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Abstract: To reasonably analyze the bearing characteristics of curved beam bridge pile foundation
under the combined action of vertical force (V) and torque (T) in expansive soil, a method of
determining Tu (limit torque) under the action of V is proposed. Considering the effects of expansive
force and ground heave after immersion, the load transfer function at the pile–soil interface with
positive and negative friction resistance is established. The nonlinear solution of a single pile under
vertical load is achieved by the finite difference method. Subsequently, the circumferential limit
friction resistance is modified, and a loop iteration program is compiled through MATLAB. Thus, the
bearing capacity of single pile under the loading path of V→T is obtained. The corresponding failure
envelope curve is drawn and verified by laboratory model tests. Based on the verified solution, the
bearing capacity envelope curve and deformation characteristics of single pile are analyzed. The
influence of the expansion rate on the bearing capacity envelope curve is discussed, and reasonable
engineering suggestions are put forward.
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1. Introduction

Expansive soil is a highly plastic and cohesive soil, typically existing in a hard and
strong state in its natural state. It is sensitive to moisture and can swell when it absorbs
water, resulting in significant deformation when it is in a free state. If deformation is
restricted, it can generate expansive force. Conversely, when it loses water, its volume
can shrink, leading to cracks and a decrease in strength. Its high degree of expansiveness
can cause building structures to tilt, deform, and undergo uneven settlement, present-
ing significant engineering problems. Expansive soil is widely distributed in more than
60 countries in the world, and China is also one of the major countries [1]. Pile foundations
are often used in practical engineering to reduce the impact of expansion and contraction on
the superstructure. Curved beam bridges are widely used in constructing urban overpass
ramp bridges and elevated urban expressways to better adapt to terrain constraints. When
prestressing the curved girder bridge during construction, the pile foundation is first sub-
jected to a vertical load (V) and then to torque (T), which corresponds to the V→T loading
path, and the stress condition of the pile foundation in expansive soil is complicated. The
Technical Code for Buildings in Expansive Soil Regions [2] does not give a calculation
method for the bearing capacity of a single pile under vertical or torque loads.

Moreover, the Technical Code for Building Pile Foundations [3] proposes that the
unidirectional force of the single loaded piles should be calculated separately and then
superimposed for the combined loading pile. However, there is a complex coupling effect
between V and T [4,5]. According to the method given in the code, the bearing capacity
of a single pile under a V–T combined load is not safe, so it is necessary to conduct
in-depth research.

Scholars have studied the axial force of a single pile in expansive soil. In terms
of experiments, Williams and Donaldson [6], Wang et al. [7], and Fan [8] proved that
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immersion in expansive soil would raise the single pile and generate an axial internal force
in the pile. In theory, Poulos and Davis [9] considered the influence of the expansion force,
while the internal force of the single pile was solved by the elastic theory method after
immersion. However, there is a significant error between the calculated results and the
experimental data. Soundara and Robinson [10] proposed a hyperbolic model to predict
the uplift force of single pile in expansive soil based on the model pile uplift test, pile–
soil interface shear test, and consolidation test. Nonetheless, test process is cumbersome.
Zhang et al. [11] proposed the analytical solution of internal force and displacement for the
single pile after immersion, considering the variety of soil expansion rates and stiffnesses
with depth. The drawback is that calculation parameters are difficult to determine. For
the vertically loaded piles in expansive soil, Xiao et al. [12] used the shear displacement
method and superposition principle to solve the analytical solution. There were errors in
the calculation results still. To solve the displacement response of a single pile in expansive
unsaturated soil under vertical load, Liu and Vanapalli [13] considered the influence of
matric suction on the ultimate frictional resistance of the pile-side. It should be known that
obtaining the water–soil characteristic curve takes much time. In conclusion, the current
theories for determining the axial force and the displacement response under vertical load
in expansive soil after immersion are not perfect.

