iriciedl applied
e sciences

Article

Qualitative and Quantitative Evaluation of Multivariate
Time-Series Synthetic Data Generated Using MTS-TGAN:
A Novel Approach

Parul Yadav V**® Manish Gaur 1, Nishat Fatima 1t

check for
updates

Citation: Yadav, P.; Gaur, M.; Fatima,
N.; Sarwar, S. Qualitative and
Quantitative Evaluation of
Multivariate Time-Series Synthetic
Data Generated Using MTS-TGAN:
A Novel Approach. Appl. Sci. 2023,
13,4136. https://doi.org/10.3390/
app13074136

Academic Editors: Xiaobo Zhou,

Dong Yuan and Lei Yang

Received: 31 January 2023
Revised: 26 February 2023
Accepted: 2 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Saqib Sarwar 't

Institute of Engineering and Technology, Lucknow 226021, India
* Correspondence: parulyadav@ietlucknow.ac.in
1 These authors contributed equally to this work.

Abstract: To obtain high performance, generalization, and accuracy in machine learning applications,
such as prediction or anomaly detection, large datasets are a necessary prerequisite. Moreover, the
collection of data is time-consuming, difficult, and expensive for many imbalanced or small datasets.
These challenges are evident in collecting data for financial and banking services, pharmaceuticals
and healthcare, manufacturing and the automobile, robotics car, sensor time-series data, and many
more. To overcome the challenges of data collection, researchers in many domains are becoming
more and more interested in the development or generation of synthetic data. Generating synthetic
time-series data is far more complicated and expensive than generating synthetic tabular data. The
primary objective of the paper is to generate multivariate time-series data (for continuous and mixed
parameters) that are comparable and evaluated with real multivariate time-series synthetic data. After
being trained to produce such data, a novel GAN architecture named as MTS-TGAN is proposed and
then assessed using both qualitative measures namely t-SNE, PCA, discriminative and predictive
scores as well as quantitative measures, for which an RNN model is implemented, which calculates
MAE and MSLE scores for three training phases; Train Real Test Real, Train Real Test Synthetic
and Train Synthetic Test Real. The model is able to reduce the overall error up to 13% and 10% in
predictive and discriminative scores, respectively. The research’s objectives are met, and the outcomes
demonstrate that MTS-TGAN is able to pick up on the distribution and underlying knowledge
included in the attributes of the real data and it can serve as a starting point for additional research in
the respective area.

Keywords: deep neural network; multivariate time-series data; generative adversarial network;
synthetic data generation

1. Introduction

One of today’s most vital resources is data. However, they are expensive, sensitive,
take time to process, and are either unavailable or need to be kept confidential due to
personally identifiable information (PII) or compliance problems [1]. Any disclosure
or sharing of personally identifiable consumer information may result in expensive legal
actions that also harm the reputation of the organization. Additionally, data are typically not
accessible for relatively new works [2]. Additionally, the process of the human annotation
of data is expensive and time-consuming. Therefore, reducing privacy issues and opting
for an economical option is the main justification for why businesses invest in synthetic
data-generating techniques. Information that has been intentionally annotated is known as
synthetic data. It is produced via simulations or computer algorithms.

Businesses can benefit from synthetic data for three primary reasons: they can be
used to train machine learning algorithms, they can be used to test products more quickly,
and they can help with privacy issues. The majority of data privacy regulations impose
limitations on how sensitive data are handled by organizations [2]. When training artificial

Appl. Sci. 2023, 13, 4136. https:/ /doi.org/10.3390/app13074136

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074136
https://doi.org/10.3390/app13074136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6004-7589
https://orcid.org/0000-0002-4161-2789
https://orcid.org/0000-0002-0204-6155
https://orcid.org/0000-0002-3583-2873
https://doi.org/10.3390/app13074136
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074136?type=check_update&version=2

Appl. Sci. 2023,13, 4136

20f19

intelligent (AI) models, developers frequently need huge datasets with precise labeling. As
when trained on a wider variety of data, neural networks become more accurate. Collecting
and labeling these massive datasets containing hundreds or even millions of objects or
information, however, can be unreasonably time and money-consuming, as well as labor-
intensive. For these reasons, the generation of synthetic data is crucial. Some areas which
have an application of synthetic data are as follows:

* Financial and banking services.

e Pharmaceuticals and healthcare.

* Manufacturing and automobiles.

* Robotics.

¢ Digital marketing and internet advertising.
* Espionage and security businesses.

There are different types of data that can be synthesized, such as tabular data, image,
video data, sound data, and time-series data. However, creating synthetic time-series data
is far trickier than creating synthetic tabular data [3]. The primary distinction is that real
tabular data assume that each row of the data contains information on a single person,
whereas time-sensitive data, on the other hand, is dispersed across numerous columns and
rows in various time sequences or frames. The difficulty of this task is also influenced by
the duration of the time-series data; the longer the history, the more challenging it is to
learn the features of the original and generated synthetic data from it.

Generative adversarial network models (GANSs) [4] can supplement smaller datasets
by producing new and unused data. In some circumstances, data may be corrupted,
distorted, or missing. GANs can impute data, or substitute the anomalies with information
corresponding to clean data. In the case of corrupted data, they can also denoise signals.
Data security, privacy, and sharing are now severely controlled; they can add an additional
degree of protection by creating differentially private datasets that do not run the danger
of being linked to their source data [5].

GANs s [4] has become a well-liked way for creating or enhancing datasets, particularly
with images and videos. However, when it comes to networking data, which includes both
mixed discrete, continuous, and intricate temporal correlation data types, GANs perform
poorly [6]. Even while GAN-based time-series generation is possible, for example, for
medical time series, these methods fall short for more complicated data, showing low
autocorrelation scores on lengthy sequences and being vulnerable to mode collapse [5].

Sensor readings, time-stamped log messages, stock market values, and medical records
are a few examples of the potential uses for synthetic time-series data. Synthetic data face
numerous difficulties because of the additional dimension of time, where trends and
correlations across time are just as significant as correlations between variables [7]. To
overcome this, TimeGAN (time-series generative adversarial network) [8] was introduced,
but still, the multivariate factor was not properly addressed, and further increasing the
number of parameters and size, it was unable to perform adequately.

