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Abstract: When constructing tunnels in mountainous areas, the drilling and blasting method is the
most commonly used because of its economy. Ordinary reinforced concrete itself has defects such
as poor crack resistance and brittleness. Therefore, when using the drilling and blasting method for
ordinary reinforced concrete double-line tunnels, vibration phenomena will occur and cause cracks
in the first-line tunnels, which will have adverse effects on the durability and safety of the tunnel.
As a response, scholars have proposed the use of steel fiber-reinforced concrete as tunnel lining.
In this paper, the LS-DYNA software is used to establish three models of plain concrete, ordinary
concrete, and steel fiber-reinforced concrete, and numerical analysis is conducted with different
amounts of explosives. The results show that the steel fiber-reinforced concrete tunnel lining has
better performance than the other two concretes in tunnel construction.

Keywords: drilling and blasting tunneling method; double-line tunnel; steel fiber-reinforced concrete
tunnel lining; vibration phenomenon; numerical analysis

1. Introduction

Western China is experiencing an increase in railways, highways and other transporta-
tion facilities with the adoption of western development policies. Due to the geographical
characteristics of the region, the construction of these facilities will inevitably lead to cross
tunnels and parallel tunnels with small clearance and other situations. At present, the
most widely used is the New Austrian Tunneling Method (NATM), in which blasting
construction will inevitably affect the safety and usability of the advance tunnel. Therefore,
the research team analyzed the impact of blasting shock and vibration on the adjacent steel
fiber tunnel lining through numerical simulation [1–3].