For V–T combined loaded piles, Georgiadis et al. [14,15] used independent nonlinear
axial and torsional springs to simulate the interaction of the pile–soil interface, and the
numerical solution of pile top load-displacement was obtained in a clay foundation. Meng
and Fan [16] analyzed the difference in the bearing capacity envelopes of the V–T combined
loaded piles under different loading paths using three-dimensional finite element software
in clay foundation. Jiang et al. [17] obtained the nonlinear solution of V–T combined loaded
piles in clay by finite difference. Zou et al. [5] obtained the elastoplastic analytical solution
of V–T combined loaded piles in the Gibson foundation. However, the above studies were
carried out in non-expansive soil. Due to axial force and displacement of the pile after
immersion in expansive soil, the mechanical mechanism of V–T combined loaded piles in
expansive soil foundations is significantly different from the above studies. Therefore, the
above theories are not fully applicable to expansive soil foundations.

In summary, there are few reports about V–T combined loaded piles in expansive soil
foundations. Because scholars have not perfected the research on the internal force and
displacement of the pile under the vertical load after immersion, it is impossible to deter-
mine the bearing capacity of a single pile under V–T combined loads. A nonlinear solution
of the internal force and displacement of a single pile under vertical load is proposed in
this paper. On this basis, the circumferential limit friction of the pile under torque loading
is corrected. The numerical solution of the load-displacement of the single pile under the
V→T loading path is obtained, which is verified by experiments. Subsequently, the bearing
characteristics of a single pile under the V→T loading path in an expansive soil foundation
are analyzed, and the corresponding engineering measures are put forward.

2. Theoretical Derivation
2.1. The Ultimate Friction Resistance of the Pile Side

The expansion force will be generated after immersion in the expansive soil. The
lateral earth pressure is composed of the static earth pressure and the lateral swelling
force. According to the research of Nelson et al. [18], the lateral pressure of the soil can be
expressed as:

σ =

{
Pa + βσcv ≤ Pa + Pp (0 ≤ z ≤ h0)
Pa (z > h0)

(1)

where σ is the lateral earth pressure of the expansive soil after immersion; h0 is the at-
mospheric influence depth, which can be determined according to specification [2]. The
coefficient of lateral pressure of the expansive force β is equal to 0.7~1; σcv is the expansive
force, and it can be measured in the laboratory test; Pa is the static earth pressure and Pp is
the passive earth pressure.
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The ultimate frictional resistance of the pile–soil interface is:

τf (z) = σtanϕ′ + c (2)

where c and ϕ′ are the cohesive force and the effective internal friction angle of the pile–soil
interface, respectively. ϕ′ is equal to 0.6~0.9ϕ according to the different soil properties [19],
and ϕ is the internal friction angle of the soil.

2.2. Solution of Piles under Single Vertical Load

The solution of vertically loaded piles in expansive soil foundations can be considered
in two stages: in the first stage, the pile displacement caused by soil expansion is calculated,
and in the second stage, the displacement of the pile is regarded as the known condition to
calculate the displacement response of a single pile under vertical load.

2.2.1. Pile Displacement Caused by Soil Expansion

The expansive soil foundation will be uplifted under the action of immersion or
rainfall. The uplift height of expansive soil is linearly with depth within the range of
atmospheric influence [8], and the soil uplift is equal to 0 below the atmospheric influence
depth range. Thus, the displacement of the foundation:

ws(z) =

{
ws0 − ws0

h0
z (0 ≤ z ≤ h0)

0 (z > h0)
(3)

where ws(z) is the uplift height of expansive soil at depth z; and ws0 is the uplift height of
the expansive soil surface; h0 is the depth at which expansion occurs, and soil below the
depth of h will not experience expansion.

The pile–soil interface model is shown in Figure 1, when the expansive soil is immersed
in water. The vertical positive and negative frictional resistances of the pile–soil interface
conform to the load transfer function proposed by Kraft et al. [20]:

τv(z) =


Gssv(z)

r0ln(rm/r0−ψ/1−ψ)
(sv(z) ≥ 0)

− Gs |sv(z)|
r0ln(rm/r0−ψ/1−ψ)

(sv(z) < 0)
(4)

where sv(z) = w(z)− ws(z) is the vertical pile–soil relative displacement; and Gs is the
initial shear modulus of the soil under a small strain; ψ = τv(z)R f /τf (z); and R f is the
fitting constant of stress–strain curve, which is equal to 0.9~1.0; r0 is the pile section radius;
and rm is the effective influence radius.
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Figure 1. Pile–soil interface model of expansive soil after immersion. 
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According to the equilibrium conditions of pile microelement, we can obtain:

dP(z)
dz

= −Upτv(z) (5)

where Up is the perimeter of the pile section; P(z) and τv(z) are axial force and vertical
shaft resistance of the pile at depth z, respectively.