Unfortunately, there is no set consensus on the metrics for evaluating the generated
data for time-series GANs because of the small number of research studies that have been
published [9-12]. Different strategies [13,14] have been put out, but as of now, none has
emerged as the leader in the metrics field. Hence, we, in this research, have aimed at
improving the time-series (TS) data’s multivariate factor by implementing our proposed
model named MTS-TGAN, which is an extension of TimeGAN [8]. The novelty of the
paper is designing, implementing, and evaluating (both qualitatively and quantitatively)
the model which can generate multivariate time-series data with better evaluation scores.
The further novelty of our proposed model (MTS-TGAN) includes the inception of a pre-
processing layer, namely, a feature selector which outputs the important features that
help in removing extra noise, which hinders the synthetic generation of data, as well as
hyper-parameter tuning, such as having a number of GRU layers [15], such as six (for all
four modules, namely generator (G), discriminator (D), embedding (E) and recovery (R)
functions) [8] and using the activation function ReLU [16] and implementing the proposed

Appl. Sci. 2023,13, 4136

30f19

model on two datasets, such as a Google stock [17] and UniMiB human activity recognition
(HAR) dataset [18] to show that the model is efficient in working with the multivariate TS
data.

An outline of the paper is as follows: In Section 2, related research in this field is
compared and contrasted. Section 3 presents the problem statement. Section 4 discusses the
proposed MTS-TGAN model. By summarizing the experimentation’s outcomes, Section 5
provides a summary of the main findings. Section 6 provides the conclusions and suggests
potential directions for additional research.

2. Related Works

Numerous research studies, including Refs. [19-23], have been conducted since the
GAN framework was first introduced in 2014 by Goodfellow et al. [4], which consists of
two neural networks (NN) models, typically, a generator G and a discriminator D. GANs
have gained a lot of attention among deep learning (DL) researchers, but the majority
of the experiments were concerned with the creation of images such as creating anime
characters [19], creating photos of people’s faces [20], image in-painting [21], creating
bedroom images [22], and removing noise (rain) from images [23]. Their success is partly
due to their capacity for producing and modifying data across several fields. While
computer vision (CV) has been the primary use for GANs up to this point, they have also
been successfully used in other contexts, such as natural language processing (NLP). GANs
have recently shown that they are capable of generating high-quality images and videos
as well as style transfer and image completeness [20,22,23]. Additionally, they have been
utilized with effectiveness for imputation, sequence predicting, and audio generation as
shown in Figure 1.

Discriminator Loss

Real Data ‘F ———————— 1

w
X » Discriminator D — Real [Fake

G(z)

Generated

|
3 GeneratorG __ Data. Fake |
|

Random Moise (z)

A Generator Loss |

Figure 1. GAN architecture.

A trend has emerged toward the production of time-series and sequential data using
GANsSs, as well as forecasting. However, research on using GANSs to generate time-series
has not been as thorough. Here are few papers [8,24-30] that implemented GANs using
time-series data as per our knowledge, which is discussed further in this Section.

Mogren et al. [24] carried out one of the earliest research on time-series generation
using GANSs. In this study, an adversarial training continuous recurrent neural network
model for music generation was proposed. The author acknowledged that their approach
still requires improvement, particularly in terms of a rigorous assessment of the generated
data’s quality.

Time-conditional GAN is a new GAN framework that Ramponi et al. [25] proposed at
the beginning of 2019. Its generator and discriminator are both conditioned on the sampling
timestamps. The goal of their effort was to identify a time-series data-augmentation
technique. They contrasted their model against two very straightforward methods, time
slicing and time warping [31]. They carried out a classification task as an evaluation, and
they achieved improved classification accuracy using their suggested model.

Appl. Sci. 2023,13, 4136

40f19

The model is intended to support end users” decision-making processes, particularly
with regard to financial portfolio decisions. On structured decision-related quantities, it
employs a multi-Wasserstein loss [32] by Hao et al. [26]. Sun et al. [27] implemented DAT-
CGAN, in which each input, which in this case is assets, the generator G and discriminator
D, is a 2-layer feed-forward neural network. Generator G generates outputs that are
utilized to calculate quantities relevant to decisions. These parameters are fed into D,
a two-layer feed-forward neural network. The incorporation of a decision-aware loss
function, according to the authors, makes this model capable of producing high-fidelity
time series that enable end-user decision-making. The drawback of this strategy is that it
takes a month to train only one generative model because of how computationally intensive
DAT-CGAN [27] is.

Long time-series (LTS) data streams may make generative modeling impossible since
they dramatically increase the dimensionality requirements. This is a concern that the
paper [26] dealt with. By capturing the temporal dependency of LTS models and using
it as a discriminator in an LTS-GAN, the authors developed a measure dubbed signature
Wasserstein-1 (Sig-W1) to address this problem.

SIMGAN for ECG synthesis was suggested by Golany et al. [28], and it is a simulator-
based model to enhance supervised categorization. The generation networks were modified
to include ECG simulator equations, and the deep neural networks were trained using the
generated ECG signals. Dan et al. [29] proposed an LSTM-RNN model that was trained on
multivariate TS data using MAD-GAN architecture, and an innovative discrimination and
reconstruction anomaly score was created to employ the discriminator and generator to
find anomalies (DR-Score). Authors in the paper [30] proposed a model to create synthetic
three-component waveforms of realistic seismic waveforms with numerous labels that
sample either earthquake or non-earthquake classes using a conditional GAN on a dataset
taken from an earthquake center in Oklahoma.

The major drawback of GAN is that it fails to capture the temporal dynamics of the TS
data. Hence, to resolve this issue, Jihoon et al. [8] introduced TimeGAN. Jihoon et al.’s [8]
framework TimeGAN combines the adaptability of the unsupervised GAN technique with
the control provided by supervised learning to produce multivariate time-series. TS data
are defined as a sequence of vectors dependent on time (t) for both discrete-time and
continuous/real-time and can be presented as follows:

Xt = X1,X2,X3..... s Xn (1)

Depending on the number of values recorded, the values in the TS can also be univari-
ate or multivariate. The time-series data typically accept either a real number or an integer
value. Jiyoon et al. [8] tested their model on several time-series types and demonstrated
that it outperformed previous GAN architectures. The architecture of the TimeGAN as
shown in Figure 2 implements the collaborations of a GAN and different components,
where G is the generator and D is the discriminator. The GAN is applied with an addi-
tional supervised loss on the latent space that was retrieved from the random vectors.
They provided a step-wise supervised loss utilizing the original data as supervision in
addition to the conventional unsupervised adversarial loss on both real and synthetic
data, which aids in learning from the transition dynamics in genuine sequences. Finally,
following the training, the false samples are produced using the generator and the clas-
sification component. There are three losses [33] defined in TimeGAN [8] that are as follows:

Lg =Y s,x1:T~pllls =57+ Y_[|x: — %|*])
t
Luys = Es,x1: T ~ p[log(ys) +) _log(ys)]+
t

N . 3)
Es,x1: T ~ p[(log(1 —¥s) + ;(lozz(l —)]

Appl. Sci. 2023,13, 4136 50f19

LS :ES/xl :TNP[ZHht_gx(hs/ht_lrzt)Hz] (4)
t

where Ly is loss of reconstruction, Li;s is unsupervised loss, Lg is supervised loss and

p is the true distribution. Through back-propagation, the weights of the recovery and

embedding functions are updated using the reconstruction loss Ly, p is the distribution

of the model, x represents the real data, ¥ is the data after reconstruction, and T is the

timestamp.
Reconstruction Supervised Unsupervised
Loss Loss Loss
A A A
1] 1
1] 1
[l 1
Reconstruction Classification

Reco:rN

Embedding

Aiminatur

Generation

Latent Code

Real Sequences Random Vectors

Figure 2. Time-GAN architecture.