Remarkable results have been made on the blasting construction of nearby tunnels.
Qi and Liu [4] studied the mechanical properties of fiber-reinforced concrete shield seg-
ments, and obtained that the bending, yield, and ultimate bending moment of the segments
with fiber are significantly higher than those of ordinary segments under the same rein-
forcement ratio. Xu et al. [5] simulated the pure steel fiber segment of a hard rock tunnel
through FLAC3D, and conducted field tests in Qingdao Metro Line 1. The result showed
that the pure steel fiber concrete segment has better crack resistance, and it is feasible to
replace steel. He et al. [6] also adopted FLAC3D in Hangzhou Metro Line 5 to analyze
the blasting vibration in the excavation of small clear-distance tunnels to the support of
the adjacent tunnel in an urban area. In the Aiminshan Tunnel in Dandong, Liaoning
Province, Wang et al. [7] used ANSYS to analyze the seismic impact of blasting excavation
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on the surface and concluded that the cavity effect caused the excavated surface to vibrate
more quickly than the unexcavated surface. Zhang et al. [8] adopted field monitoring
and software simulation to study the influence of blasting from the rear tunnel on the
structural optimization of the secondary lining of the advance tunnel under soft and broken
surrounding rocks in the Xinmin Tunnel. Pan et al. [9] used the numerical model to analyze
the construction sequence, the time and method of secondary lining in three parallel tunnels
with the middle one constructed first, as well as the impact of blasting the tunnels on both
sides of the secondary lining of the middle tunnel in the parallel section of the Sunjiawan
Tunnel 1 on the Yongzhou Highway and the Niupilingxia Tunnel on the Yongzhou Railway.
Wang et al. [10] studied the dynamic response characteristics of the blasting from the adja-
cent tunnel on the lining structure at the intersection of the first tunnel in the intersection of
the Wuwu high-speed railway tunnel and Xizengshan highway tunnel, and concluded that
the arch shoulder and crown of the first tunnel are sensitive to blasting stress, and that close
attention should be paid during construction. Wu and Ren [11] used ABAQUS to study the
stress response of the first tunnel to the blasting of the rear tunnel in the small clear-distance
tunnel, and concluded that the inner arch waist and the foot are most affected and deserve
further observation. Guo et al. [12] used LS-DYNA and field tests to study the rule of tunnel
failure under the blasting load of adjacent tunnels with different spacings, and obtained the
form of the failure and the location of the crack. Mao [13] observed the on-site expansion
project of the Fuzhou Mawei Tunnel, and studied the attenuation characteristics of the
velocity of the vibration energy under multiple cavities. Chen et al. [14] tested on site the in
situ expansion project of the Jinjishan Tunnel on the Second Ring Road in Fuzhou, Fujian
Province, and concluded that in the blasting construction, the number of explosives used
in the cut hole should be appropriately reduced, and increased in the wide slot hole and
auxiliary hole. Ding et al. [15] studied the influence of blasting construction on the 33-story
frame structure at Exit A of the Xizhen of Qingdao Metro Line 1, and the result is a reference
for the protection of high-rise buildings during urban blasting construction. By employing
on-site monitoring, Wu et al. [16] investigated the law of vibration in the unique stratum
of the upper soft and lower hard, and confirmed the viability of numerical simulation for
engineering blasting. Bao et al. [17] studied the impact of blasting on surrounding rocks in
the seepage area of the tunnel ahead through on-site monitoring and numerical simulation,
and concluded that the arch waist has the maximum vibration velocity, the excavation of
the lower bench has greater destructive force than that of the upper bench under the same
spacing, and the minimum safety clearance is D (D is the tunnel span). Guan et al. [18]
first summarized the development stage of failure evolution based on the field data, then
used LS-DYNA to determine the vibration response and failure mode of the temporary
middle wall under different explosive amounts and blasting distances. Zhou et al. [19]
studied the impact of blasting in the adjacent tunnel on the initial support and lining of
the ultra-small distance tunnel based on the Jiuwuji tunnel blasting project in Guizhou
Province, and the result showed that the main frequency distribution of the initial support
and lining is very wide and the vibration is diverse, within 200 Hz. Zhang et al. [20], by
monitoring particles on the lining of the tunnel, studied the influence of blasting on the
tunnel, and concluded that the peak particle velocity generated is always caused by the
cutting hole blasting. Wu et al. [21] through field monitoring and simulation by FLAC3D,
analyzed the influence of blasting of a new tunnel on the operating tunnel, and concluded
that the vibration velocity of the arch in the blasting surface of the existing tunnel is larger,
and the blasting will have an impact on a moving train. Fang et al. [22] carried out research
on the Qiandouquan Tunnel project by adopting single-layer and double-layer p blasting
schemes, and found that the double-layer presplitting blasting can reduce the vibration
speed better by comparison. By tracking and analyzing the field particle vibration velocity
through numerical simulation in the Nanjing Metro’s ultra-small clear-distance tunnel
project, Zhu et al. [23] discovered that the vibration velocity of the side wall of the tunnel is
greater than that of the arch foot. Moreover, the closer the blasting point, the greater the
vibration velocity. Cui et al. [24] studied the improvement of the energy performance of
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subway tunnels using steel fiber-reinforced concrete lining to enhance shallow geothermal
energy. They found that the thermal conductivity of the steel fiber-reinforced concrete
lining is better than that of ordinary concrete lining with advantages in heat exchange and
cooling operation. Hosseini et al. [25] studied the use of glass fiber-reinforced polymer
(GFRP) to reinforce high-strength concrete lining segments, and found that the segments
with GFRP have bending and shear strength, but with little effect on the lining segments
after cracking.

In summary, there is little research on the impact of small-spacing tunnel blasting
construction on adjacent steel fiber tunnel linings. Some scholars have found that steel fiber-
reinforced concrete lining has significant improvements in bending moment, yield moment,
and ultimate moment compared with steel-reinforced concrete lining. The structural
vibration velocity from blasting can be used as an indicator of the strength of the blasting
vibration effect. The peak vibration velocity during blasting construction differs in tunnels,
but the closer the blasting point, the greater the vibration velocity.

This paper uses LS-DYNA to establish three tunnel-lining models and simulates the
impact of blasting construction on adjacent tunnel linings with different explosive amounts.
The three types of tunnel linings are plain, ordinary reinforced, and steel fiber-reinforced
concrete, and the explosive amounts are 14.4 kg, 18 kg, 21.6 kg, 25.2 kg, and 28.8 kg. The
vibration response law of the adjacent tunnels in the three lining models under different
explosive amounts is analyzed. Hopefully, the research results will provide a reference for
future engineering design and tunnel construction.