The elastic compression of the pile microelement can be written as:

dwswell(z) = −
P(z)dz
EP Ap

(6)

where wswell(z) is the displacement of the pile top caused by the uplift of expansive soil;
EP and Ap are the elastic modulus and cross-sectional area of the pile, respectively.

The pile control equation can be obtained through simultaneous Equations (5) and (6):

d2wswell(z)
dz2 −

Up

Ep Ap
τv(z) = 0 (7)

The tangent stiffness of the soil on the pile-side can be expressed as:

kv =
Upτv(z)

sv(z)
(8)

Given λ =
√

kv
Ep Ap

, the pile control equation can be written as:

d2wswell(z)
dz2 − λ2(wswell(z)− ws(z)) = 0 (9)

The pile top and tip boundary conditions are as follows:

â For the pile top, axial force can be written as:

P(0) = 0 (10)

â For the pile tip, Wang et al. [7] proved that the pile tip and soil are separated af-
ter immersion through experiments. Hence, the force at the pile tip is expressed
as follows:

P(L) = 0 (11)

As shown in Figure 2, the central difference method is used to discretize the pile length
into n equal elements, and a virtual equal division node is added to the pile top and pile
tip. Substituting the boundary conditions of the pile tip and pile top into Equation (9), we
can obtain the system of equations:[

Kv
′]{wswell} =

{
Fv
′} (12)

where {wswell} is the vertical displacement vector of the pile node,

{wswell} =
{

wswell,0wswell,1···wswell,i···wswell,n−1wswell,n
}T (13){

Fv
′} is the vertical load vector of the pile node,

{
Fv
′} =

{
−λ0

2h2ws,0 − λ1
2h2ws,1·· − λi

2h2ws,i··· − λn−1
2h2ws,n−1 − λn

2h2ws,n

}T
(14)
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[
Kv
′] is the vertical stiffness matrix of the pile and it is shown as follows:

[
Kv
′] =



A0 2
1 A1 1

. . . . . . . . .
1 Ai 1

. . . . . . . . .
1 An−1 1

2 An


(n+1)×(n+1)

(15)

where Ai = −(λi
2h2 + 2).

Solving Equation (12), the vertical displacement along the pile can be obtained as

{wswell} =
[
Kv
′]−1{Fv

′} (16)
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The iterative process for solving Equation (12) using MATLAB is as follows:

(i) Assign the vertical displacement vector of pile node {wswell} to zero vector. The
relative displacement of pile and soil is calculated. Then, the vertical stiffness matrix[
Kv
′] of the pile is obtained.

(ii) Calculating displacement vector {wswell} of pile node by Equation (16).

(iii) A new vertical stiffness matrix
[
Kv
′]k is obtained using the new displacement vector

{wswell}k, and a new node displacement {wswell}k+1 is obtained using the new vertical
stiffness matrix.

(iv) Taking the maximum value of elements in the
∣∣∣{wswell}k+1 − {wswell}k

∣∣∣ as iterative
control error. If the error is greater than the limit value, repeat (ii)~(iv) until the
iterative error is less than the limit value.

2.2.2. Nonlinear Solution of Single Pile under Vertical Load

The expansive soil would swell after immersion. The soil around the pile exerts an
uplift force above the pile’s neutral point (i.e., the vertical friction resistance equals 0), and it
exerts a pulldown force below the neutral point. When a vertical load is applied to the pile
top, the shear direction remains unchanged above the neutral point. However, the direction
of relative movement between the pile and soil is opposite to that during immersion below
the neutral point, and reverse shear will occur at the pile–soil interface.
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Reverse shear can be considered as an unloading process. Alonso et al. [21] and
Comodromosa et al. [22] believed that the unloading stiffness equals the initial tangent
stiffness during the unloading process. Therefore, the pile–soil interface model in Figure 1
can be improved. As shown in Figure 3, it can uniformly be expressed the load transfer
model of pile–soil under vertical loading after immersion. OA and OB are the immersion
swelling stages, respectively; AC is the continuous loading section; BD is the unloading
section; and DE is the reverse loading section. For the convenience of description, the
pile–soil interface load transfer model can be expressed as:

τ(z) =



Gss(z)
r0ln(rm/r0−ψ/1−ψ)

OA, AC

− Gs |s(z)|
r0ln(rm/r0−ψ/1−ψ)

OB

kz
(
s(z)− sp

)
BD

Gs(s(z)+|sp(z)|)
r0ln(rm/r0−ψ/1−ψ)

DE

(17)

where wload is a new displacement of pile under vertical load after immersion; Here,
vertical pile–soil relative displacement s(z) = wswell + wload − ws(z); and sp(z) is residual
displacement of pile–soil interface.
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The pile control equation can also be expressed as:

d2w(z)
dz2 − λ′2s(z) = 0 (18)

The boundary conditions of the pile top and pile tip are as follows:

â For the pile top:
wload(0) = w0 (19)

where w0 is the known reload displacement.

â For the pile tip, the vertical bearing capacity can be expressed as:

P(l) =

{ sb(l)
1/Kbz+sb(l)/qult

(sb(l) ≥ 0)
0 (sb(l) < 0)

(20)



Appl. Sci. 2023, 13, 4133 7 of 17

where sb(l) is the vertical pile–soil relative displacement at the pile tip, which is calculated
by the following formula:

sb(l) = wswell(l) + wload(l)− ws(l) (21)

Randolph et al. [23] and Mylonakis et al. [24] proposed the empirical formula of Kbz
(i.e., the pile-tip soil initial stiffness) as follows:

Kbz =
4Gsr0

1− vs
(22)

where vs is the Poisson’s ratio of the soil.
The tangent stiffness of the pile tip soil is

Kbz
′ =

{
1

1/Kbz+sb(l)/qult
(sb(l) ≥ 0)

0 (sb(l) < 0)
(23)

For saturated viscous soils with poor drainage conditions, the ultimate pile tip resis-
tance qult can be expressed as follows [25]:

qult = 5.14c + q (24)

where q is the average vertical pressure on the side of the pile tip plane, and it can be
calculated by the following formula:

q =
(1 + 2k0)γL

3
(25)

where k0 is the static earth pressure coefficient; and γ is the soil gravity.
As shown in Figure 4, the central difference method is used to discretize the pile

length into n equal elements, and a virtual equal division node is added to the pile tip.
Substituting the boundary conditions of the pile tip and top into Equation (18), we can
obtain the system of equations:

[Kz
′′ ]{wload} = {Fz

′′ } (26)

where {wload} is the vertical displacement vectors of the pile nodes under vertical load,
{wload} =

{
wload,0wload,1···wload,i···wload,n−1wload,n

}T ; [Kz ′′ ] is the pile stiffness matrix un-
der vertical load; {Fz ′′ } is vertical load vector of the pile nodes.

[Kz
′′ ] =



−2 1
1 −2 1

. . . . . . . . .
1 −2 1

. . . . . . . . .
1 −2 1

2 −2− 2hKbz
′

Ep Ap


(27)

{Fz
′′ } =



λ1
′2h2s1 − wswell,0 + 2wswell,1 − wswell,2 − w0
λ2
′2h2s2 − wswell,1 + 2wswell,2 − wswell,3

...
λi
′2h2si − wswell,i−1 + 2wswell,i − wswell,i+1

...
λn−1

′2h2sn−1 − wswell,n−2 + 2wswell,n−1 − wswell,n

λn
′2h2sn − 2wswell,n−1 +

(
2 + 2hKbz

′

Ep Ap

)
wswell,n − 2hKbz

′

Ep Ap
ws,n


(28)
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Figure 4. Schematic diagram of differential dispersion of single pile under vertical load after
water immersion.