Comparison chart for the related works [8,24-30] performed in the line of imple-
menting GAN using time-series data is given in Table 1. Table 1 contrasts the related
works [8,24-30] considering the techniques, datasets and evaluation methods used. The
reflections of the above papers are discussed in the following Section 3, which explains the
challenges faced in dealing with time-series data and the problem statement of the research.

Table 1. Related Works: comparison chart.

S.No. Paper Technique Used Dataset Used Evaluation Method
1 Mogren et al. [24] RNN Classical music dataset Repetitions and
Tone span

2 Ramponi et al. [25] Time-conditional GAN Multiple datasets TSTR
3 Jihoon et al. [8] TimeGAN Stock'p.r ices and Usefulness

electricity data
4 Hao et al. [26] Signature Wasserstein-1 Signature dataset TSTR

: (Sig-W1) &

Energy and financial Train Synthetic Test Real
5 Sun et al. [27] DAT-CGAN datasat (TSTR)
6 Golany et al. [28] SIMGAN ECG signals dataset precision and recall

. Water Treatment and PCA and Discrimination

7 D.Lietal. [29] MAD-GAN distribution datatset Anomaly Score
8 Wang et al. [30] SeismoGen Earthquake dataset R?

Appl. Sci. 2023,13, 4136

6 of 19

3. Problem Statement

Generative adversarial networks (GANSs) [4], which are fundamentally designed to
model continuous data but are most frequently used to model images, face a new challenge
when modeling continuous time-series data. Time-series problems are made more challeng-
ing by the temporal character of continuous data. There are intricate relationships between
the temporal features and their characteristics. For instance, when employing multichannel
biometric and physiological data, the ECG properties are influenced by the person’s age and
health. In contrast to image-based data under a fixed dimension, long-term correlations also
exist in the data, which are not always stable in the dimension. Although it is a recognized
practice, changing the image size can lower the quality of the image. TimeGAN tried to
tackle the temporal dynamics problem of time-series data of GANs.

In TimeGAN, in every stage of training, it is possible to access the distinction between
the real and the next-step latent vector (LV), respectively. The unsupervised loss L;js trains
the generator G to construct real data sequences, while Lg, the supervised loss, makes sure
that it generates indistinguishable step-wise transitions, but still, it fails to fully capture
the features of the multivariate time-series data, and hence, we proposed a novel approach
MTS-TGAN to tackle this problem. In the proposed model, we chose to employ a different
range of techniques for the model’s evaluation because evaluating GANs for multivariate
time-series data is not straightforward and trivial. Hence, we aimed to assert something
about the caliber of the generated data. In order to demonstrate that our generated data
can be defined from real data samples, we demonstrate the following;:

* Behavior of real and synthetic sequences;

* Variety of synthetic sequences;

* Quality of the generated sequences;

* Capturing of the dynamic features of our real dataset by the generator.

A detailed description of the process flow, the proposed model, and its architecture is
explained in the next section.

4. Methodology

The process flow followed for the design and implementation of the proposed model
is shown in Figure 3. The first step is the data collection, then pre-processing of the dataset,
followed by a detailed description of the proposed model, and lastly the training and
evaluation metrics used for the evaluation of the model as depicted in Figure 3. The
elaboration of these steps is given below:

4.1. Data Collection

In this paper, two datasets, namely Google stocks [17] and the UniMIB dataset [18],
were used for showing the impact of the proposed model on various parameters. These
datasets are briefed below:

¢ Google Stocks [17]: Data from the Google stock prices dataset, in contrast, are continu-
ous valued but periodic; also, attributes are correlated with one another. We utilized
daily data from 2004 to 2021 from Google Stocks, which include aspects such as high,
volume, low, adjusted closing, and opening and closing prices. A detailed description
of the dataset can be found in [17], and the statistical parameters of the dataset are
shown in Table 2.

¢ UniMiB: We chose samples from 24 subjects’ existing recordings and proposed them
to 2 groups (Running and Jumping) for the UniMiB dataset [18] in order to train
the model. The dataset includes mixed-valued data, which are highly correlated to
time stamps and each other; a description of the dataset is shown in Table 3. There
are correspondingly 600 samples for each class and 1572 samples. Every sample
has 150 timesteps, and each timestep has three accelerator values. Each recording
is normalized channel-wise to have a variance of 1 and a mean of 0. A detailed
description of the dataset can be found in [18].

Appl. Sci. 2023,13, 4136 7 of 19
Data Collection
h 4 Evaluation Metrices
Data Preprocessin
rep g Qualitaive Assessment
> « PCA
{ . t-SNE
f Ty Ty
il /‘ U w Quantitative Assessment
|\Datasat) Dataset |
— —-— Prediction Predictive
Splitting of preprocessed data into using RNN Score
75% and 25% respectively » Model
» .« TRTR « MAE
» . TSTR + MRLE
= TRTS
> Proposed Model:
MTS_TGAN
Synthetic Data Generation
Figure 3. Process flow of the proposed MTS-TGAN.
Table 2. Google stocks dataset.
Open High Low Close Adj_Close Volume
count 5510 5510 5510 5510 5510 5.51 x 103
mean 1181.62 1188.49 1173.97 1181.48 1181.48 1.27 x 10°
std 1089.20 1093.80 1083.88 1089.21 1089.21 1.88 x 10°
min 49.27 50.54 47.67 49.68 49.68 7.90 x 103
25% 268.32 270.77 265.72 268.29 268.29 3.36 x 100
50% 610.35 616.88 603.04 611.63 611.63 9.58 x 100
75% 2312.27 2319.23 2295.56 2304.92 2304.92 3.30 x 10°
max 3612.01 3645.99 3600.16 3626.91 3626.91 9.04 x 107
Table 3. The UniMiB dataset.
0 1 2 3 4
count 30 30 30 30 30
unique 30 15 14 18
top 195,192,... F 24 168 55
freq 1 13 6 6 4

Appl. Sci. 2023,13, 4136

8 of 19

4.2. Data Pre-Processing

Prior to synthesizing the data, pre-processing must be ensured due to the varied nature
of the data. The six signals’ values in Google stocks [17] fall into varying ranges and exhibit
different attributes and characteristics. The Sklearns-Feature selector function [34] is used,
which helps in removing the extra noise by outputting important features. Each feature in
the dataset is then normalized individually using feature scaling, bringing all values into
the range [0, 1], thus normalizing the dataset to ensure that the dataset is consistent. All
features have the same format/range. We used the Scikit-MinMaxScaler function [35] and
created rolling windows with overlapping sequences of 24 data points [8].

