high-temperature
flows in the plasma-chemical reactor and creating an environment of almost any chemical
composition. The technology based on high-temperature plasma-chemical reaction until
complete decomposition of recyclable products using arc plasma is considered to be imple-
mented recently. Novel plasma-chemical reactors with liquid-metal electrodes that avoid
erosion are the subject of recent research [25]. The main advantages of such reactors are
the following:

− versatility in the variety of processed waste and raw materials;
− the absence of dioxins in final products;
− the ability to use steam as plasma-forming gas instead of expensive inert gas;
− there are no restrictions on the resource of electrodes.

Therefore, PT characteristics should be examined separately for different gaseous
atmospheres. The careful study of PT parameters employing the electro-dynamical electric
arc theory and solving problems of plasma flow diagnostics allowed for the design of a
powerful plasma arc generator that operates stably for a long time in a reactive gas ambient.

2. Materials and Methods
2.1. Plasma-Chemical Method for Waste Processing

The experiments presented in this paper were performed in a PChR designed for
hazardous waste treatment in the reacting arc zone. Environmental laws and strict govern-
ment regulations limit the substantial destruction of hazardous substances, so less harmful
materials of a similar composition were chosen for this research. So, only slightly toxic
materials were selected, mixed with clay, and processed.

A DC electric arc was operated between the plasma torch cathode and graphite bath
(Figure 2) located at the bottom of the PChR. PT could be moved along the axis of the arc,
and thus, its length was changed. The parameters of the PT varied with the following
limits: arc current I = 120 to 180 A, arc voltage U = 250 to 300 V, PT power reaches up
to P = 50 kW, arc length x varies from 0 to 100 mm, and airflow rate G = 1 to 3 g/s. The
experiments were conducted under atmospheric pressure. An experimental facility with a
plasma source, auxiliaries, and supporting equipment is described in more detail in [26].

The operating conditions and regimes of the PT remained constant during all experi-
ments. The capacity of PT, the total mass flow rate of air plasma, and the cooling water flow
rate Gv and temperature were measured using electronic measuring devices. Experimental
data were obtained using analytical equipment. During plasma measurements, the signals
of primary transducers (thermocouples, pressure sensors, electric probe) were measured
and recorded employing multimeters, amper voltmeters, and micro manometers. The
measurement, regulation, and control of the arc current and voltage of the plasma sources
were carried out by the amperemeter and voltmeter readings. A calibrated shunt with
an accuracy class of 0.01 was used to measure the arc current. The data collection system
“Multimeter 2700” by KEITHLEY (USA) was used to register the signals of the temperature
and pressure transducers. The plasma characteristics were calculated from these data.
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Figure 2. The scheme of the plasma-chemical reactor. 1—raw material input, 2—plasma torch,
3—graphite plate (anode), 4—cooling flow inlet, 5—Chromel–Alumel thermocouple, 6—cooled probe
for gas sampling.

In our case, technological processes occur in the thermal plasma torch and its generated
high-temperature ambient, which flows out of the reactor nozzle. In fact, the work of the
plasma torch is related to physical phenomena of an electromagnetic, thermal, and dynamic
nature. Semi-empirical methods are used for the research to generalize the integrated
characteristics of the plasma source. They make it possible to experimentally determine the
criterion dependencies of plasma generators of similar geometric sizes.

The analysis of the similarity of physical processes in PG made it possible to develop
standard methods for their design. Despite the complexity of the process, the number of
parameters determining the PG mode is small next to the number of primary criteria. Thus,
non-dimensional equations are necessary for the qualitative description of physical PT
processes, so in this research, the electrical characteristics were determined at a constant
current and atmospheric pressure. Regarding the generalization of voltage-current char-
acteristics, the theory of the similarity of electrical processes has been used, and a special
study was conducted and described [17].

The physical and thermal properties of air and nitrogen gas were determined using [27].