Solving Equation (26) can obtain the vertical displacement of a single pile along the
pile under vertical load as follows:

{wload} = [Kz
′′ ]−1{Fz

′′ } (29)

The nonlinear solution process of the vertically loaded pile considering the influence
of immersion in expansive soil is as follows:

To calculate the displacement of a vertically loaded pile considering the influence of
immersed expansive soil, the iterative process calculated by MATLAB is as follows:

(i) Calculating the soil displacement ws(z) around the pile after immersion and the
vertical displacement vector {wswell} of the pile caused by the uplift of the soil, then
the pile–soil relative displacement is achieved.

(ii) Solving the stiffness matrix [Kz ′′ ] of the pile under vertical loading, then the vertical
displacement vectors {wload}k of the pile nodes under vertical load can be calculated
by the Equation (29).

(iii) Based on the vertical displacement vectors {wload}k, repeating steps (ii), then the
vertical displacements update to be {wload}k+1.

(iv) Taking the maximum value of elements in
∣∣∣∣{wload}k+1 − {wload}

k
∣∣∣∣ as iterative control

error. If the error is greater than the limit value, repeat (ii)~(iv) until the iterative error
is less than the limit value.

Substituting the relative displacement of the pile and soil obtained by the above
numerical solution into Equation (17), the vertical friction resistance of the element τsv(i)
can be obtained.

Vertical load on pile top can be obtained by forward difference format as follows:

P0 = Ep Ap
(wswell,1 + wload,1)− (wswell,0 + wload,0)

h
(30)

2.3. Displacement Solution of Single Piles under V→T Loading Path
2.3.1. Determination of Circumferential Ultimate Frictional Resistance

The piles will rise after the expansive soil is soaked. The stress condition on the
pile–soil interface is complicated under V–T combined loads. Both soil expansion and
vertical load will induce vertical friction, and torque will induce circumferential friction.
The pile can be divided into n equal elements. The composite friction resistance of each
element τ(i) can be decomposed into vertical friction resistance τsv(i) and circumferential
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friction resistance τt(i) since both vertical load and torque will induce shear effects at the
pile–soil interface, as shown in Figure 5a. Hence, it is assumed that the pile–soil interface
friction meets the following conditions (Figure 5b):

τ(i) =
√
[τsv(i)]

2 + [τt(i)]
2 ≤ τf (i) (31)

where τf (i) is pile–soil interface ultimate friction resistance of element i.
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The circumferential ultimate frictional resistance of the pile side decreases after apply-
ing vertical load. The following formula can obtain the circumferential ultimate frictional
resistance in the V→T loading path:

τt f (i) =

√[
τf (i)

]2
− [τsv(i)]

2 (32)

where τt f (i) is the ultimate circumferential friction resistance of the pile-side.

2.3.2. Displacement Solution of Single Pile under V→T Loading Path

The Jiang et al. [17] gives the calculation method of a single pile under torsion loading.
The load transfer function of the pile–soil interface still adopts the method proposed by
Kraft et al. [20].

τt(z) =
Gsst(z)

r0ln(rm/r0 − ψ/1− ψ)
(33)

where τt(z) is the circumferential frictional resistance of the pile side; st(z) is the relative
torsional displacement of the pile–soil at depth z, st(z) = r0θ(z), Note that in the equation,
ψ = τt(z)R f /τt f (z).

The displacement control equation of a single pile under torque loading is [17]:

dθ2(z)
dz2 = α2θ(z) (34)

where α =

√
kθ πD3

4Gp Jp
; and kθ(z) =

τt(z)
st(z)

.

Using the finite difference method, the Equation (34) can be rewritten as:[
Kt
′]{θ} = {Tt

′} (35)
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where {θ} is pile node torsion angle vector, {θ} = {θ0θ1 . . . θi . . . θn−1θn}T ; and
{

Tt
′} is the

torque load vector,
{

Tt
′} =

{
−2Th/ (G p Jp

)
0 . . . 0 . . . 0−3Tbh/

(
8GLr3

0
)}T

;
[
Kt
′] is torque

stiffness matrix,

[
Kt
′] =



B0 2
1 B1 1

. . . . . . . . .
1 Bi 1

. . . . . . . . .
1 Bn−1 1

Bn


(36)

where T is the torque at the pile top; Gp is the shear modulus of the pile; Jp is the polar
moment of inertia of pile section; GL is the shear modulus of the soil at the pile tip; and Tb
is the pile tip torque.