4.3. Proposed Model and Synthetic Data Generation

After the pre-processing, the data are then split into 75% and 25% ratios, namely
the training and testing datasets, respectively. The training dataset is then fed into the
proposed model named MTS-TGAN. MTS-TGAN consists of two components: adversarial
and auto-encoder components. The components of MTS-TGAN are shown in Figure 4,
wherein the real sequence and random noise act as inputs to the model and at the end,
after the overall training and testing, we obtain the synthetic data as an output. Figure 4
clearly shows training and loss functions; components to which loss functions are applied
are indicated by dashed arrows, and the data flow is indicated by solid arrows.

The sequence discriminator and generator as well as the recovery and embedding
function are the four sub-components that makeup MTS-TGAN. The major finding is that
the auto-encoding and adversarial components are trained together so that the proposed
model simultaneously learns to encode features, generate sequences and iterate over time.
The adversarial network acts in the latent space that the embedding network supplies and
a supervised loss synchronize the latent dynamics of both real and synthetic data. Each
sub-component is individually described in Figure 5.

The detailed description of the MTS-TGAN architecture is explained further down
the section. The overview of the components in the proposed model is shown in Figure 4;
all components are composed of an input layer, six GRU layers [15] with 60 s as a
sequence length followed by a dense layer [36]. A detailed explanation of each is given
as follows:

* Adversarial Component: The generator’s input is a random multivariate noise
sequence defined in the feature space of the dataset, which in this case has six di-
mensions because there are six signals/features present in the data. The latent space,
which in this instance was set to four feature spaces, determines the generator’s
output. As a result, the generator network’s final layer is dense, consisting of four
units. When every neuron in a layer receives input from every neuron in the layer
below it, the layer is considered to be dense in a neural network. To make sure that
the network terminates in the desired dimension, the dense layer was implemented.
Since the discriminator operates in the latent space, its input and output must have
the same shape as well as that of the embedder functions. A scalar representing the
discriminator’s output indicates whether it believes the sample it was given to be
legitimate or bogus. As a result, the discriminator architecture must have a dense
layer with one output unit at its end. An overview of these architectures is presented
in Figure 5a,b.

e Auto-Encoding Component: The embedding function converts the real data samples
into the latent space with 6-dimensional and 4-dimensional latent spaces as input
and output, respectively. The embedding function consequently has a dense layer
composed of 4 units. The recovery function acts within the latent space, just like
the discriminator. Consequently, the embedder’s output shape and input shape are
the same as a generator. The recovery function, as opposed to the discriminator,
generates reconstructions of the samples back to feature space. As a result, the
recovery function has a 6-unit dense layer at its conclusion. An overview of these
architectures is presented in Figure 5c,d.

Appl. Sci. 2023,13, 4136

90f19

Synthetic Data
F

AUTO-ENCODING ADVERSARIAL
COMPONENT COMPONENT
- Hecov;y Loss - Ad\rersa;al Lnss DEEET
o i
RECOVERY DISCRIMINATOR
A A

— ‘Supervised Loss —

e .. .--m---————- -

-
[}
]
[}
]

» EMBEDDING € —-———— e > GENERATOR -

A A
Real Sequence Random Noise

Figure 4. Components of MTS-TGAN model.

These dimensions are set to “None” to enable the insertion of various values during
training and testing that is, simply telling the network that any input parameters are
acceptable here when the input is defined by setting these dimensions to “None”. This is
essential, as the model should be able to generate samples in multiples and of any sequence
length.

The decision to use GRU layers in the proposed model is given to recurrent neural
networks (RNNs) [37], which are appropriate for TS data [8,25,26] as analyzed from related
works in Section 2. Six stacked GRUs [15], each with 32 units, were used to construct the
generator, discriminator, embedder, and recovery function networks in the proposed model.
It is possible for a network to learn deeper and more complicated patterns by using stacked
GRUs, which is unquestionably the case with six signals, respectively, with various features.
Trial and error led to the decision to use six layered GRUs with 32 units on one, two, and
three GRU layers followed by 16 units on four, five and six layers.

The generated sequences/samples are then subjected to division into sets for training,
testing, and validation. Of the data, 10% is in the test set, 15% is in the validation set, and
training is performed with the remaining 75% of the data. Both the generated and the real
data samples are subjected to this splitting individually. Now, utilizing datasets based on
Train Real Test Synthetic (TRTS), Train Real Test Real (TRTR), and Train Synthetic Test Real
(TSTR), the RNN model is implemented for 400 iterations and tested which is explained in
the next subsection.

Here, we discuss the training part of the model, but before using the latent codes
of the real samples to train the entire model, including adversarial and auto-encoding
components together, it was first necessary to pre-train the auto-encoding components
to make sure they were relatively representative. One hundred epochs of pre-training
were completed, with each epoch denoting a network update following a full run over the
training dataset. In the pre and main training, samples from the training dataset were taken
from the entire dataset for each epoch.