2.2. Plasma-Chemical Reactor and Plasma Source

The plasma treatment process was investigated in a volume reactor consisting of a
metal case lined inside with a layer of refractory and heat-insulating materials, as described
in [17,26]. Such a reactor is suitable for the destruction of extremely hazardous solid
substances owing to the relatively long exposure time of the material in a high-temperature
zone. The authors also designed a novel experimental plasma volume reactor to create a
steady non-transferred plasma environment (Figure 2). The shield of this reactor is made
of metal with a high-temperature ceramic lining. It consists of a flat graphite plate used
as the anode and a cooling PT that works as a cathode. A cooling graphite flat plate was
mounted with thermal sensors and thermocouples with an external diameter of 4 mm.
The reactor’s body and graphite plate were then grounded. During waste processing, a
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PT generates the high-temperature flow necessary for destroying the chemical bonds in
hazardous materials [13,18]. The highly intense energy flux initiated by PT is powerful
enough to degrade or detoxify hazardous waste into atoms, molecules, and radicals.

Combined heat and mass transfer occur in the electric arc plasma generator owing to
the interaction of the arc, gas, and walls. When the electric current flows into an ionized
gas, the electric arc energy transforms into heat, which is transferred to the flow, channel
walls, and electrodes. However, only the energy transferred to the flow was beneficial.

Generally, the arc length depends on the construction of the PT and processes occurring
in the reaction chamber. It is most affected by the phenomenon of electric discharge,
called arc bypass, which can be significant (discharge occurs between the arc column
and the anode wall) or negligible (discharge occurs between individual parts of the arc).
During high-amplitude shunting, the parameters of the electric arc and, simultaneously,
the gas flow change and instability increase. However, in the presented reactor, the arc
length is regulated by changing the distance between the plasma source and graphite
plate, that is, between the anode and cathode. It can be achieved by employing a specific
mechanical device.

The gas entering the reaction chamber flows inside the PT into the arc, and the gas
temperature increases, which increases the thickness of the positive column of the arc in
the direction of gas flow. During the intensive cooling of the PChR, the arc cannot reach
its wall, so there is always a layer of electrically non-conductive gas between the wall
and the arc. When broken, it undergoes bypass processes that determine the length of
the arc. The current density in the arc was 104–107 A/m2, that in the anterior part of the
arc was 108–1010 A/m2, and that in the anodic part was 106–109 A/m2. The length of
the pre-cathodic zone of the atmospheric pressure plasma arc was approximately 10−6

m, which is equal to several particle-free path lengths. It indicates that the thermoelectric
emission of electrons from the cathode to the gas and the PChR wall is possible.

The PT hafnium cathode and copper body were intensively cooled using water (Figure 3).
The sensors were electrically insulated from the anode by fluorine-plastic liners and ce-
ramic backfilling. The anode moved across the arc; thus, the sensors measured the heat
flux distribution along the spot of the arc. The values of the PT parameters used in the
experiments are listed in Table 1.
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The heat generated by the PT brings the waste material to temperatures that are
sufficient to melt and destroy it entirely. An experimental plasma torch was constructed to
determine the energy transfer peculiarities from the free electric arc to waste. A plasma
torch used for waste utilization can operate with different gases such as air, nitrogen, or
water vapor. The choice is generally determined by the composition of the decontaminated
waste, the type of plasma torch, and the final product and economic factors to be obtained.
Standard gas supply and regulation fittings were used to supply gas into the plasma torch
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and plasma-chemical reactor. Recently, it has become possible to use the products of reactor
combustion as plasma-forming gases. If such gas is fed into the PT, it must be cleaned
regarding dust, moisture, or residuals of the final product.

Table 1. Operating parameters of the plasma-chemical reactor.

Parameter Operating Regime

1 2

Arc current I, A 160 160

Arc voltage U, V 280–235 275–220

Arc power P, kW 44.8–37.6 44.0–35.2

Plasma-forming gas flow rate G1, g/s 0.9 0.9

Additional gas flow rate G2, g/s 2.63 2.63

Initial distance anode–cathode x, mm 100–50 100–50

Operating time, min 1–40 1–40

The experimental reactor casing is made of steel, and the casing length is 0.25 m, with
an interior diameter of 0.28 m. The PChR has a jacket for cooling and an opening for probes
used for exhaust gas composition analysis and velocity and temperature measurements.
The inner surface of the reactor casing was covered with a high-temperature resistant liner
to reduce heat loss. It consisted of two layers. The first layer (to the metal) was made of
5 mm-thick asbestos. The second layer, with a 3.7 mm thickness, was a ceramic consisting
of a mixture of aluminum and zirconium oxides. The inside diameter of the channel was
0.24 m. The cover of the reactor casing was also water-cooled. The plasma torch is inserted
into the reactor’s opening, and the housing is insulated from the reactor’s container.