However, the torque load vector of the pile node cannot be expressed by Equation (35)
in expansive soil. The pile tip is still separated from the soil when the vertical load is small,
and torque is equal to zero. The pile tip exerts pressure on the soil when the vertical load is
large, and the pile tip torque is not equal to zero. Therefore, the torsional load vector can be
written as:

{Tt
′′ } =


{
−2Th/ (G p Jp

)
0 . . . 0 . . . 0 0

}T
sb(l) < 0{

−2Th/ (G p Jp

)
0 . . . 0 . . . 0−3Tbh/

(
8GLr3

0
)}T

sb(l) ≥ 0
(37)

The Equation (35) is rewritten as:[
Kt
′]{θ} = {Tt

′′ } (38)

Solving Equation (38) can obtain the pile node torsion angle vector:

{θ} =
[
Kt
′]−1{Tt

′′ } (39)

The torsion angle of a single pile under torque loading can be obtained by Equation (39),
and the limit torque can be determined by plotting the torque–torsion angle curve at the
pile top.

The process of solving Equation (39) using MATLAB is as follows:

(i) Calculating the vertical displacement of the pile element according to Section 2.2, then
the relative displacement s(z) of the pile and soil can be obtained. Substituting it into
the Equation (17), the vertical friction resistance τsv can be obtained.

(ii) The circumferential ultimate friction of the pile τt f is achieved by solving Equation (32).
(iii) Assign the pile node torsion angle vector {θ} to zero vector, the relative torsional

displacement of the pile–soil at depth z is calculated. Then, the torque stiffness matrix[
Kt
′] is obtained.

(iv) Calculating displacement vector {θ} of pile node by Equation (39).

(v) A new torque stiffness matrix
[
Kt
′]k is obtained using the new torsion angle vector

{θ}k, and a new new torsion angle vector {θ}k+1 is obtained using the new vertical
stiffness matrix.

(vi) Taking the maximum value of elements in the
∣∣∣{θ}k+1 − {θ}k

∣∣∣ as iterative control
error. If the error is greater than the limit value, repeat (iii)~(vi) until the iterative
error is less than the limit value.
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3. Model Test
3.1. Model Pile

The model pile is made of aluminum alloy pipe and its outer diameter, inner diameter,
elastic modulus, and buried depth are 0.025 m, 0.021 m, 69.7 GPa, and 0.7 m, respectively.
Split the aluminum alloy pipe pile in half, and the BF350-3AA and BHF350-3HA strain
gauges are attached to the inner surface of the model pile every 0.1 m so that the axial
and shear strains are measured. Seven sets of measuring points were used to collect
strain through the TST3822EN static strain tester. The surface of the pile was simulated by
502 glued with a layer of fine sand. A pipe hoop was installed at the pile top to prevent the
model pile from being torn, and the pile end was sealed with nylon plugs.

3.2. Test Soil

The Guangxi expansive soil with 55% expansion rate and the expansive force measured
by the test is 132 kPa. The liquid limit and the plastic limit are 53.2% and 31.2%, respectively.
Other physical properties are shown in Table 1. The soil is dried and crushed to make a
soil sample with a moisture content of 26%. The soil samples were artificially filled and
compacted into layers. The thickness of each layer was 100 mm, and the total filling was
800 mm.

Table 1. Physical and mechanical properties of expansive soil.

State Density (g/cm3) Cohesion (kPa) Internal Friction (◦)

Before immersion 1.92 39.6 18
After immersion 2.19 23.7 17.6

3.3. Loading and Measuring Device

As shown in Figure 6, the loading device is composed of a vertical loading device, a
torque loading device, a water immersion device, and a model box. The vertical loading
device is composed of a jack, a force sensor, and a reaction frame. A hinge is installed
below the jack so that the pile top can rotate freely. The torque loading device consists of
a loading frame and a pulley. The immersion device is shown in Figure 7, and the inlet
pipe is connected to the external water tank and set at the bottom of the model box. The
gravel, coarse sand, and fine sand are filled at the bottom of the model box, respectively.
The perforated PVC pipe wrapped with geotextiles is installed in the coarse sand layer.
Full saturation of the expansive soil can be achieved by making the height of the water
level in the model box and the water tank consistent according to the siphon principle.
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Figure 7. Schematic of immersion system.

