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Abstract: This paper studies frequency-limited model reduction for linear positive systems. Specifi-
cally, the objective is to develop a reduced-order model for a high-order positive system that preserves
the positivity, while minimizing the approximation error within a given H∞ upper bound over a
limited frequency interval. To characterize the finite-frequency H∞ specification and stability, we
first present the analysis conditions in the form of bilinear matrix inequalities. By leveraging these
conditions, we derive convex surrogate constraints by means of an inner-approximation strategy.
Based on this, we construct a novel iterative algorithm for calculating and optimizing the reduced-
order model. Finally, the effectiveness of the proposed model reduction method is illustrated with a
numerical example.

Keywords: positive systems; frequency-limited model reduction; bilinear matrix inequalities;
successive convex optimization algorithm

1. Introduction

In various practical fields, such as biology, chemistry, economics and engineering, it is
often the case that certain quantities are potentially constrained to be non-negative. The
population of a species in an ecosystem [1], the transmission speed that a signal travels in
network communication [2], and the distribution of light energy radiated by a light source,
to mention a few. This property arises from physical or biological constraints that preclude
negative values; the systems that exhibit the positivity are commonly referred to as positive
systems whose state variables and output trajectories take non-negative values, provided
that the excitation inputs and initial states are non-negative [3–5]. The study of positive
systems can be traced back to the early 1990s when Berman [6] introduced the concept
of positive matrices and their applications to linear systems. Later, the theory of linear
systems was further developed. It has become a vibrant research area in control theory and
systems engineering, including modeling and analysis [7], control and optimization [8–11],
and its applications [12]. In many cases, high-order models are frequently encountered to
provide exact characterizations of dynamical behaviors, which poses a significant challenge
for the analysis and synthesis of the concerned systems [13]. Therefore, it is crucial to
simplify models of dynamical systems by exploring lower-order models that approximate
the original high-order ones according to certain criteria [14,15]. Various model reduction
methods, such as balanced truncation [16], Hankel-norm reduction [17], and moment
matching [18] have been developed.

For a specific positive system, it is reasonably required to preserve the positivity when
employing model-reduction methods. Moreover, it suffices to satisfy given approximation
specifications within limited frequency ranges [19]; it is especially relevant in engineering
applications where practical constraints limit the operating frequency range. There are
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several model reduction approaches available to improve approximation performance
over a limited frequency range, including methods such as frequency weighting [20] and
frequency-specific balanced truncation [21]. Nevertheless, these methods cannot be directly
applied to positive systems as they do not take the essential positivity of the reduced-
order model into account. The generalized Kalman–Yakubovich–Popov (KYP) lemma is
a powerful tool for characterizing the finite-frequency property, providing an equivalent
condition for the solvability of frequency-limited specifications [22]. In the context of model
reduction, this condition is expressed in a unified manner as a bilinear matrix inequality
(BMI) involving coupled terms between two dependent decision variables [23]. To address
this issue, some researchers have conservatively transformed the intractable BMI into a
linear matrix inequality (LMI) by performing congruent transformation [24]. However,
a potential drawback of this method is that the obtained LMI condition may always be
infeasible. By alternately fixing one of the two coupled terms, D-K synthesis has been
proposed to solve the BMI problems iteratively [25]; a major challenge of this approach lies
in obtaining a feasible initial condition. Note that the introduction of additional positivity
constraints and finite-frequency characterizations exacerbates the non-convexity, thereby
making it difficult to explore a desired reduced-order model. Motivated by this, the paper
aims to overcome this obstacle by developing a novel iterative procedure that can effectively
solve the non-convex optimization problem.

In this paper, we aim to obtain a model with a lower order that preserves the positivity
and captures the most significant behaviors within limited frequency intervals, which
requires that the obtained model is positive and the resulting error system is stable with a
given finite-frequency performance level. For this purpose, we establish conditions for the
existence of such a reduced-order system in the form of BMIs. To address this problem, we
propose a successive convex optimization (SCO) algorithm that iteratively solves a series of
convex optimization sub-problems, each of which is an inner convex approximation of the
original non-convex constraint. At each iteration, the solution to the previous step is used
as a starting point for the next iteration until the convergence is reached. To summarize,
this paper presents three contributions:

1. A finite-frequency specification is employed to characterize the approximation error,
improving the model reduction capability within limited frequency intervals.

2. It is guaranteed that the reduced-order model maintains positivity, which retains the
positive nature of the original system.

