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Abstract: Magnetic resonance imaging (MRI) is a valuable diagnostic tool that provides detailed
information about the structure and function of tissues in the human body. In particular, measuring
relaxation times, such as T1 and T2, can provide important insights into the composition and
properties of different tissues. Accurate relaxation time mapping is therefore critical for clinical
diagnosis and treatment planning, as it can help to identify and characterize pathological conditions,
monitor disease progression, and guide interventions. However, the computation of relaxation
time maps in MRI is a complex and challenging task that requires sophisticated mathematical
algorithms. Thus, there is a need for robust and accurate algorithms that can reliably extract the
desired information from MRI data. This article compares the performance of the Reduced Dimension
Nonlinear Least Squares (RD-NLS) algorithm versus several widely used algorithms to compute
relaxation times in MRI, such as Levenberg-Marquardt and Nelder-Mead. RD-NLS simplifies the
search space for the optimum fit by leveraging the partial linear relationship between signal intensity
and model parameters. The comparison was performed on several datasets and signal models,
resulting in T1 and T2 maps. The algorithms were evaluated based on their fit error, with the
RD-NLS algorithm showing a lower error than other fit-ting algorithms. The improvement was
particularly notable in T1 maps, with less of a difference in T2 maps. Additionally, the average T1
values computed with different algorithms differed by up to 14 ms, indicating the importance of
algorithm selection. These results suggest that the RD-NLS algorithm outperforms other commonly
used algorithms for computing relaxation times in MRI.

Keywords: relaxation time; T1 mapping; T2 mapping; MRI; nonlinear fit; RD-NLS

1. Introduction

Magnetic Resonance Imaging (MRI) uses magnetic fields and radio waves to create
detailed body images. The intensity of the signal in an MRI image is influenced by various
factors, including relaxation times. These times are constants that indicate the magnetic
properties of the tissue being imaged. Images that show the relaxation times for each
pixel in the image are called relaxation time maps. Accurate relaxation time mapping in
MRI is crucial for clinical diagnosis and treatment planning. T1 and T2 relaxation times
are sensitive to tissue composition, microstructure, and other physiological properties.
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These maps have many uses in both research and clinical settings, such as determining
the amount of Myocardial Extracellular Volume (ECV) in the heart [1], detecting edema
in cases of acute myocardial infarction [2], identifying early tumor progression in the
brain [3], differentiating between healthy and early degenerative cartilage [4], or providing
helpful information to classify between normal and pathological brain aging [5]. Accurate
relaxation time mapping is, therefore, critical for identifying and characterizing disease,
monitoring its progression, and guiding interventions such as radiation therapy or surgical
resection. Additionally, there is growing interest in using quantitative MRI for research
in other areas, such as food products and processing [6]. Moreover, the choice of the
algorithm used for relaxation time mapping can have a significant impact on the accuracy
and precision of the resulting maps. To improve the accuracy of MRI data and reduce errors,
it is important to continue developing new models and algorithms for processing MRI data,
which will reduce variability and facilitate a more accurate diagnosis/classification [7].

Relaxation times that are routinely measured in MR are longitudinal or spin-lattice
relaxation time (T1), transversal or spin-spin relaxation time (T2), and apparent transversal
relaxation time (T2*) [8–10]. In what follows, this will be referred to as “relaxation time”
(Trel). The type of pulse sequence and the technical parameters used during the acquisition
determine how each time factor affects the final signal intensity. For a detailed description
of MR signal formation, the reader is referred to the textbooks on this topic [11–13].

Creating relaxation time maps in MRI is a multi-step process because the MR signal
is affected by various factors. A group of MR pulse sequences is used to generate the
maps, with different techniques listed in Table 1. The basic concept behind most of these
methods is to acquire a set of images with similar imaging parameters, except for one,
such as repetition time (TR), echo time (TE), inversion time (TI), or saturation time (TS).
This parameter is referred to as the “time parameter” (T). Once the images are acquired,
a pixel-by-pixel curve fitting analysis is done according to a theoretical equation that
describes the physical phenomena behind the process. This analysis produces the desired
quantitative maps.