PChR also has an opening for the input of recyclable materials (see Figure 2). It is
also equipped with a plasma torch positioning device. The graphite plates at the bottom of
the reactor were used as an anode. The melt formed during the experiments was released
through a plate hole. The device was based on a high-temperature-resistant alumina bricks
layer (Figure 2).

During the experiments, the power of the plasma torch, its temperature, gas flow rate,
and cooling-water flow rate were measured. The amount of recycled material was also
calculated. The plasma torch power was determined by measuring the electric arc voltage
and current. The experimental facility power supply system, air supply system, cooling
system, data collection system, and measuring system have been described in detail in
previous work [13].

Zeolite granules and dried clay were used to determine the electrical and energy
characteristics of PChR for waste processing in the future. After use in the chemical
industry, waste zeolite granules and clay were processed in PChR as contaminated soil.
The gas temperature distribution in the plasma-chemical reactor and the electrical potential
were measured during the experiments. For this objective, a special probe was designed
and constructed. The outflow gas temperature from the plasma-chemical reactor was
measured using a set of chromel-alumel thermocouples.

3. Results and Discussion

The electrical characteristics of the plasma torch, also known as voltage-current char-
acteristics (VCC), characterize the dependence of the electrical arc current and voltage on
the geometry of the discharge chamber used for cathode protection and the main plasma
working gas, pressure, temperature, and power supply. These parameters characterize the
linear plasma torch VCC, as described in [12,13]. When using a plasma torch for waste
treatment, parameters such as the plasma-chemical reactor geometry, the composition of
the recycled materials, the recycling and chemical properties, and the flow rate of gases
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emitted during the decontamination process are evaluated. The VCC also depends on the
characteristics of the plasma torch-powered source.

3.1. Characteristics of DC Arc

As previously mentioned, a linear plasma torch (Figure 3) with a hafnium cathode
was designed and constructed for experimental waste decontamination. Insulated from
the plasma-chemical reactor, the casing shell also served as an intermediate electrode for
igniting an arc. The electric arc in the plasma-chemical reactor was ignited by lowering the
plasma torch so that the gap between the anode and the plasma torch was 3–5 mm. A high-
voltage discharge ignites the so-called initial arc between the cathode and intermediate
electrode. The low-power plasma jet that reaches the anode ignites the main electric arc.
When the electric arc was ignited, the plasma torch was raised; then, the expected power
of the plasma torch was obtained. Figure 4 shows the dependence of the voltage of the
electric arc on its length (between the cathode and a graphite anode). In our case, the
voltage drop per unit length of the arc column has a constant value. Therefore, the arc
voltage’s dependence on the arc length is linear (Figure 4). The stability of the steady arc is
determined by the relationship between the current and voltage.
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The electric arc in the plasma-chemical reactor is considered to be free, although the
walls slightly limit its development in the reactor’s space. However, the shielding gas does
not limit the arc; the gas flow only stabilizes it. Air, as plasma-forming gas in the PT, is
supplied from the cathode side for its protection, while air consumption does not influence
the arc characteristics. In the presence of internal energy sources, heat flux to the reactor
walls can be determined according to [16].

Under the influence of electromagnetic forces, a plasma-forming gas stream flows
from the cathode toward the anode [17]. Because the anode is a surface of solid processing
material, the gas jets of the evaporated material outflow from it, and the vapor jet is thicker
than the cathode gas stream but much shorter. These two jets collided to form a plasma
plume. In such a case, the arc operation is unstable.

When the surface of the melted material serves as the anode (Figure 2), a plasma
plume is not formed because the anode steam jet does not have a strict direction. The
electric arc operates in a more stable mode than that in the case of a solid anode.