2. Numerical Simulation
2.1. Tunnel Geometry

The geometric dimensions of double-track tunnels are the same: the net width of the
building is 11.2 m, and the height limit is 7.94 m. The clear width of the inner contour is
9.48 m, and the clear height is 6.59 m. The excavation depth is 0.88 m. See Figure 1 for
detailed layout information.
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2.2. Establishment of Calculation Model
2.2.1. Constitutive Model of Surrounding Rock

The follow-up hardening material model is adopted for the surrounding rock, which
is defined as *MAT_PLASTIC_KINEMATIC. This model describes the strengthening effect
and strain rate change effect of materials, with the elastoplastic properties of the rock media
considered. The yield condition is [26]:

φ =
1
2

ξ2
ij −

σ2
y

3
= 0 (1)

where:
ξij = sij − aij (2)

σy =

1 +
( .

ε

C

) 1
p

(σ0 + βEpε
p
e f f

)
(3)

where: sij is the Cauchy stress tensor; P and C are input constants; σ0 and β are initial yield
stress and hardening parameter, respectively;

.
ε is the strain rate; Ep is the plastic hardening

model, where Ep = ErE
E−Er

, E is the elastic modulus, Er is tangent modulus; and ε
p
e f f is the

effective plastic strain.
The parameters of the surrounding rock are consistent with those tested, as shown in

Table 1.

Table 1. Material parameters of tunnel surrounding rock.

Material
Uniaxial

Compressive
Strength (MPa)

Elasticity
Modulus Ec

(MPa)
Poisson’s Ratio Density ρ

kg/m3

Tunnel
surrounding

rock
22.2 4684 0.19 2450

2.2.2. Lining Strength Parameters

The strength parameters of the model are C30 concrete. When establishing the rein-
forced concrete lining model, plain and reinforced concrete are modeled, respectively. The
parameters are shown in Tables 2–4.

Table 2. Strength parameters of plain concrete lining.

Material Elasticity Modulus
Ec (MPa) Poisson’s Ratio Density ρ kg/m3

Concrete lining 30,000 0.2 2360

Table 3. Strength parameters of reinforced concrete lining.

Material Elasticity Modulus
Ec (MPa) Poisson’s Ratio Density ρ kg/m3

Concrete lining 30,000 0.2 2360 kg/m3

Rebar 210,000 0.3 1.58 kg/m
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Table 4. Strength parameters of steel fiber-reinforced concrete lining.

Material Elasticity Modulus
Ec (MPa) Poisson’s Ratio Density ρ kg/m3

Steel fiber + concrete 34,900 0.15 2510

2.2.3. Explosive Material Model and Equation of State

Under detonation conditions, high-temperature and high-pressure gases will be gener-
ated in the structures. The composition of explosive products and various thermodynamic
parameters at certain times are required to build the required equation of state through
the mixing rule, but these required parameters are difficult to measure experimentally at
present. Therefore, the semi-empirical equation of state (JWL) determined by experimental
methods is used to describe the relationship between pressure P, volume V and temperature
T. The JWL equation is shown in the following Formula [26].

p = A(1− ω

R1V
)e−R1V + B(1− ω

R2V
)e−R2V +

ωE
V

(4)

p = A(1− ω

R1V
)e−R1V + B(1− ω

R2V
)e−R2V +

ωE
V

(5)

Its isentropic equation is:

Ps = A exp(−R1V) + B exp(−R2V) + CV−(ω
′+1) (6)

es =
A
R1

exp(−R1V) +
B
R2

exp(−R2V) +
C

ω′Vω′
(7)

where P is the pressure of the detonation product, V is the relative volume V = ṽ/ṽ0, E is
the initial internal energy of explosive per unit volume, A, B, R1, R2, ω are parameters of
the JWL equation; and the subscript s represents an isentropic process. The specific values
of each parameter of the JWL equation are shown in Table 5.

Table 5. Parameters of the JWL equation of state.

Explosive Detonation Velocity/ms−1 A/GPa B/GPa R1 R2 ω E/GJm−3

TNT 6930 3.737 3.747 4.15 0.95 0.35 6.0

The parameters above are based on TNT explosive.