Appl. Sci. 2023,13, 4136

10 of 19

Input: [(Nene), (None), 6] Input: [(None), (None), 4]
Input_1: Inputlayer Input_1: Inputiayer
Output: | [(None), (None), 6] Output: | [(None), (None), 4]
¥ ¥
Gru_ 1: GRU Input: [[(None), (None), 32] Gru_1: GRU Input: I[(None}. (MNone), 32]
Output: |[{None), (None), 32] Output: I[(None}, {Mone), 32]
Gru_2: GRU Input: [[(None), (None), 32] Gru_2: GRU Input: I[(Nnne}. (None), 32]
Output: |[(None), (None), 32] Output: I[(Nnne}. (None), 32]
¥ ¥
Gru_3: GRU Input: [[(None), (None), 32] Gru_3: GRU Input: I[(None}. (None), 32]
Output: |[(None), (None), 32] Output: I[(None}. (None), 32]
Gru_4: GRU Input: _ Ji(Nane), (None), 32] Gru_4: GRU Input: I[(None}. (None), 32]
Output: [[{None), (Nene), 16]| Output: I[(None}. (None}, 16]}
Gru_5: GRU input:_[(one), tore). 6] Gru_5: GRU input: _|{one, (one), 16]
Output: ~ [i(None), (None), 16]] Output: [[(None), (None), 16]]
Gru_6: GRU Input: |[(None), (Mone), 16]' Gru_6: GRU Input: I[(None}, {Mone), 1B]I
Output: | [(None), (None), 4] Output: I[(None}. (Mone), 13]I
Input: | [(Nene), (None), 4 Input: |[{None), (None), 16]]
Dense_1: Denselayer i [{tlore), (Nono). 4 Dense_1: Denselayer e itione), {florel. 101
Output: | [(None), (None), 4] Output: | [(None), (None), 1]
(a) Generator (b) Discriminator
Input_1: Inputiayer Input: | [(None), (None}, 6] Input_ 1 Inputlayer Input: | [(None), (None), 4]
Output: | [(Nene), (None), 6] Output: | [[None), (None), 4]
¥ ¥
Gru 1+ GAY input: ~ [[{None), (None), 32] Gru_1: GRU Input: _|[{None), (None), 32]
Output: |[(None), (None), 32] Output: I[(None}. (None), 32]
Gru_2: GRU Input: |[(Mone), (None), 32] Gru_2: GRU Input: I[(None}, (None), 32]
Output: |[{None), (None), 32] Output: I[(None}, (None), 32]
¥ ¥
Gru_3: GRU Input: |[(None), (None), 32] Gru_3: GRU Input: I[(Nnne}. (None), 32]
Output: |[(None), (None), 32] Output: I[(Nnne}, (None), 32]
Gru_d: GRU Input: |[(None), (None), 32] Gru_4: GRU Input: I[(Nnne}, (None), 32]
Output: |[{None), (None), 1ﬁ]| Output: I[(None}, (None), 1ﬁ]|
Gru_5: GRU Input: [(Mone), (None), 1ﬁ]| Gru_5: GRU Input: I[(None}, (None), 1ﬁ]|
Output: ~ [i(None), (None), 16]| Output: [[(None), (None), 16]]
Gru_6: GRU Input: [[(None), (None), 16]' Gru_6: GRU Input: I[(Nane}. (None), 1B]I
Output: | [(None), (None), 4] Output: I[(Nnne}. (None), 1B]I
Dense.1: Denselayer Input: [(None), (None), 4] Dense_1: Denselayer Input: I[(None}, (None), 16]
Output: | [(None), (None), 4] Output: I[{None), (None), 1]
(c) Embedder (d) Recovery

Figure 5. The adversarial sub-components of MTS-TGAN: (a) generator (b) discriminator and the
auto-encoding sub-components of MTS-TGAN: (c) embedder (d) recovery functions, respectively.

Appl. Sci. 2023,13, 4136

11 0f 19

For convenience and to quickly identify the model with the greatest performance,
models were saved for every 1000 epochs during the 50,000 epoch primary training. It was
vital to take into account that the best model is not usually the one that has the longest
training time. The models would not have been accessible for testing and assessment if
they had not been preserved during the training. The generator was trained twice for
each epoch to prevent the discriminator from taking over, and a time limit was set for the
discriminator’s weight updates. The TimeGAN [8] threshold, which indicated that weights
were not changed if the discriminator loss was less than 0.15, was the basis for this. Table 4
explains the overall training settings used in the implementation of the model, including
parameters from the sequence length to loss function.

Unfortunately, there is no consensus on the metrics for evaluating the generated data
for time-series GANSs [38] because of the very small number of research that has been
published so far. Different strategies have been put forth, but as of now, none has emerged
as the leader in the metrics field, and the same applies to the situation of time-series (TS)
data. However, we evaluated MTS-TGAN both on qualitative and quantitative metrics,
which are described in the next subsection.

Table 4. Training parameters of MTS-TGAN.

S.No. Parameters Value

1 Sequence Length 60s

2 No. of samples 32

3 Optimizer Adam [39]

4 Learning rate 0.0005

5 pre-training epochs No 100

6 No. of epochs 50,000

7 No. of Stacked GRU layers 6

8 No. of units 32 units for layers 1, 2 and 3 and 16 units
for layers 4,5 and 6

9 Loss function LS, LR MSE

10 Loss function LU BCE

4.4. Evaluation Metrics

We evaluated the model on two evaluations: quantitative and qualitative as explained
below.

4.4.1. Qualitative Evaluation

Visual evaluations are typically the focus of qualitative evaluation measures. Different
approaches for visualization might be utilized, depending on the task and the model
outputs’ format. It is relatively easy to visualize two-dimensional data, but it is more
difficult to do so with higher-dimensional (time-series) data. Plotting the created time-series
and comparing them to the actual data is the simplest way to visualize the performance of
a model.

This might not be sufficient because it is challenging to distinguish tiny differences
between actual and synthetic samples. Therefore, it would be impossible to determine
whether the model had actually absorbed the entire distribution or not. To address this issue,
dimensionality reduction to perhaps two or three dimensions via principal component
analysis (PCA) [13] and plotting the findings from that are common approaches to visually
evaluating multivariate data [13]. We utilized PCA [13] and t-SNE [14] to convert the
multi-dimensional result sequence vectors into two dimensions so that we can visually
compare the distribution of the synthetic with actual data values. We also represented

Appl. Sci. 2023,13, 4136

12 0of 19

the sequences in numeric data form in terms of discriminative and predictive scores as
discussed below.

Given that it measures how good the synthetically created data are, the discriminative
score can be used to evaluate any GAN model in general. As it demonstrates how well the
model caught the temporal dynamics/step-wise dependencies of the data, the prediction
score is particular to time-series data. This metric is based on the TSTR training phase, i.e.,
Train on Synthetic data and Test it on a Real one [7]. On the resulting dataset, we first train a
sequence prediction model to determine this measure. We assess this model’s performance
using the original data set after training (much as the discriminative score implemented by
optimizing a five GRU layer). By figuring out the mean absolute error, we may calculate
the predictive score.

4.4.2. Quantitative Evaluation

The regression score is used for comparing a model’s external sources with and
without the generated samples. For this, we used a five-layer RNN model. The RNN model
comprises of five GRU layers with 32 units and a 6-unit dense layer. Although the RNN
model is implemented using the Adam optimizer [39] as well, it uses mean absolute error
(MAE), which will be discussed in more detail in the following section, for loss. For training,
6000 samples of 60 s (sequence length) from each data file were selected to construct the
data. Then, these samples were divided into sets for training, testing, and validation. Of
the data, 10% was in the test set and 15% was in the validation set. Training was done
with the remaining 75% of the data. The real data samples and the synthesized samples
are treated separately when applying this split. The RNN model is currently trained for
200 iterations and tested using datasets based on TRTS, TRTR, and TSTR.