With such a PT, it is possible to generate highly concentrated heat fluxes using air as a
plasma-forming gas for hazardous waste utilization. By contacting the raw material with
plasma in the PChR, a high local heat flux destroys it; all organic matter and its harmful
compounds are destroyed and removed from the reactor in the form of gas. Waste, an inert
material with a high melting point, such as various aluminosilicates, carbides, nitrides, and
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inorganic metal oxides with melting points of up to 2500 K, become a melt. The melting
process involves the interaction of a highly concentrated local heat flux generated by a
plasma torch with inert materials. Consequently, they melted and accumulated on the
graphite anode. Owing to its high melt temperature, it is an electrically conductive material;
when the melt overlays the anode, the electric arc continues to burn between the anode and
melt layer, maintaining its high temperature owing to its ohmic resistance. In the PChR,
the VCC of a free arc in an air atmosphere with an anode as melted waste was measured at
different arc lengths (Figure 4). It was observed that, up to x = 150 mm, the arc voltage was
almost independent of the arc current. This implies that, by increasing the arc length, the
arc voltage changes depending on the plasma torch position concerning the anode (the arc
length was manually altered by changing the electrode position). The electric arc voltage
also depends on the processes occurring in the reaction chamber.

The electrical arc at atmospheric pressure appeared as a constricted area of electrical
and mechanical forces, which caused plasma fluid to move away from the arc column.
In this case, the plasma fluid is replaced by cold gases injected into the arc-reacting zone
from the outside. The processes in the electric arc zone include turbulent mixing, chemical
reactions, ionization processes, the transfer of electric energy to conducting particles, and
the transformation of electric power into thermal energy and radiation. The investigation
of the influence of these factors requires the simultaneous characterization of the arc and
its characteristics in association with gas and plasma flow parameters.

Depending on the values of the electric current strength, gas flow rate, channel di-
ameter, and pressure, the VCC of the plasma torch falls: with an increase in the current
strength, the arc burning voltage decreases. Obtaining descending characteristics, an in-
tensive cooling of the anode (in our case, melt) is required, which is realized at a high
flow rate or when the arc is compressed by the walls of the arc chamber, which is possible
with intensive cooling of the PChR walls. In the presented PChR design, dropping VCC is
always obtained.

The physics of the descending VCC of the arc formation in the plasma torch can be
represented as follows. A so-called free-burning arc is realized when the arc burns in an
unlimited space between the two electrodes. The length, diameter, and configuration of
such an arc depend on gas properties and the electric current strength. In particular, with
increasing current, the diameter of the arc loosely increased because there were no limiting
factors in the radial direction. Because the dependence of the arc voltage on its length is
linear, the arc’s diameter will also be almost constant if it is not affected by any external
factors, such as cross-flow or artificial rotation of the arc spot. In the presented plasma
torch, the arc burns in a volume between the chamber walls and the flow of the plasma-
forming gas. Such an arc is nonstabilized, and its diameter depends on the geometry of
the discharge chamber, current strength, gas flow rate through the plasma torch, and gas
composition inside the reactor. The anode end diameter is determined by measuring the
diameter of the cavity formed on the graphite plate during the plasma processing. Such a
study was carried out in a DC electric arc volume reactor. At very low gas flow rates, the
influence of flow on the arc diameter can be significant. It was found that the spot’s area
exceeded the area of the cavity on the anode by approximately 1.5 times. In such a case, the
arc appears as “diffused”, and its stability by the wall is impossible and takes a free form.

The arc narrows in the near-cathode area, and the arc properties differ significantly
from those of the near-anode region. Therefore, by analyzing the geometry of the arc, it is
possible to distinguish the physical processes occurring at the cathode, anode, and space
between them. Three characteristic regions (a central zone or arc column, the anode, and
the cathode) were visible from the potential distribution along the arc axis. Directly toward
the cathode, the region of the cathodic potential drop occurs, which is characterized by the
strength of the electric field. The region of the anode (melt) also exhibited a potential drop.
The length of this region is several mean free paths of electrons. The potential drop was
also insignificant (only a few volts).
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The near-electrode regions are connected by a conductive channel that is homogeneous
in structure, which is called the positive column of an electric arc. Unlike other parts of
the arc discharge, which have specific dimensions depending on the nature of the gas, its
pressure, and the strength of the discharge current, the length of the positive column is
determined by the distance between the electrodes; that is, it can vary over a very wide
range. For the presented type of electrical discharge (free-burning arc), the positive column
was characterized by a relatively low and approximately constant electric field strength
along the discharge length.