3. An inner convexity strategy and associated SCO algorithm are proposed to obtain a
desired reduced-order model without any parametrization techniques.

This paper is organized as follows: Section 2 introduces the problem statement and
preliminary lemmas. Section 3 provides the conditions for the existence of a reduced-order
model and a sequential algorithm for optimizing it. Section 4 gives an academic example to
show the efficacy of the proposed method. Finally, Section 5 summarizes the contributions
and discusses the limitations of the study and future work.

Notations: The symbols R, Rn, and Rm×n represent the set of real numbers, n-
dimensional column vectors, and m× n-dimensional matrices, respectively. The notation
Rn
+ refers to a set of column vectors with element-wise positive entries. The symbols I and

0 denote the identical and zero matrices, respectively. For M ∈ Rm×m, M > 0 (M < 0)
means that M is positive-definite (negative-definite). He{M} , M + MT , where MT is
the transpose of M. Given a matrix S ∈ Rm×n, we use S � 0(S � 0) to signify that all the
elements are non-negative (positive).

2. Problem Statement and Fundamental Results

Consider a stable system (Σ) with a relatively high order:

Σ :

{
λ[x(t)] = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)
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where x ∈ Rnx , u ∈ Rnu , y ∈ Rny are the state, input and output vectors, respectively, and
[A, B; C, D] are the given constant matrices. The model Σ provides a unified description
for linear systems, that is, λ[x(t)] , ẋ(t) for the continuous-time (CT) case and λ[x(t)] ,
x(t+ 1) for the discrete-time (DT) case. Suppose that Σ is a positive system whose definition
is provided as follows:

Lemma 1 ([26]). The system Σ is positive if all the state and output trajectories are non-negative,
that is, ∀t ≥ 0, x(t) ∈ Rnx

+ and y(t) ∈ Rnu
+ , provided that x(0) ∈ Rnx

+ and u(t) ∈ Rnu
+ .

Lemma 2 ([19]). For the CT case, the system Σ is positive if, and only if, A is Metzler and B � 0,
C � 0, D � 0, whereas, for the DT case, the system Σ is positive if, and only if, A � 0, B � 0,
C � 0, D � 0.

We intend to investigate an available model Σr with a smaller order

Σr :

{
λ[xr(t)] = Arxr(t) + Bru(t),
yr(t) = Crxr(t) + Dru(t),

(2)

for approximating Σ with a sufficiently small error, where xr ∈ Rnr (0 < nr < nx), yr ∈ Rny

are reduced states and approximated outputs, respectively, and [Ar, Br; Cr, Dr] are unknown
matrices. By defining xe(t) =

[
xT(t) xT

r (t)
]T and e(t) , y(t)− yr(t), the approximation

error system can be expressed as

Σe :

{
λ[xe(t)] = Aexe(t) + Beu(t),
e(k) = Cexe(t) + Deu(t),

(3)

where

Ae =

[
A 0
0 Ar

]
, Be =

[
B
Br

]
, Ce =

[
C −Cr

]
, De = D− Dr.

The transfer function of (3) is presented as:

Gue(λ) = Ce(λI− Ae)
−1Be + De (4)

where λ denote the Laplace operator for the CT case and the z operator for the DT case,
respectively. For brevity, we give the following set to denote a positive system.

Definition 1. The reduced-order system Σr is positive if, and only if,
[

Ar Br
Cr Dr

]
∈ P, where

P ,



[
Ar Br

Cr Dr

]
: Ar is Metzler , Br � 0, Cr � 0, Dr � 0[

Ar Br

Cr Dr

]
: Ar � 0, Br � 0, Cr � 0, Dr � 0

(5)

There are two concerns when developing a reduced-order model Σr: First, it is ex-

pected that
[

Ar Br
Cr Dr

]
∈ P to preserve the positivity of Σ. Second, in practical applications,

it suffices to evaluate the approximation performance within a finite-frequency range.
To provide an exact characterization for the property, we employ a frequency-limited
H∞ specification

‖Gue(λ)‖Ω
∞ ,

{
supω∈Ω σmax[Gue(jω)] < γ, (CT case)
supω∈Ω σmax[Gue(ejω)] < γ, (DT case)

(6)
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throughout the paper, where Ω gives the frequency interval of interest, σmax denotes the
maximum singular value, and γ > 0 is an index to be minimized. Therefore, we summarize
the overall problem formulation as follows:

Frequency-Limited Model Reduction: Given a specific frequency range Ω, explore a
reduced-order model Σr such that

1. The system Σr is stable, and
[

Ar Br
Cr Dr

]
∈ P.