Two measures are used to assess the RNN model’s performance. The average differ-
ence between the true and the anticipated values are measured by the first metric, called
mean average error (MAE). Any value between 0 and the MAE score is acceptable; however,
the closer the value is to 0, the smaller the difference. In other words, a low MAE score
is preferred because it indicates a more accurate prediction. The MAE score is calculated
as follows using 7 as the number of values, y; as the true value, and #; as the anticipated
value as shown in Equation (5):

18 R
MAE = —) [yi = ¥l (5)
i—1

The mean squared logarithmic error (MSLE), which can be regarded as a measurement
of the percentage difference between the true and projected values, is the second metric. In
other words, minor differences between small true and predicted values are managed in a
manner that is similar to how large discrepancies between large true and anticipated values
are handled. The discrepancy between projected and true values is smaller the lower the
MSLE score is, similar to the MAE score. Using the aforementioned definitions, the MSLE
score is shown in Equation (6):

MSLE = \/111 i}(log(}/i +1) —log (i +1))2 ©)
i=1

The MTS-TGAN model is assessed using comparisons between the MAE and MSLE
on three training phases, namely, TRTR, TSTR, and TRTS methods (explained below).

The RNN model ought to do well in terms of TSTR if it also catches the diversity in
the real data. The goal of the evaluation varies depending on which version is used.

e Train Real Test Synthetic (TRTS): It refers to the process of training an external model
using real data and then testing it on artificial data (TRTS). By measuring how well
the distributions within the genuine data were learned, this method explains how
realistic the created data are.

Appl. Sci. 2023,13, 4136

13 0of 19

* Train Real Test Real (TRTR): The model is trained and tested on real data (TRTR).
This method only serves as a benchmark for Train Real Test Synthetic. Alone, it will
not produce any useful results.

* Train Synthetic Test Real (TSTR): The model is tested on actual data after being
trained on random data. This method’s goal is to assess how well the differences in
the real data are learned as well as how diverse the synthetic data are.

The results of the above methods are shown in Section 5.

5. Results and Analysis

This section deals with the visualization part of the paper and the analysis of the results.
The techniques explained in Section 4.3 were implemented on the proposed MTS-TGAN
model, and the findings of the same are depicted below.

5.1. Qualitative Scores

After implementing the proposed model, we found that the MTS-TGAN can simulta-
neously learn to produce representations, encode characteristics and iterate across time. We
further compared MTS-TGAN to Time-GAN [8], the best available alternative, and assessed
it using qualitative visualizations and quantitative metrics. Graphs of the columns Low,
High, Close, Open, Adj Close and Volume of the Google dataset [17] and columns Running
and Jumping of the UniMIB dataset [18] are plotted to show the visual representation of the
real and the synthetic data. Some generated samples are shown in Figures 6—12. Real and
synthetic data both continue to be standardized with values between [0, 1] for the Google
dataset [17].

Low Close

— Real —— Real
Synthetic Synthetic

Open High

045 — Real 045 — Real
Synthetic Synthetic

0 5 10 15 20 0 5 10 15 20

Figure 7. Synthetic and real data for open and high columns.

Adj Close

Volume

— Real
Synthetic

— Real
Synthetic

0 5 10 15 20

Figure 8. Synthetic data on the real data for adj_close and volume columns.

Appl. Sci. 2023,13, 4136 14 of 19

0 0 100 150 0 50 100 150
a4
3
2
1
L] o
A
-2
-3
0) 160 150 0 50 100 150 0) 100 150 0 50 100 150 0) W0 150

Figure 9. Real data for jumping column.

3 3

3
3 3
2 2
2
2
2
1 1 1 1
1
0 ¢ ol) o
a o
-1 -1 -1
2 ‘ 5
2 -2 2
3 .
-3
-3 —4 -3 -4
3 4
3
4 2
2 2
2 1
1 1 2 \
0
0 o . 0
-1
-1
1 I
- -2
-2 2 -2
-2
-3 -3
-4 "

o
8
g
B
g
.
5
B
g
&
=]
o
8
5
B
g
.
5
B
=
g
o
8
g
B
g

-3
) 160 150 0 50 100 150 0) 100 150 0 50 100

ol
=)

100

o
5]
&
o
]

Figure 10. Generated synthetic data for jumping column.

Figures 9-12 shows the distribution of age, height, and weight of all 30 subjects in the
UniMIB dataset [18] as green, orange and blue colors respectively. Figures 9 and 11 show
the real data from the UniMIB dataset [18], depicting that the data range from [—3, 3] for
the UniMIB dataset, and Figures 68, 10 and 12 depict the real and synthetic samples of
various sequence lengths for the data that are plotted using the Python module, Plotly [40],
with the time-steps (seconds) on the x-axis and the signal values on the y-axis. For better
visualization, the range of the x-axis is 25 in the case of the Google dataset [17] and 150 for
the UniMIB dataset [18].

Appl. Sci. 2023,13, 4136 15 0f 19

3
3 3
2 2
2 2
1
1 ! |
1
L]
0
L]
o -1
4 o -1 5
-2 -2 ' -2 -3
-3 -3 - -4
S 0 100 10 0 % 10 180 0 © 100 10 0 % 10 150
@ w0 18 5 15

0
3 2
) 3
1
1 2
0 ! 0
-1
0 -1
-2
-1
-3 -2
4 -2
0

-1

-2

-3

-1

-2

-3

o - (Y w
| |
~ L o - [N) w

-3

[0 w0 150 0 [} 0 W0 150 0 50 160 0 [} <0 100 0
Figure 11. Real data for running column.
3
3 4 4
2
) 3 3 2
2 2
1
1 1
1 1
o
[]
[} ° o
a -1 =Y -1 5
-2
-2 -2 -2
. -2
3 -3
[50 100 150 0 0 W0 150 ° 0 W0 150 0 0 W0 150 [B wWo 180
3
2 2
2 2
2
1
1 N) 1
[]
° 0 0 0
a o
4 = -1
-2
-2
-2 - -2
)
L] 50 100 150 [] 50 100 150 0 50 100 150 L] 50 100 150 0 50 100 150

Figure 12. Generated synthetic data for running column.

5.1.1. Raw Visualizations

Instances of synthetic data produced from the real data using MTS-TGAN are dis-
played in Figures 6-8, 10 and 12. We can clearly see from comparing them to the actual
data that the synthetic data exhibit visually comparable signal patterns to the actual data.

5.1.2. Visualizations Utilizing PCA and t-SNE

Figures 13-15 show visualization example graphs of data point distributions trans-
ferred to two dimensions using PCA and t-SNE, which further highlights the resemblance
between the real data and synthetic data. These charts show red dots for the original data
and blue dots for MTS-TGAN-generated synthetic data. Once more, we see a resemblance
in the distribution patterns of the real and synthetic data.

Appl. Sci. 2023,13, 4136

16 of 19

PCA results

TS

NE results

-02

Original
Synthetic

H 3

Figure 13. PCA and t-SNE of generated and real data for Google stocks dataset.