The relationship between the steady-state values of the arc voltage and current for
a constant x is called static VCC. To determine the reasons for the significant difference
in the VCC characteristics at arc length x < 125 mm, the dependence of the arc voltage on
time was investigated (Figure 5). It was found that the arc burns in laminar flow mode;
however, it looks like a rod. At I = 150 A, the laminar arc reached a distance of x = 170 mm,
and noise and crackling appeared due to arc fluctuations. In order to determine the reasons
for a difference in the voltage–current characteristics in laminar and turbulent modes, the
dependence of arc voltage on arc length was investigated. It was found that a short arc
burns in a laminar mode, whereas it looks like a rod and burns noiselessly. For example, at
I = 150 A, the laminar arc reaches the distance of x = 170 mm. At x > 170 mm, noise and
crackling appear due to the arc fluctuations, and a part of the arc operates in a turbulent
mode and becomes a multifilament, as presented in [17]. The turbulent regime was also
characterized by higher values of arc voltage.
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1 (black dots)—recycled zeolites, 2 (white dots) —recycled clay. A is the arc voltage after the melt is
released. The air flow through the plasma torch was 1 g/s, and the protective gas was 2.63 g/s.

The steady arc in the reactor, as an energy consumer, and the arc power source, such as
the transformer and rectifier, form an interconnected energy system. There exist two modes
of operation of this system: (1) static, when the values of voltage and current in the system
do not change for a sufficiently long time; (2) transient or dynamic, when the values of
voltage and current in the system are continuously changing. The current, the voltage,
the size of the gap between the electrodes, and the connection between them determine
the burning mode of the arc. In the arc gap, three areas exist: anode area, cathode area,
and area of the arc column. The voltage drop in the anode and cathode regions is almost
constant for these conditions.

It was found that the arc voltage was higher using the graphite anode than that using
the melt anode. The arc voltage decreases when the melt anode is used because melted
material vapors are in the arc. However, the length of the laminar part of the arc remains
almost the same in both cases.
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3.2. Thermal Characteristics of the Plasma-Chemical Reactor

As mentioned above, when the reactor is in the operating regime, the recycled feed-
stock is decomposed, all organic materials and their harmful compounds are decomposed
and removed from the reactor in gaseous form, and inert materials with a high melting
point accumulate on the anode surface. The melt layer grows along the entire distance
between the reactors’ surfaces, starts to work as an anode, and decreases the plasma col-
umn dimensions. However, the exhaust gas temperature increased until x = 25 mm and
remained constant.

The exhaust gas temperature measured at a distance of 5 mm from the exhaust
nozzle significantly depended on the nature of the waste (Figure 6). For the experiments,
two different substances (without additional materials), clay and zeolites, were chosen to
establish such dependence. Clay and zeolites were selected owing to their well-investigated
chemical compositions.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 17 
 

material vapors are in the arc. However, the length of the laminar part of the arc remains 

almost the same in both cases. 

3.2. Thermal Characteristics of the Plasma-Chemical Reactor 

As mentioned above, when the reactor is in the operating regime, the recycled feed-

stock is decomposed, all organic materials and their harmful compounds are decomposed 

and removed from the reactor in gaseous form, and inert materials with a high melting 

point accumulate on the anode surface. The melt layer grows along the entire distance 

between the reactors’ surfaces, starts to work as an anode, and decreases the plasma col-

umn dimensions. However, the exhaust gas temperature increased until x = 25 mm and 

remained constant. 

The exhaust gas temperature measured at a distance of 5 mm from the exhaust nozzle 

significantly depended on the nature of the waste (Figure 6). For the experiments, two 

different substances (without additional materials), clay and zeolites, were chosen to es-

tablish such dependence. Clay and zeolites were selected owing to their well-investigated 

chemical compositions. 

 

Figure 6. Radial distribution of gas temperature leaving the plasma-chemical reactor. White dots—

when working with zeolites; black dots—with clay. The air flow through the plasma torch was 1 g/s, 

and the protective gas was 2.63 g/s. 

After the melt was released, the arc voltage increased accordingly. According to the 

results presented in Figure 6, it may be noted that the exhaust gas temperature drops sig-

nificantly compared with the gas temperature inside the reactor. At an axial distance of 

up to 30 mm, the behavior of the temperature profiles also depends on the PT operating 

time because the thermal energy flow rate increases insignificantly, and the temperature 

of the reactor walls increases. When the axial distance exceeded 25 mm and the reactor 

wall temperature stabilized, the exhaust gas temperature depended mainly on the arc cur-

rent. The essential difference between the case of clay and zeolite is that the gas enthalpy 

of melted clay particles is much larger than that of zeolites. It was also observed that the 