Table 1. Some MRI signal models can be fitted using the algorithm described in this manuscript. The
fit can be partially linearized in all cases, so only one parameter (relaxation time) needs to be varied
to find the lowest error.

Name Equation

I. Inversion Recovery S = A + B · |1− 2 · exp(−T/Trel)| A ≥ 0

II. Inversion Recovery or MOLLI S = |A− B · exp(−T/Trel)|
III. Simplified Spin Echo or Simplified

Gradient Echo S = A · exp(−T/Trel)

As it is clear from the formulas in Table 1, nonlinear regression is needed to fit the data
to obtain relaxation times. A widely used method to obtain the optimum fit is to minimize
the sum of the squares of the differences between predicted and measured signals. In this
context, the predicted signal is the value predicted by the mathematical model and varies
as the fitting parameters are changed. The measured signal refers to the values measured
in the MRI experiment (or simulated if the experiment is a simulation) and does not vary
during the fitting process. The goal of the fitting process is to vary the model parameters
in a way in which the predicted values are as close as possible to the measured values.
The sum of the squares of the differences between predicted and measured values is the
error, which is to be minimized. If two algorithms are fitting experimental data to the
same model, we consider that the algorithm resulting in the lowest error outperforms the
other algorithm.

In addition to the models listed in Table 1, it is also possible to obtain T1 maps using a
technique called the “variable flip angle approach” (VFA). This approach involves acquiring
several images with different flip angles and then using a linear fit to calculate the T1 values
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from these images [14–17]. The advantage of this technique is that it does not require the
use of nonlinear regression. It is also possible to use specialized nonlinear algorithms, such
as NOVIFAST, specifically tailored to VFA T1 mapping [18]. This approach has been widely
used in the medical field for T1 mapping, but it is not the focus of this paper. Instead, this
paper will discuss other models that are more complex and require nonlinear regression.

This paper does not aim to study the effect of imaging conditions or mathematical
models on relaxation time maps. This paper, given acquired data and a mathematical
model, aims to compare how different fitting algorithms perform only in terms of fit error.

Levenberg-Marquardt [19,20] and Nelder-Mead [21] algorithms are frequently used
for this purpose. These algorithms, widely used in relaxation time mapping software such
as Segment or Matlab [7], implement a search in a two or three-dimensional space.

Since the optimization problem is partly linear, it is possible to split the linear and non-
linear problems. One such approach is the variable projections algorithm (VARPRO) [22],
which allows using an algorithm such as Levenberg-Marquardt for the nonlinear part of
the problem. It is also possible to apply other search strategies for the nonlinear part of the
problem [23].

In 2010, a new algorithm called the Reduced Dimension Nonlinear Least Squares (RD-
NLS) [24] was presented as a method to compute relaxation times in MRI. This algorithm
is a variation of the traditional nonlinear least squares algorithm. It addresses some of the
limitations of the previous methods by splitting the linear and nonlinear problems and then
optimizing the remaining nonlinear parameter, relaxation time, using a grid search instead
of a local search. The main advantage of this algorithm is that it is more computationally
efficient and has the potential to produce more accurate results. This article compares the
performance of the RD-NLS algorithm to other existing algorithms in terms of fit error. A
lower fit error indicates a better fit and more accurate results. By comparing the RD-NLS
algorithm to other algorithms, the authors aim to demonstrate the superiority of this new
method in terms of accuracy and efficiency.

2. Materials and Methods

Table 1 lists three distinct MR signal models that can be effectively fitted using the
RD-NLS algorithm.

Model I. Inversion Recovery: In this case, Trel = T1, T = TI and S = A + B ·
|1− 2 · exp(−T/Trel)|where A ≥ 0. To fit this model, let S = y and x = |1− 2 · exp(−T/Trel)|.
The linear fit is carried out according to: y = A + B · x. If the result is A < 0, the algorithm
lets A = 0 and repeats the fit according to: y = B · x.