2.2.4. Airy Material Model and Equation of State

The NULL model and the LINEAR_POLYNOMIAL equation are adopted, and the
equation of state is:

P = C0 + C1µ + C2µ2 + C3µ3 + (C4 + C5µ + C6µ2)E (8)

µ =
1
V
− 1 (9)

where P is detonation pressure; E is internal energy per unit volume; and V is the relative
volume. For the air model, the parameters of the polynomial equation of state are:

C0 = C1 = C2 = C3 = C6 = 0

C4 = C5 = 0.4
(10)

The air density is 1.225 kg/m3, and the initial relative volume V0 is 1.0.



Appl. Sci. 2023, 13, 4201 6 of 20

2.3. Calculation Model

LS-DYNA is adopted for dynamic numerical simulation and calculation, and single-
hole blasting is also adopted in consistency with the experiment [27–29]. The blasting point
is located in the center of the tunnel face for simulation. Since the boundary size is small, in
order to reduce the boundary effect and the impact caused by reflected waves, and ensure
the accuracy of the calculation, the keyword *BOUNDARY_NON_REFLECTING is used to
apply a non-reflective boundary at the lateral boundary of the calculation area to simulate
the semi-infinite boundary of the site. The top surface is a free boundary, and the ground
and all sides are normal constraints. Figure 2 depicts the 3D finite element model.
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3. Calculation Model Analysis

When mining tunnels, the impact on the neighboring tunnel is strongest when the
highest amount of explosive is used in the cut hole [30–32]. Therefore, analysis is conducted
on the impact of the cut hole blasting on the adjacent tunnel. In the three models, the length
of each cutting hole is 1 m long, and the explosive amount is 1.8 kg. In each model, 8, 10, 12,
14 and 16 cutting holes are selected, respectively, so the explosive amount is 14.4 kg, 18 kg,
21.6 kg, 25.2 kg and 28.8 kg, accordingly. The monitoring points are at the left line, right
arch waist, right wall, and right arch shoulder (lower). The layout of monitoring points is
shown in Figure 3.
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3.1. Vibration Velocity Analysis of Plain Concrete Tunnel Lining

The analysis at each monitoring point is the comprehensive vibration velocity (the
unit of vibration velocity is m/s, and the unit of time is s).

It can be seen from Figures 4–6 and Table 6 that: (1) In plain concrete lining, the peak
values at each monitoring point increase with the explosive quantity, and the maximum
peak values of the right wall, the right arch spandrel and the right arch waist all appear to
be at the explosive amount of 28.8 kg, which are 0.00256 m/s, 0.00681 m/s and 0.0023 m/s,
respectively, and the peak values all around 0.03 s. (2) Under different explosive quantities,
each monitoring point’s vibration law is relatively consistent. No matter how much
explosive is used in the monitoring point, the right arch waist has the minimum peak,
and the radius of the right arch spandrel is small. The right arch spandrel with the largest
peak stress concentration suggests that it is relatively weak during the blasting excavation
operation, and has to be watched.
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Table 6. Peak particle velocity and location with different explosive quantities.

Location Quantity of
Explosive (kg) 14.4 18 21.6 25.2 28.8

Right side wall Peak (m/s) 0.00196 0.00215 0.00218 0.00224 0.00256
Right spandrel Peak (m/s) 0.00543 0.00563 0.00567 0.00597 0.00681

Right hance Peak (m/s) 0.00116 0.0018 0.0019 0.0020 0.0023

3.2. Vibration Velocity Analysis of Ordinary Concrete Tunnel Lining

The analysis at each monitoring point is the comprehensive vibration velocity (the
unit of vibration velocity is m/s, and the unit of time is s).

It can be seen from Figures 7–9 and Table 7 that: (1) In ordinary reinforced concrete
lining, the peak values at each monitoring point increase with the amount of explosives,
and the maximum peak values of the right wall, the right arch spandrel and right arch
waist are at the explosive amount of 28.8 kg, which are 0.00231 m/s, 0.00594 m/s and
0.00182 m/s, respectively, and the peak values all appear near 0.03 s. (2) The vibration law
of each monitoring point is relatively consistent under different explosive quantities. No
matter how much explosive is used in the monitoring point, the minimum peak value is
at the right arch waist; the radius of the right arch spandrel is small, and the maximum
peak value of the stress concentration is at the right arch spandrel, indicating that the right
arch shoulder is relatively weak during the blasting excavation and needs to be observed.
(3) Compared with plain concrete, the vibration velocity at the right wall, the right spandrel
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and right arch waist is generally larger as a result of good integrity from the addition
of reinforcement.
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Table 7. Peak particle velocity and location with different explosive quantities.