exhaust gas flow temperature suddenly decreased because of the decrease in its full pres-

sure and density. This phenomenon is absent in high-temperature flows, as the flow ex-

pansion possibility towards the axis counterbalances the total pressure decrease. When 

the surrounding gas leaves the reactor, its exhaust nozzle generates large eddy movement 

interacting with the surrounding gas. Thus, the processes of increasing turbulence and 

drawing in the surrounding flow are interrelated. During the experiments, it was noticed 

that the profiles of the temperatures and enthalpies in the flow direction became nearly 

symmetrical. This implies that the additional flow is injected into the main two-phase flow 

from the surrounding layers in inverse proportion to its density. Because of the large 
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White dots—when working with zeolites; black dots—with clay. The air flow through the plasma
torch was 1 g/s, and the protective gas was 2.63 g/s.

After the melt was released, the arc voltage increased accordingly. According to the
results presented in Figure 6, it may be noted that the exhaust gas temperature drops
significantly compared with the gas temperature inside the reactor. At an axial distance of
up to 30 mm, the behavior of the temperature profiles also depends on the PT operating
time because the thermal energy flow rate increases insignificantly, and the temperature
of the reactor walls increases. When the axial distance exceeded 25 mm and the reactor
wall temperature stabilized, the exhaust gas temperature depended mainly on the arc
current. The essential difference between the case of clay and zeolite is that the gas enthalpy
of melted clay particles is much larger than that of zeolites. It was also observed that
the exhaust gas flow temperature suddenly decreased because of the decrease in its full
pressure and density. This phenomenon is absent in high-temperature flows, as the flow
expansion possibility towards the axis counterbalances the total pressure decrease. When
the surrounding gas leaves the reactor, its exhaust nozzle generates large eddy movement
interacting with the surrounding gas. Thus, the processes of increasing turbulence and
drawing in the surrounding flow are interrelated. During the experiments, it was noticed
that the profiles of the temperatures and enthalpies in the flow direction became nearly
symmetrical. This implies that the additional flow is injected into the main two-phase
flow from the surrounding layers in inverse proportion to its density. Because of the large
amplitudes and durations of the eddies, considerable density fluctuations and transversal
mass transfer occur.

From the experimental results of thermal characteristics, it can be seen that it is also
possible to establish the dependence of exhaust gas temperature on arc current and length.
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It was found that the PT thermal stability was reached with increasing arc current or arc
length only at a distance of x > 30 mm. In this case, the region appears where the arc power
is inversely proportional to the arc current. Temperature measurements (Figure 6) of the
gas leaving the reactor showed that the temperature difference between the emission gases
during the processing of both zeolites and clay was not high and reached approximately
200 ◦C (Figure 7). During the experiments, the plasma torch power was 41 kW in both
cases, and the air flow was 3.63 g/s. More gas is released when only clay is used than
when zeolites are used. This can also be seen by observing the flue gas flowing out of
the reactor (Figure 7). The chemical composition of clay includes various metal oxides
and salts (K, Mg, Na, Fe, etc.) that react with plasma gas during the treatment process
and affect the color of the flame. The mixture for the plasma treatment was prepared and
weighed, and its volume was determined. After performing plasma treatment, the melt
and unmelted masses were collected and weighed, and the volume of the resulting melt
was determined again. It was repeated in every experiment. The amount of clay raw
material entering the plasma-chemical reactor was 3.59 kg, and the total amount of the
melted fraction collected from the reactor was 3.4 kg. The difference between the material
introduced into the reactor and the collected material was 190 g. This amount consists of
the gas phase and products that exit the reactor nozzle uncontrollably. According to the
obtained results, it was compared and found that the volume of the raw material and the
received product differ by a factor of 1:10–1:12.
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Figure 7. View of the reactor exhaust gas glow.

It is also known that by employing plasma technology, it is possible to process complex
wastes, consisting of both organic and inorganic components, and ultimately produce
stable, completely harmless end-products. At the same time, a significant reduction in the
volume of waste is achieved (up to 95%), and the resulting solid residues contain harmful
components in a bound, safe state [22,25,28]. These vitrified products can be stable for
hundreds of years.

The electric field strength and gas temperature inside the plasma-chemical reactor
during the operation were measured using a specially designed thermocouple system, and
the measurement results are shown in Figure 8. Here, “x” is the distance from the reactor
cover bottom.