Model II. Inversion Recovery [11,13] or MOLLI [25]: In this case, Trel = T1 (Inversion
Recovery) or Trel = T1′ (MOLLI), T = TI and S = |A− B · exp(−T/Trel)|. To fit this model,
let S = |y| and x = − exp(−T/Trel). The linear fit is performed according to y = A + B · x.
This case is more difficult since the absolute value of y is known but its sign is unknown. In
principle, with n data points, 2n sign combinations are possible. However, since the signal
is recovering from inversion, y increases as T increases, so only n sign combinations need
to be considered [24,26]. Therefore, n linear fits are considered corresponding to the sign of
y and the one for which the error is lowest is taken.

Model III. Simplified Spin Echo (T2) or Simplified Gradient Echo (T2*): In this case,
T = TE and Trel = T2 for spin-echo or Trel = T2∗ for gradient echo. To fit this model, let
S = y and x = exp(−T/Trel). The linear fit is performed according to:y = A · x.

For validating purposes, three sets of images were used:

• Inversion recovery (IR) images from a healthy mouse.
• A series of MRI human brain images, simulated using a web-based software available

at http://brainweb.bic.mni.mcgill.ca/brainweb (accessed on 10 March 2018) [27,28].
• Multi-slice multi-echo spin-echo images of a phantom consisting of scaffolds in which

cells were grown, filled with phosphate-buffered saline.

http://brainweb.bic.mni.mcgill.ca/brainweb
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The first two datasets were used to fit T1 relaxation times, and the third dataset was
used to obtain T2 relaxation times.

Imaging: Healthy mouse images were taken using an IR sequence in a Bruker 1T
benchtop MRI scanner (ICON 1-T MRI; Burker BioSpin GmbH, Ettlingen, Germany). The
main sequence parameters were as follows: TR = 7500 ms; Acquisition matrix = 80 × 80;
FOV = 20 × 20 mm2, giving a pixel resolution of 0.25 × 0.25 mm2; Number of Slices = 3;
Slice Thickness = 1.25 mm; Slice Gap = 1 mm; TE = 5 ms; TI = 35, 50, 75, 100, 200, 250, 350,
500, 650, 800, 1000, 1500, 2000, 3000, 5000, 7000 ms; flip angle = 90◦.

Human brain images were custom simulated with a FOV of 181 × 217 × 181 mm3 and
a 181 × 217 × 181 acquisition matrix, giving a voxel resolution of 1 × 1 × 1 mm3. An IR
sequence with TR = 10 s was used. Echo time was TE = 10 ms, and inversion times were
TI = 35, 50, 75, 100, 200, 250, 350, 500, 650, 800, 1000, 1500, 2000, 3000, 5000, and 7000 ms.
Other simulation parameters were flip angle = 90◦, INU field = “Field A”, INU level = 20%,
and noise level = 10%. For simplicity, only 11 slices in the center were selected for fitting.

Phantom images were taken using an MSME sequence in a 7T Bruker Biospec 70/30
USR MRI system (Bruker Biospin, GmbH, Ettlingen, Germany). Main sequence parameters
were as follows: TR = 4000 ms; Acquisition matrix = 256 × 256; FOV = 32 × 32 mm2, giving
a pixel resolution of 0.125 × 0.125 mm2; Number of Slices = 5; Number of echoes = 64; Slice
Thickness = 1 mm; Slice Gap = 0.25 mm; TE = 7 ms; flip angle = 90◦.

Processing: Before fitting, a region of interest (ROI) was selected in the image. Only
pixels inside the ROI were fitted. Furthermore, the pixels in which the Trel value obtained
in the fit was not in a suitable range were discarded. The range chosen was 100–3000 ms
for T1 and 10–500 ms for T2. This range is arbitrary, but it seems appropriate to contain
meaningful values.

The RD-NLS algorithm was programmed in C# (Microsoft Corporation, Redmond,
WA, USA). It was tested in a MacBook Air (Apple, Cupertino, CA, USA) laptop with an
Intel i5 processor (Intel, Santa Clara, CA, USA) clocked at 1.60 GHz and 8 GB of RAM.