Location Quantity of
Explosive (kg) 14.4 18 21.6 25.2 28.8

Right side wall Peak (m/s) 0.00246 0.00274 0.00245 0.002444 0.00231
Right spandrel Peak (m/s) 0.00405 0.00488 0.00503 0.00537 0.00594

Right arch
waist Peak (m/s) 0.00152 0.00177 0.00213 0.00200 0.00182
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3.3. Vibration Velocity Analysis of Steel Fiber-Reinforced Concrete Tunnel Lining

The analysis at each monitoring point is the comprehensive vibration velocity (the
unit of vibration velocity is m/s, and the unit of time is s).

It can be observed from Figures 10–12 and Table 8 that: (1) In the ordinary reinforced
concrete lining, the peak values at each monitoring point increase with the explosive
quantity. The maximum peak values of the right wall and the right arch spandrel occur
at the explosive amount of 28.8 kg, which are 0.00301 m/s and 0.00832 m/s, respectively.
The maximum peak of the right arch waist occur at the explosive amount of 21.6 kg, which
is 0.00232 m/s, and the peak values appear at around 0.03 s. (2) The vibration law of the
monitoring points on the right wall and the right arch spandrel is relatively consistent and
increase all the time under different explosive quantities. However, the vibration speed of
the monitoring points on the right arch waist increases first and then falls as the explosive
quantity increases, which results from the biggest radius, where the vibration speed is
propagated to further sites as the explosive quantity increases.
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Table 8. Peak particle velocity and position of vibration velocity with the same explosive quantity.

Location Quantity of
Explosive (kg) 14.4 18 21.6 25.2 28.8

Right side wall Peak (m/s) 0.00195 0.00198 0.00212 0.00222 0.00301
Right spandrel Peak (m/s) 0.00667 0.00671 0.00695 0.00731 0.00832

Right arch waist Peak (m/s) 0.00220 0.00179 0.00232 0.00186 0.00177

4. Summary

In this paper, ANSYS/LS-DYNA are used to study the impact of blasting the subse-
quent tunnel on a steel fiber tunnel lining in advance. By establishing three tunnel models
of plain concrete, ordinary reinforced concrete, and steel fiber, and comparing the explosive
quantities in the blasting of the subsequent tunnel, the following conclusions are drawn:

1. With plain concrete lining, the peak value of the vibration velocity at each monitoring
point appears to be around 0.03 s and increases with the explosive quantity. With the
velocity curve basically symmetrical around 0.03 s, it demonstrates consistency in the
vibration law.

2. With ordinary reinforced concrete lining, the overall vibration speed is basically the
same as that of plain concrete, but increases as a result of the integrity after adding
reinforcement.

3. The biggest difference between the steel fiber and the plain concrete tunnel lining is
at the right arch waist. The vibration velocity at the right waist increases with the
number of explosives, but in the steel fiber tunnel, the vibration velocity at the right
arch waist increases and then decreases, with the vibration trend consistent with the
other two monitoring points.

4. By comparing the peak values of the vibration velocity at each monitoring point of the
three kinds of tunnel lining, it can be concluded that the ordinary reinforced concrete
lining at the right wall has the largest vibration velocity; the maximum vibration
velocity of the steel fiber tunnel lining occurs at the right arch spandrel, and the gap is
large; the maximum vibration velocity of steel fiber tunnel lining is at the right arch
waist. Therefore, the integrity of steel fiber tunnel lining is better than the other tunnel
linings, with a relatively larger vibration velocity.

5. In conclusion, the steel fiber-reinforced concrete tunnel lining has better integrity
compared to plain concrete and reinforced concrete tunnel linings. Therefore, the
use of steel fiber-reinforced concrete lining in blasting construction is feasible and
can effectively reduce the adverse impact on adjacent tunnels. However, there is
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a limitation in data on steel fiber-reinforced concrete as tunnel lining in practical
engineering.
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