The heat loss with the cooling plasma torch water was also analyzed in this study. The
heat loss by the cooling PT was relatively small; at I = 50 A, P = 45 kW, and x = 200 mm, the
heat loss value with the cooling water was only 1.03 kW, which is approximately 2.28% of
the total PT power. Such low heat loss values were due to the presence of PT inside the
PChR walls protected by a relatively cold refractory material.
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Figure 8. The electric field strength in the operating reactor when working with: 1—zeolites and
2—clay. White dots—after starting the reactor, dark—after 30 min of the start. The airflow through
the plasma torch was 1 g/s, and the additional gas flow rate was 2.63 g/s. The PT power was 41 kW.

The obtained results show that, in the processing of zeolites containing aluminum
and silicon oxides, the electric field strength and gas temperature inside the reactor are
lower than those in clay processing. These results are analogous to the reactor flue-gas
measurements. The electric field strength of the arc at the start of the reactor is insignificant.
However, during operation, when the operating mode is established and the ambient tem-
perature inside the reactor is high, the voltage reaches 50–60 V (Figure 8). The temperature
in the plasma-chemical reactor was measured after 15–20 min of start-up of the reactor. As
can be seen from the obtained results (Figure 9), the ambient temperature in the reactor’s
entire volume is practically stable.
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Figure 9. The axial temperature distributions in the operating plasma-chemical reactor worked with:
white dots—zeolites, and black—clay. The air flow through the plasma torch was 1 g/s, and the
protective gas flow rate was 2.63 g/s. The PT power was 41 kW.

The erosive wear of the cathode material in the plasma torch is determined by the arc
power (the magnitude of the operating current), the composition of the electrode material,
the mode of operation, and the properties of the plasma-forming gas. In our case, the arc
power is less than 50 kW at an arc current of 180 A, the cathode material is hafnium, the
mode of operation is hot cathode cooling by water, and the plasma-forming gas is air or
nitrogen. At such conditions, the erosion of the hafnium cathode is about 0.2 g/h. However,
the frequent stopping and restarting of the plasma torch significantly reduce the work
resource of its cathode. The results of cathode erosion are described in more detail in our
paper [29].
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3.3. Energy Balance

When hazardous waste is treated in a plasma-chemical reactor, the organic part of
waste (including toxic substances) and complex inorganic compounds are mainly de-
composed by direct interaction with an electric arc and gas thermal radiation, while the
non-combustible amount of waste is partially evaporated (non-combustible part of waste
with a low melting point) and is removed from the reactor together with the exhaust gases.
The remaining non-combustible waste is melted and accumulates at the bottom of the
reactor, where it continues to function as an anode. The melt was collected at the reactor
anode and transferred to a container. In order to establish thermal balance, it is necessary to
evaluate all thermal processes occurring in a plasma-chemical reactor, neutralize hazardous
substances and determine their performance. It would include the following:

Q1—plasma torch power;
Q2—the energy released in the reactor during exothermic reactions, if any;
Q3—energy loss associated with all parts of the plasma-chemical reactor cooling;
Q4—energy losses related to endothermal reactions in the reactor, if any are run.

So, the energy balance equation would be the following:

Q1 + Q2 = Q3 + Q4 + ∆. (kW) (1)

Here, ∆ is an error that evaluates assumptions, measurements, calculations, etc.
Plasma torch and plasma-chemical reactor tests were performed using zeolite granules

and clay as waste. The estimated energy consumption for the molten material amount
obtained is listed in Table 2. By using the energy balance equation, the amount of energy
used to process the raw material can be calculated as follows:

Q= Q1 − QPR − QCR − QEX − Q6. (kW) (2)

Here, Q1 is the plasma torch power, which is equal to the transmission of the thermal
and kinetic energies of electrons:

Q1 = I
(

2.5
kTe

e
+ Va

)
. (kW) (3)

QPR is energy loss associated with plasma-chemical reactor cooling. It consists of
losses of the plasma torch cooling QP and reactor housing cooling QR.

QCR, in our case, would be heat loss by convection and radiation from the reactor
anode and the sole plate.

QEX is the energy of the hot gas exiting the reactor. In our experiment, the exhaust gas
flow rate is 1.1 (plasma torch) + 2.63 (shielding gas) = 3.73 g/s.