The vertical force and vertical displacement are measured by LH-PT600 high-speed
demonstrator and dial indicator, respectively. The TST3822EN static strain tester collects
the shear strain, tensile and compressive strain of the pile.

3.4. Loading Scheme

The static load test can be started when there is no noticeable change in the dial
indicator and strain gauge within 48 h. The test lasted for 15 days, and the ground heave
was 0.011 m. The test is divided into two groups, as shown in Table 2. The first group
is designed to test the ultimate vertical bearing capacity Vu. The second group pre-adds
different vertical forces (0, Vu/6, Vu/3, Vu/2, 2Vu/3, 5Vu/6) to the pile top, and then
applied the torque in stages until the limit torque Tui is reached. It should be noted that
this device cannot accurately control the vertical force, and the torque can be applied when
the vertical force is close to the data in Table 2.

Table 2. Test loading scheme.

Group Serial Number
Vertical Load (V) Torsional Load (T)

Value Ways of Loading Value Ways of Loading

1 P1 Vu Step loading / /

2

P2 0 / Tu1 Step loading
P3 Vu/6 Constant Tu2 Step loading
P4 Vu/3 Constant Tu3 Step loading
P5 Vu/2 Constant Tu4 Step loading
P6 2Vu/3 Constant Tu5 Step loading

4. Validation
4.1. Solution to the Internal Force of the Pile after Immersion

Substituting the displacement of the pile wswell into Equations (4) and (5), the axial
force of the pile can be obtained. In this section, the calculation results of the axial force on
the pile will be validated.

Williams and Donaldson conducted long-term observations of a single concrete pile
in expansive soil areas, as reported by Poulos and Davis [9]. The pile had a diameter of
9 inches (22.86 cm), a length of 34 feet (10.36 m), and was buried at a depth of 30 feet
(9.144 m). The elastic modulus of the pile was 20 GPa, and the Poisson’s ratio of the
expansive soil was 0.3. The depth of the expansion influence was 5.18 m, and the ground
heave was 10 mm. As shown in Figure 8, Xiao et al. [12], Poulos and Davis [9] utilized the
aforementioned experimental measurements conducted by Williams and Donaldson to
validate their calculation results. Xiao et al. [12] utilized the average stiffness method for
calculation, resulting in a particular deviation from the experimental data and an overesti-
mation of the axial force of the shallow foundation. The elastic calculation method adopted
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by Poulos and Davis [9] could not fully reflect the complex elastoplastic relationship of
the pile–soil interface, resulting in agreement in the upper half of the pile. However, the
peak position and magnitude of the axial force still had significant errors compared to the
tests. In contrast, the calculation method proposed in this paper is more consistent with the
test data.
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4.2. Nonlinear Solution of the Single Pile under Vertical Loading

A vertical load is applied after immersion. The relationship between the vertical force
and the new displacement is shown in Figure 9. The load–displacement curve shows an
inflection point at 150 N due to the reverse shear action at the pile–soil interface below the
neutral point. The calculated results fit well with the experimental measurements in this
study, which verifies the correctness of the proposed theory.

4.3. Calculation of Single Pile Bearing Capacity under V→T Loading Path

To verify the bearing capacity of the pile under the V→T loading path, the experi-
mental results presented in the Section 3 were utilized. The torque–torsion angle curve
of the pile top under a vertical load of 679 N is shown in Figure 10. It is evident from
the figure that when the pile top torque is small, there may be some specific errors in the
measurements due to a lack of accurate measurement methods during the test. In general,
the theoretical calculation results are consistent with the experimental data.
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5. Parametric Study
5.1. Bearing Capacity Envelope