The process of analyzing murine, simulated human brain, and phantom image data
for this study involved using multiple software and algorithms. First, Bruker software
Paravision 6.0.1-Image Sequence Analysis (ISA) Tool (Bruker BioSpin Group, Bruker Corpo-
ration, Ettlingen, Germany) was used. This specialized software was used to fit the murine
image data to Model I and the phantom image data to Model III on a pixel-by-pixel basis.

In addition, three different algorithms were implemented using Matlab (MATLAB Re-
lease 2017b, The MathWorks, Inc., Natick, MA, USA). These algorithms were the Levenberg-
Marquardt algorithm implemented using the “fitnlm” function, a Nelder-Mead algorithm
implemented using the “fminsearch” function, and a partially linearized algorithm in
which linear and nonlinear variables are split, which is implemented using “lsqcurvefit”.
Initial values for the parameters were the same for the three algorithms (where applicable)
and can be seen in Supporting Tables S1–S3.

Using Matlab and the three algorithms mentioned before, mouse image data, simulated
human brain image data, and phantom image data were fitted to Models I, II, and III on
a pixel-by-pixel basis. Furthermore, using the RD-NLS algorithm, mouse image data,
simulated human brain image data, and phantom image data were also fitted to Models I,
II, and III on a pixel-by-pixel basis.

The resulting fit from the RD-NLS algorithm was then compared to the fits obtained
using ISA and Matlab. All tests were summarized in Table 2, which provided a comprehen-
sive overview of the results obtained from the different software and algorithms used in
the study.

After fitting, the error was calculated as the sum of the squares of predicted and
measured signal differences for each pixel. Then, the following statistics were compiled for
each comparison. The name εa refers to the error of the RD-NLS algorithm and εb to which
it is compared.
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• Multiple minima: number of pixels (as a percentage of total pixels) for which the
fitting error as a function of Trel after linear parameters have been fitted shows more
than one local minimum.

• Pixels: The number of pixels (as a percentage of total pixels), for which the Trel
difference between the two fits is above a threshold and εa < εb. No pixels for which
the Trel difference between the two fits is above the threshold and εa > εb or εa = εb
were found. Therefore, the remaining pixels (up to 100%) are pixels for which the Trel
difference between the two fits is below the threshold. The threshold exists because if
it did not exist, it could be possible to conclude that the same solution is two different
solutions due only to rounding errors. The threshold must be small enough not to
allow two different minima to be confused. For these reasons, it was set arbitrarily as
1 ms.

• Relaxation time: Average Trel value given by fit a (the RD-NLS algorithm) and fit b
(the algorithm it is compared to).

Table 2. Summary of tests performed in this article. The RD-NLS algorithm has been compared to
the reported algorithm in all cases. Inversion-recovery mouse images, inversion-recovery simulated
human images, and multi-slice multi-echo images were used to fit T1 and T2 maps.

Test
Number Test Model Algorithm to Compare Software to

Compare Data

1 I Levenberg-Marquardt ISA mouse

2 I Levenberg-Marquardt Matlab mouse

3 I Nelder-Mead Matlab mouse

4 I Split Matlab mouse

5 II Levenberg-Marquardt Matlab mouse

6 II Nelder-Mead Matlab mouse

7 II Split Matlab mouse

8 II Levenberg-Marquardt Matlab simulated

9 II Nelder-Mead Matlab simulated

10 II Split Matlab simulated

11 III Levenberg-Marquardt ISA phantom

12 III Levenberg-Marquardt Matlab phantom

13 III Nelder-Mead Matlab phantom

14 III Split Matlab phantom

Bland-Altman plots [29] were drawn to compare Trel, given by fit a, and Trel, provided
by fit b. Comparison is (Trel fit b—Trel fit a) vs. average. Each point in the plot represents
the average Trel of 100 randomly selected pixels. Averaging was performed to decrease
plot dispersion. In addition, it needs to be noticed that since the plotted values are a small
random sample, the plots could vary if they are generated multiple times.