Q6 is energy loss by exhaust melted domains.
In Equation (3), k is the Boltzmann constant, J/K; Te is the electron temperature, K; e is

the electron charge, C; Va is the anode potential, V; and ϕe is the electron work function, V.

Table 2. The energy consumption, estimated for the total amount of melt.

Q1,
kW

QP,
kW

QR,
kW

QP + QR,
kW

Q,
kW

Time,
s

Q,
kWh

Amount of Melt,
kg

Specific Heat Flux q,
kWh/(kg·s)

Clay
37.1 6.3 9.2 15.5 21.6 0.53 21.52 5.79 3.71

Zeolites
40.0 6.8 10.8 17.6 32.4 0.67 26.8 3.6 7.44

Calculation methodologies should be developed to assess energy consumption and
efficiency factors, etc. After estimating all losses, the numbers would be different. Table 3
lists the energy consumption of the feedstock supplied into the reactor. The plasma torch
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power was recorded after 15 min. of operating. Later, it begins to decrease as the electric
arc length decreases, dependent on the growth of the melt layer.

Table 3. Energy consumption based on the amount of feedstock.

Q1,
kW

QP,
kW

QR,
kW

QP + QR,
kW

Q,
kW

Time,
s

Q,
kWh

Amount of Melt,
kg

Specific Heat Flux q,
kWh/(kg·s)

Clay
37.1 6.3 9.2 15.5 21.6 0.53 21.52 6.1 3.53

Zeolites
40.0 6.8 10.8 17.6 32.4 0.67 26.8 5.2 5.15

In the areas where the arc contacted the PT electrodes, the heat flux reached high
values through the arc spot. Local heating in this area is very intensive; for conventional
PT, only the use of graphite may protect the anode from melting. When an electric arc is
used for material processing, very intensive heat fluxes may destroy the material melting.
Therefore, the temperature of the process must be regulated.

It is important to note that part of the energy is transmitted by electrons to heavy
particles and is included in the convective heat flux. The distribution of arc radiation
depends on the degree of the arc blowing from under the electrode towards the walls and
the ratio of the electrode diameter and the arc length. According to the experiments, the
radiation heat transfer QR for I < 100 A was negligible. According to the experimental
data, the heat transfer in the air arc in the range of I = 50–70 A varied by 2–5%. Part of the
convective heat flux in the energy balance at the anode side depends on the arc length.

Radially directed electromagnetic forces compress the electric arc during the current
passage. In the arc of a variable cross-sectional area (for example, near the cathode), a
longitudinal pressure gradient arises because of the action of electromagnetic forces, which
increases the generation of a plasma stream from the sites of the constricted area. In the
present case, a plasma jet flowed from the cathode toward the anode.

4. Conclusions

A direct current plasma-chemical reactor (PChR) was designed and experimentally
tested for solid waste treatment. After experimental investigations to determine process
efficiency and quality, it was found that plasma-chemical reactors are practical and have
easy-to-use control for regulating temperature, production quantity, and time. In this study,
an air plasma torch with a power of 50 kW was developed and used for industrial zeolite
and clay waste treatment. The electrical and energy characteristics of the plasma torch
and plasma-chemical reactor were investigated. After the plasma treatment, the selected
waste was converted into an environmentally friendly melt with much lower volume levels,
by approximately 10–12 times, compared to the initial material. The investigation results
showed that the behavior of the DC arc burning in plasma-chemical reactors with ambient
air is very complex. The voltage-current characteristics in the air flow were measured in
the arc current range of I = 50–200 A and at different free arc lengths. The VCCs depend on
the arc-burning regime (laminar or turbulent); the arc power increases with the arc current
and length. The outflow gas temperature decreases significantly compared with the gas
temperature in the volume of the plasma-chemical reactor. At arc lengths greater than
100 mm and arc currents less than 150 A, a significant part of the energy is transferred by
convection. At an axial distance of up to 30 mm, the temperature profiles rise in shape and
depend on the operating time of the plasma torch. When the axial distance exceeds 30 mm,
the reactor’s wall temperature stabilizes, and the exhaust gas temperature depends mainly
on the arc current. The proportion of energy transferred by electrons or forced convection
to the anode depended on the arc length. The results obtained from the plasma-chemical
reactor showed that the ambient temperature in the reactor’s entire volume is stable. The
reactor prototype could be used in solid, hardly melting waste treatment processes.
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