The bearing capacity envelopes of a single pile under the V→T loading path were
plotted based on the experimental results in Section 3, as shown in Figure 11. The theoretical
calculation results were consistent with the experimental data. However, the proposed
method could not fully reflect the mechanical relationship between the pile–soil interface
after immersion, leading to acceptable errors. Furthermore, the ultimate torque increased
initially and then decreased with an increase in vertical load. When the vertical load
reached Vu/3, the torque bearing capacity reached a maximum. This was because, with
an increase in vertical load, the neutral point gradually moved down, causing the vertical
friction resistance below the neutral point to decrease initially and then increase in the
opposite direction. This led to an initial increase and then a decrease in the space for
exerting circumferential friction resistance. Therefore, proper pre-compression of the pile
could enhance its torsion resistance in expansive soil foundations.
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5.2. Pile Deformation

By applying various vertical loads and torques to the pile top and using the proce-
dures outlined in Sections 2.2 and 2.3, we were able to calculate the normalized vertical
displacement and torsion angle of the pile. The normalized vertical displacement of the
pile is shown in Figure 12a with applied vertical loads of 500 N, 800 N, 1000 N, and 1200 N
to the pile top, and the normalized torsion angle of the pile is shown in Figure 12b with the
torque of 1 N·m, 2 N·m, 3 N·m, and 4 N·m after an applied vertical load of 1000 N. It can be
seen that deformation of the pile mainly occurs in the range of 0~0.6 L (shallow foundation).
In addition, with the increase of torque and vertical load, the deformation ratio gradually
increases and approaches the pile top. This is because the deformation of the pile develops
from top to bottom. As the load increases, the resistance of the deep foundation gradu-
ally manifests. Therefore, strengthening the shallow foundation can effectively control
pile deformation.
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5.3. The Effect of Expansion Rate on Bearing Capacity

Using the calculation parameters from the model test conducted in this paper, we
analyzed the impact of the expansion rate on the bearing capacity envelope using the calcu-
lation procedures outlined in Sections 2.2 and 2.3. The results are presented in Figure 13.
The ground heave height corresponding to different expansion rates is 0.004~0.011 m. It
can be seen from Figure 13 that with the increase of expansion rate, the bearing capacity
of a single pile decreases. In addition, when the vertical load is less than 0.9Vu, the limit
torque decreases rapidly with the increase of the expansion rate. When the vertical load
is greater than 0.9Vu, the limit torque is gradually reached. The reason is that for a single
loaded (vertical force or torque) pile, as the expansion rate increases, the ultimate torque
will decrease significantly, while the vertical bearing capacity does not change significantly.
When the vertical load is greater than 0.9Vu, the effect of negative friction has been elimi-
nated, the vertical friction with different expansion rates on the pile is close to each other,
and the range of variation of circumferential frictional resistance becomes smaller. Thus,
the bearing capacity envelope is relatively close. On the contrary, when the vertical load
is less than 0.9Vu, the negative friction effect on the pile has not been eliminated, and the
range of variation of circumferential frictional resistance becomes larger. Therefore, the
corresponding bearing capacity envelopes vary significantly.
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6. Conclusions

(1) The pile displacement control equation is established based on the load transfer
method. Considering the influence of the swelling deformation of expansive soil after
immersion, the finite difference method is used to obtain the numerical solution of a
single loaded pile. The load transfer function of the vertical positive and negative friction
resistance of the single pile is established after immersion. Thus, the nonlinear solution
of a single pile under vertical loading is obtained and the ultimate circumferential friction
around the pile is corrected. The nonlinear solution of a single pile under the V→T loading
path is gained and verified by the model test. In addition, the bearing capacity envelope
was plotted.

(2) With the increase of the vertical load, the ultimate torque of the pile shows a trend
of first increase and then decrease. Therefore, proper application of the vertical load can
increase the torsion resistance of single piles.

(3) The deformation of the pile mainly occurs in the range of 0~0.6 L. Hence, strength-
ening the shallow foundation can effectively control the deformation.

(4) The bearing capacity of the pile decreases gradually with increasing expansion
rate under the V→T loading path. When the vertical load is less than 0.9Vu, the torsion
resistance decreases significantly with increasing expansion rate. However, the reduction
in torsion resistance becomes less pronounced when the vertical force is greater than 0.9Vu.
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