In addition, bias and limits of agreement were computed for these tests. In this case,
no average was performed, which resulted in a bigger dispersion. As a difference to the
Bland-Altman plots, in this case the results represent all pixels in the image.

3. Results

A summary of the comparisons is presented in Table 3, along with Figures 1 and 2 and
Supporting Figures S1–S14. According to the results:

• The T1 fits (Tests 1–10) show many pixels in which error vs. T1 has more than one
local minimum, in the 9–70% range. Having more than one local minimum means that
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a local search algorithm could get trapped in a local minimum which is not a global
minimum (see Figure 3). This is not the case for the T2 fits (Tests 11–14), where error
vs. T2 has only one local minimum.

• The Trel value obtained by the RD-NLS algorithm always corresponds to the
global optimum.

• Comparing Bruker and Matlab fit versus RD-NLS for the T1 maps (Tests 1–10), the fit
is different in a significant number of pixels, in the range of 5–97%. However, this is
not true for the T2 maps (Tests 11–14).
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Table 3. Results from the tests. Notice that the T2 fits (Tests 11–14) are much more similar for the
compared algorithms than the T1 fits (Tests 1–10). Also, the T2 fits (Tests 11–14) show no multiple
minima, whereas multiple minima are common in the T1 fits (Tests 1–10).

Test Number Minima (%) Pixels Relaxation Time (ms)

1 9.2% 97.0% 622/636

2 9.2% 4.1% 622/623

3 9.2% 0.6% 622/622

4 9.2% 4.1% 622/623

5 18.6% 4.8% 807/805
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Table 3. Cont.

Test Number Minima (%) Pixels Relaxation Time (ms)

6 18.6% 2.0% 807/807

7 18.6% 2.7% 807/806

8 68.1% 15.7% 823/842

9 68.1% 10.3% 823/841

10 68.1% 10.8% 823/823

11 0.0% 0.2% 113/113

12 0.0% 0.0% 113/113

13 0.0% 0.0% 113/113

14 0.0% 0.2% 113/113
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Figure 3. Fitting error (y) as a T1 (x) function after parameters A and B have been fitted. The T1
value obtained in fit (RD-NLS) was T1 = 696 ms, whereas the T1 value obtained in fit b (Matlab,
Levenberg-Marquardt) was T1 = 740 ms. It corresponds to Test 2 (mouse data).

Figures 1 and 2 show Bland-Altman plots for Tests 1 and 8. Supporting Figures S1–S14
also show Bland-Altman plots for these tests. In addition, Table 4 shows bias and limits
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of agreement for all tests. In all cases, the differences refer to the relaxation time obtained
using the algorithm used as a comparison minus the relaxation time obtained using the
RD-NLS algorithm. As it is obvious from the results of these plots, the T1 values obtained in
mouse data fitted with Matlab versus RD-NLS are quite similar for Tests 2–7. For Tests 8–10,
the T1 values obtained in simulated data fitted with Matlab and RD-NLS show much more
dispersion than in Tests 2–7. Besides, in Tests 8 and 9, Levenberg-Marquardt and Nelder-
Mead fit gives a higher T1 value than RD-NLS fit, whereas no such difference appears in
Test 10 (Split versus RD-NLS). Test 1 (mouse data) shows a clear distinction, with ISA fit
giving a higher T1 value than RD-NLS fit. However, T2 values obtained in both fits are
very similar for Tests 11–14 (phantom data).

Table 4. Bias and limits of agreement from the tests. Bland-Altman plots corresponding to this table
are given in Figures 1 and 2, and in Figures S1–S14 in the supplementary materials.