PCA plot

y_pca
°

Original
Synthetic

t-SNE plot
15
Original . »®
Synthetlc ® :
10 o- -
r -+ s
* fo .
5 85 \
° ¥ ‘3 f
5 o ,. 4‘9 o?'
> é, P ¥4 o
5 FJare s H L
h 1 o‘ .
Al S g S
%
-10 .‘.. »
° - ¢
15 *e
-15 -10 -5 0 5 10 15

x-tsne

(b) t-SNE plot.

Figure 14. PCA and t-SNE of generated and real data for jumping parameter for UniMIB dataset.

-8 -6 —'4 -2 0 2
xpca
(a) PCA plot.
PCA plot
6 Original
Synthetic

y_pca
°

=15 -50 -25 00 25
*pca

50 75 10.0

(a) PCA plot.
Figure 15. PCA and t-SNE of generated and real data for running parameter for UniMIB dataset.

t-SNE plot
5 - Original
e o . L] Synthetic
®) «fq e
10 "\\iy"'t‘o§"°'x
P l". oy PG 2
5 L Y o S‘Z %
, | RS aes ,
B ol o % 0. N MEAES
> e 3 gy 22 t* se -
To oo m 0Bl BEa L1 8T % :
s{ e * OH ij&{"'zi 2%
®or @ 5* o ay e
-10 o o Vel g il o
® e ° 4 o ®) k.‘.‘
-15 © o
-15 ~i0 -’5 0 5 lb 15

(b) t-SNE plot.

The predictive and discriminator scores show the MAE values in relation to the
generated data sequence and the original data sequence, respectively, as shown in Table 5.
However, the predictive and discriminative scores acquired, 0.024 and 0.092, respectively,
are still significantly more accurate than the outcomes of the initial implementation [8] by
13% and 10%, respectively, as shown in Table 5.

Table 5. Predictive and discriminative scores for Google stocks compared to TimeGAN.

Predictive Score

(Lower the Better)

Discriminative Score
(Lower the Better)

TimeGAN [8]

0.037

0.102

Proposed Model

0.024 (13% lower)

0.092 (10% lower)

Appl. Sci. 2023,13, 4136

17 of 19

5.2. Quantitative Scores

The primary concept behind TSTR (Train Synthetic Test Real) is to train the model
on synthetic data produced by the model and test it on a held-out set of real data. We
chose a straightforward architecture with a five-layer GRU with 20 units to be utilized as a
regressor model, which was iterated 400 times.

Table 6 displays the regression score of the MTS-TGAN model. The RNN model
performs the prediction for both the MAE and MSLE scores more accurately when the
scores are close to zero. The TRTS scores are higher than the TRTR values, as expected,
indicating that the RNN model performs better on real data than on synthetic data. The
scores for TRTR and TRTS in the model are very close to zero, indicating excellent prediction,
and the discrepancies between these scores are minimal as shown in Figure 16. The TSTR
scores are much higher than the scores of TRTS in terms of both MSLE and MAE for a
sequence length of 60 s and iterations.

Table 6. Regression scores.

MAE MSLE
TRTR 0.004862 0.000309
TRTS 0.005861 0.000365
TSTR 0.006604 0.000620

—Real —Synthetic —Real —Synthetic

0.5
0.4

| |
LA T T AN

1 6 11 16 21 26 31 36 41 46 51 56

(a) Train Real Test Synthetic (TRTS). (b) Train synthetic test real (TSTR)

Figure 16. TRTS and TSTR graphs for UniMIB dataset.

6. Conclusions and Future Research

The goal of this research was to look at ways to create synthetic time series that
are realistic and follow similar distributions of real time-series data. The model and the
components were built after performing an extensive literature review. Six stacked GRU
layers were used to develop the MTS-TGAN, and the hyper-parameters were selected. The
proposed model combines the adaptability of the unsupervised GAN technique with the
control over conditional temporal dynamics provided by supervised autoregressive models.
MTS-TGAN generates realistic time-series data by utilizing the contributions of the super-
vised loss and jointly trained embedding network, showing consistent and considerable
gains over state-of-the-art benchmarks. This paper concluded that when the MTS-TGAN
model was implemented, it produced realistic and varied multivariate time-series data,
which were then processed as if they were actual data by external models. The model
was evaluated both in terms of qualitative measures, namely t-SNE, PCA, discriminative
and predictive scores and quantitative evaluation measures were implemented using an
RNN model, which calculated MAE and MSLE scores for three training phases: Train Real
Test Real, Train Synthetic Test Real and Train Real and Test Synthetic. The model was
able to reduce the overall error up to 13% and 10% in predictive and discriminative scores,
respectively.

Despite the encouraging findings of this research, future work may choose to include
more features, such as adding more multivariate features or taking a dataset with more
multi-modal elements in it so as to assess how well the proposed model handles these

Appl. Sci. 2023,13, 4136 18 of 19

additions, or instead of more feature, we can also add different types of data, such as
mixed data (which include both tabular data as well as time-series data). It might also
be fascinating to combine features with other forms of data, including geospatial data, to
create mixed data, as they depend on a number of objects and events. Future research
on assessment measures is often required for data production utilizing GANs so that
a framework may be agreed upon for a straightforward comparison of findings across
investigations.

Author Contributions: Conceptualization, PY. and S.S.; Methodology, P.Y. and N.F,; Software, N.F.;
Validation, P.Y. and N.E; Formal analysis, P.Y. and M.G.; Investigation, P.Y; Resources, P.Y. and S.S.;
Data curation, N.E,; Writing—original draft, N.F,; Writing—review & editing, P.Y.; Funding acquisition,
PY. and M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by Department of Science & Technology (IHUB-NTIHAC/2021/01/25).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.
13.
14.
15.

16.
17.

18.

19.

Soltana, G.; Sabetzadeh, M.; Bri, L.C. Synthetic data generation for statistical testing. In Proceedings of the 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), Urbana, IL, USA, 30 October-3 November 2017; pp.
872-882.

Synthetic Data: The Complete Guide, Datagen. Available online: https://datagen.tech/guides/synthetic-data/synthetic-data/
(accessed on 25 January 2023).

Bratu, A.; Czibula, G. DAuGAN: An Approach for Augmenting Time Series Imbalanced Datasets via Latent Space Sampling
Using Adversarial Techniques. Sci. Program. 2021, 2021, 7877590. [CrossRef]

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139-144. [CrossRef]

Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An
overview. IEEE Signal Process. Mag. 2018, 35, 53—65. [CrossRef]

Wang, K.; Gou, C.; Duan, Y,; Lin, Y,; Zheng, X.; Wang, EY. Generative adversarial networks: Introduction and outlook. IEEE/CAA
J. Autom. Sin. 2017, 4, 588-598. [CrossRef]

Jordon, J.; Yoon, J.; Van Der Schaar, M. PATE-GAN: Generating synthetic data with differential privacy guarantees. In Proceedings
of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April-3 May 2018.