Test Number Bias (ms) Limits of Agreement (ms)

1 14.07 −1.63 to 29.76

2 0.88 −13.11 to 14.86

3 0.07 −5.22 to 5.36

4 0.92 −13.19 to 15.03

5 −1.87 −27.21 to 23.47

6 −0.61 −19.67 to 18.45

7 −1.32 −22.08 to 19.45

8 18.20 −497.54 to 533.95

9 17.34 −472.89 to 507.57

10 −0.63 −449.79 to 448.53

11 −0.01 −3.32 to 3.31

12 0.01 −2.76 to 2.78

13 0.01 −2.75 to 2.78

14 0.02 −2.82 to 2.85

Figure 3 illustrates an example of the fitting results for a specific pixel from Test 2,
which involves using the Inversion Recovery technique to analyze mouse data. The plot in
the figure represents the fitting error as a function of Trel after the linear parameters have
been fitted. The plot shows two different fits, labeled as fit a and fit b, obtained using two
different methods.

Fit a, obtained using the RD-NLS algorithm, corresponds to the global minimum,
meaning it has the lowest fitting error among all the possible fits.

On the other hand, fit b, obtained using Matlab, reached a local minimum, meaning
that the fitting error is greater than that of the global minimum. This indicates that the
Matlab algorithm did not perform as well as the RD-NLS algorithm in fitting the data to the
model. The local minimum could be caused by the algorithm getting stuck in a suboptimal
solution rather than finding the global solution.

4. Discussion

A critical aspect of assessing the performance of a relaxation time fitting algorithm is
the accuracy of its predictions, which can be quantified using the error between predicted
and measured signal values. All fitting algorithms aim to minimize this error to achieve
accurate and reliable relaxation time maps. Our results demonstrate that the RD-NLS
algorithm outperforms the comparison algorithms regarding fit error, although the magni-
tude of improvement varies depending on the specific MRI dataset and signal model. It
is noteworthy that we did not observe any instances where the RD-NLS algorithm was
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outperformed by the comparison algorithms. As shown in Figure 1, the difference in
relaxation time values between algorithms can have a significant impact on tissue character-
ization. Therefore, the bias introduced by inaccurate relaxation time mapping could have
implications for clinical diagnosis and treatment planning, underscoring the importance
of developing and validating robust algorithms such as RD-NLS for accurate and reliable
relaxation time mapping in MRI.

Figure 3 provides insight into the superior performance of the RD-NLS algorithm
over the other tested algorithms and highlights the issue of bias in Trel values obtained
from the fit. The “W” shape of the fitting error vs. Trel curve with multiple local minima
can be observed for some pixels, as shown in Figure 3. The RD-NLS algorithm can find
all such minima and choose the one that leads to the lowest error. In contrast, a local
search algorithm may get stuck in a local minimum, depending on the starting conditions,
which are known to be a critical issue when using this type of algorithm. In fairness, the
authors attempted to find good starting conditions, but it is not always an easy task. For
example, Figure 3 illustrates that for a particular pixel, the region between 680–760 ms is a
good starting point for parameter T1. If the starting point is inappropriate, a local search
algorithm may converge to a suboptimal solution and overestimate or underestimate T1.
For example, if the starting point is T1 = 730 ms, a local search algorithm will converge to
T1 = 740 ms, and this local search algorithm will, in this case, overestimate T1. However,
if the starting point is T1 = 710 ms, a local search algorithm will converge to T1 = 696 ms,
and this local search algorithm will find the correct T1 value. This example illustrates the
importance of using appropriate algorithms and techniques in fitting image data to models,
as the choice of algorithm can greatly impact the accuracy of the results. The RD-NLS
algorithm provided a more accurate estimate of the relaxation time, while the Matlab
algorithm reached a suboptimal solution. The choice of algorithm can greatly impact the
accuracy of the results, and the RD-NLS algorithm eliminates the risk of failure to find the
global optimum. Although the running time was not measured in this paper, high-speed
implementations of the RD-NLS algorithm are available [30].

5. Conclusions

The examples presented in the study demonstrate that the RD-NLS algorithm outper-
forms other commonly used algorithms, such as Levenberg-Marquardt or Nelder-Mead, in
fitting relaxation time maps. The study’s results suggest that the RD-NLS algorithm can
provide a more accurate estimate of the relaxation time, resulting in a higher degree of
accuracy in the relaxation time maps.

As seen in test 1, T1 maps fitted using different algorithms show differences in average
T1, which can be as large as 14 ms. This shows that the choice of fitting algorithm can
potentially affect T1 quantification.

The study’s authors recommend using the RD-NLS algorithm for obtaining relaxation
time maps, as it is more effective than other algorithms in fitting image data to models. This
algorithm can lead to more precise and accurate results, which is particularly important in
medical imaging, where precise measurements are critical to the diagnosis and treatment
of various conditions.

Additionally, the authors highlight that the RD-NLS algorithm has several advantages,
such as that it is relatively simple to use, can provide solutions even in cases where the cost
function has multiple local minima, and does not require initial estimates.

In conclusion, the use of the RD-NLS algorithm for obtaining relaxation time maps is
highly recommended by the authors due to its superior performance in fitting image data
to models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13074083/s1, Figure S1: Bland-Altman plot corresponding to
Test 1. It is evident that the T1 obtained by Bruker’s fit is greater than that obtained by RD-NLS.
Figure S2: Bland-Altman plot corresponding to Test 2. T1 obtained by Matlab’s fit is slightly greater
than the one attained by RD-NLS. Figure S3: Bland-Altman plot corresponding to Test 3. T1 obtained

https://www.mdpi.com/article/10.3390/app13074083/s1
https://www.mdpi.com/article/10.3390/app13074083/s1


Appl. Sci. 2023, 13, 4083 11 of 13

by Matlab’s fit is similar to the one obtained by RD-NLS. Figure S4: Bland-Altman plot corresponding
to Test 4. T1 obtained by Matlab’s fit is similar to the one obtained by RD-NLS. Figure S5: Bland-
Altman plot corresponding to Test 5. Note that the T1 obtained by Matlab’s fit is lower than the one
obtained by RD-NLS. Figure S6: Bland-Altman plot corresponding to Test 6. T1 obtained by Matlab’s
fit is similar to the one obtained by RD-NLS. Figure S7: Bland-Altman plot corresponding to Test
7. Note that the T1 obtained by Matlab’s fit is lower than the one obtained by RD-NLS. Figure S8:
Bland-Altman plot corresponding to Test 8. The T1 values show an important dispersion. The results
show that the T1 obtained by Matlab’s fit is greater than the one obtained by RD-NLS. Figure S9:
Bland-Altman plot corresponding to Test 9. T1 values show an important dispersion. The figure
shows that the T1 obtained by Matlab’s fit is greater than the one obtained by RD-NLS. Figure S10:
Bland-Altman plot corresponding to Test 10. T1 values show an important dispersion. The T1
obtained by Matlab’s fit is similar to the one computed by RD-NLS. Figure S11: Bland-Altman plot
corresponding to Test 11. T2 values show a very low dispersion, except for two outlier points. Note
that the T2 calculated by Bruker’s fit is similar to the one determined by RD-NLS. Figure S12: Bland-
Altman plot corresponding to Test 12. T2 values show a very low dispersion, except for one outlier
point. The T2 attained by Matlab’s fit is almost similar to the one obtained by RD-NLS. Figure S13:
Bland-Altman plot corresponding to Test 13. T2 values show a very low dispersion. The T2 calculated
by Matlab’s fit is almost the same as the one determined by RD-NLS. Figure S14: Bland-Altman plot
corresponding to Test 14. T2 values show a very low dispersion. Note the similarity between the
T2 values obtained by Matlab’s and RD-NLS fits. Table S1: Summary of parameters used for Model
I. They include parameters used in the RD-NLS algorithm, other algorithms, and the comparison
of algorithms. Table S2: Summary of parameters used for Model II. They include parameters used
in the RD-NLS algorithm, other algorithms, and the comparison of algorithms. Table S3: Summary
of parameters used for Model III. They include parameters used in the RD-NLS algorithm, other
algorithms, and the comparison of algorithms.
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