Yoon, J.; Jarrett, D.; Van der Schaar, M. Time-series generative adversarial networks. Advances in Neural Information Processing
Systems 32. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC,
Canada, 8-14 December 2019.

Zhang, C.; Kuppannagari, S.R.; Kannan, R.; Prasanna, V.K. Generative adversarial network for synthetic time series data
generation in smart grids. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, 29-31 October 2018; pp. 1-6.

Forestier, G.; Petitjean, F; Dau, H.A.; Webb, G.I; Keogh, E. Generating synthetic time series to augment sparse datasets. In
Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18-21 November 2017;
pp. 865-870.

Tian, F.; Wang, Y.; Fensholt, R.; Wang, K.; Zhang, L.; Huang, Y. Mapping and evaluation of NDVI trends from synthetic time
series obtained by blending Landsat and MODIS data around a coalfield on the Loess Plateau. Remote Sens. 2013, 5, 4255-4279.
[CrossRef]

Li, H.; Yeo,].H.; Bornsheuer, A.L.; Overbye, T.J. The creation and validation of load time series for synthetic electric power
systems. IEEE Trans. Power Syst. 2020, 36, 961-969. [CrossRef]

Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37-52. [CrossRef]

Laurens van der Maaten and Geoffrey Hinton, Visualizing data using t-SNE. J. Mach. Learning Res. 2008, 9, 2579-2605.

Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
2014, arXiv:1412.3555.

Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.

ALIN CIJOV, Stocks Generate Synthetic Data TimeGAN. 2021. Available online: https://www.kaggle.com/code/alincijov/
stocks-generate-synthetic-data-timegan/data (accessed on 25 January 2023).

Micucci, D.; Mobilio, M.; Napoletano, P. Unimib shar: A dataset for human activity recognition using acceleration data from
smartphones. Appl. Sci. 2017, 7, 1101. [CrossRef]

Jin, Y;; Zhang, J.; Li, M,; Tian, Y.; Zhu, H.; Fang, Z. Towards the automatic anime characters creation with generative adversarial
networks. arXiv 2017, arXiv:1708.05509.

https://datagen.tech/guides/synthetic-data/synthetic-data/
http://doi.org/10.1155/2021/7877590
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1109/MSP.2017.2765202
http://dx.doi.org/10.1109/JAS.2017.7510583
http://dx.doi.org/10.3390/rs5094255
http://dx.doi.org/10.1109/TPWRS.2020.3018936
http://dx.doi.org/10.1016/0169-7439(87)80084-9
https://www.kaggle.com/code/alincijov/stocks-generate-synthetic-data-timegan/data
https://www.kaggle.com/code/alincijov/stocks-generate-synthetic-data-timegan/data
http://dx.doi.org/10.3390/app7101101

Appl. Sci. 2023,13, 4136 19 of 19

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017,
arXiv:1710.10196.

Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 2536-2544.
Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2015, arXiv:1511.06434.

Zhang, H.; Sindagi, V.; Patel, V.M. Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst.
Video Technol. 2019, 30, 3943-3956. [CrossRef]

Mogren, O. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv 2016, arXiv:1611.09904.
Ramponi, G.; Protopapas, P.; Brambilla, M.; Janssen, R. T-cgan: Conditional generative adversarial network for data augmentation
in noisy time series with irregular sampling. arXiv 2018, arXiv:1811.08295.

Ni, H.; Szpruch, L.; Wiese, M.; Liao, S.; Xiao, B. Conditional sig-wasserstein gans for time series generation. arXiv 2020,
arXiv:2006.05421.

Sun, H.; Deng, Z.; Chen, H.; Parkes, D.C. Decision-aware conditional gans for time series data. arXiv 2020, arXiv:2009.12682.
Golany, T.; Radinsky, K.; Freedman, D. SimGANSs: Simulator-based generative adversarial networks for ECG synthesis to improve
deep ECG classification. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 13-18 July
2020; pp. 3597-3606.

Li, D.; Chen, D,; Jin, B.; Shi, L.; Goh, J.; Ng, S.K. MAD-GAN: Multivariate anomaly detection for time series data with generative
adversarial networks. In Proceedings of the International Conference on Artificial Neural Networks, Munich, Germany, 17-19
September 2019; Springer: Cham, Switzerland, 2019; pp. 703-716.

Le Guennec, A.; Malinowski, S.; Tavenard, R. Data Augmentation for Time Series Classification using Convolutional Neural
Networks. ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data. Available online: https://shs.hal.
science/halshs-01357973 (accessed on 30 August 2016).

Berndt, D.J.; Clifford, J. Using dynamic time warping to find patterns in time series. KDD Workshop 1994, 10, 359-370.

Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference
on Machine Learning, PMLR, Sydney, NSW, Australia, 6-11 August 2017; pp. 214-223.

Brophy, E.; Wang, Z.; She, Q.; Ward, T. Generative adversarial networks in time series: A survey and taxonomy. arXiv 2021,
arXiv:2107.11098.

Scikit-Learn, 2007-2023. Scikit-Learn Developers (BSD License). Available online: https:/ /scikit-learn.org/stable/modules/
feature_selection.html (accessed on 25 January 2023).

Scikit-Learn, 2007-2023. Scikit-Learn Developers (BSD License). Available online: https:/ /scikit-learn.org/stable/modules/
generated /sklearn.preprocessing.MinMaxScaler.html (accessed on 25 January 2023).

Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 4700-4708.

Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.

Leznik, M.; Michalsky, P.; Willis, P.; Schanzel, B.; Ostberg, P.O.; Domaschka, J. Multivariate Time Series Synthesis Using Generative
Adversarial Networks. In Proceedings of the ACM/SPEC International Conference on Performance Engineering, Virtual, 19-23
April 2021; pp. 43-50.

Kingma, D.P; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Plotly Technologies Inc. Collaborativedatascience. 2015. Available online: https://plot.ly (accessed on 25 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSVT.2019.2920407
https://shs.hal.science/halshs-01357973
https://shs.hal.science/halshs-01357973
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https: //plot.ly

	Introduction
	Related Works
	Problem Statement
	Methodology
	Data Collection
	Data Pre-Processing
	Proposed Model and Synthetic Data Generation
	Evaluation Metrics
	Qualitative Evaluation
	Quantitative Evaluation

	Results and Analysis
	Qualitative Scores
	Raw Visualizations
	Visualizations Utilizing PCA and t-SNE

	Quantitative Scores

	Conclusions and Future Research
	References