2. The approximation error system Σe satisfies the finite-frequency criterion in (6).

Next, we introduce the generalized KYP lemma, which is essential to the analysis of
finite-frequency specifications.

Lemma 3 ([22]). Given the state-space Equation (3) and a specific frequency range Ω, the system
Σe has a guaranteed criterion ‖Gue(λ)‖Ω

∞ < γ if, and only if, there exist symmetric matrices
P, Q ∈ Rnx+nr such that Q > 0 and

ΨTΦΨ < 0 (7)

where Ψ =

[
AT

e I CT
e 0

BT
e 0 DT

e I

]T

, Φ = diag
{

Ξ, I,−γ2I
}

, and Ξ concerning different frequency

ranges are listed in Table 1.

Table 1. Ξ with respect to different frequency ranges (ωc =
ω1+ω2

2 , ωa = ω2−ω1
2 ).

Frequency
Ranges |ω| < ωl 0 < ω1 <ω<ω2 <∞ |ω| > ωh

CT
[
−Q P

P ω2
l Q

] [
−Q P + jωcQ

P− jωcQ −ω1ω2Q

] [
Q P
P −ω2

hQ

]
DT

[
P Q
Q −P−2 cos ωlQ

] [
P ejωc Q

e−jωc Q −P−2 cos ωaQ

] [
P −Q
−Q −P+2 cos ωhQ

]

Remark 1. Lemma 3 provides an exact characterization for (6), which differs from the bounded
real lemma and has the potential to improve the approximation capability with less conservatism.
Notice that the condition for the solvability of limited-frequency performance is expressed as a BMI
condition, which is difficult to solve due to the non-convexity, and it becomes even more arduous
when an extra constraint Gr ∈ P is imposed.

3. Main Results

This section presents a method to design an appropriate reduced-order model. Firstly,
an equivalent characterization for the system (3) is developed to parameterize the unknown
matrices Ar, Br, Cr, Dr. Then, the design conditions in the form of BMIs are established,
ensuring that the reduced-order model maintains positivity and the error system has a
given finite-frequency performance level. On this basis, we propose an iterative procedure
to obtain a reduced-order model.

To simplify the problem, we denote Gr =

[
Ar Br
Cr Dr

]
and

Ā =

[
A 0
0 0

]
, B̄ =

[
B
0

]
, C̄ =

[
C 0

]
, D̄ = D,

F̄ =

[
0 0
I 0

]
, H̄ =

[
0 −I

]
, M̄ =

[
0 I
0 0

]
, N̄ =

[
0
I

]
,

and, thus, (3) can be reformulated as Ae = Ā+ F̄Gr M̄, Be = B̄+ F̄Gr N̄, Ce = C̄+ H̄Gr M̄, De =
D̄ + H̄Gr N̄. According to Remark 1, the condition (7) cannot be directly solved for which the
constrained Gr ∈ P is coupled with P and Q. Therefore, we will provide feasible conditions
in the following theorem.
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Theorem 1. Given a specified finite frequency range Ω and matrices Gκ
r , Pκ

s , Xκ , Yκ , Zκ , Uκ
s , Vκ

s ,
Uκ , Vκ , a desired reduced-order model Gr can be obtained if there exist matrices Ps, X, Y, Z, P, Q, Us,
Vs, U, V such that Ps = PT

s > 0, Q = QT > 0 and

Gr =

[
Ar Br
Cr Dr

]
∈ P, (8)

Γs =

[
Γs1 Γs2
ΓT

s2 Γs3

]
< 0 (9)

Γ =

[
Γ1 Γ2
ΓT

2 Γ3

]
< 0 (10)

where

Γs1 = He{Ps Aκ
r + Pκ

s (Ar − Aκ
r )},

Γs2 =
[
β(Ps − Pκ

s ) + (Ar − Aκ
r )

T(Uκ
s )

T (Ar − Aκ
r )

TVκ
s 0

]
,

Γs3 =

−β(Us + UT
s ) 0 Us −Uκ

s
? −2Vκ

s + Vs 0
? ? −Vs

,

Γ1 =

 Ξ
0 0
0 CT

e

?
−γ2I DT

e
De −I

+ He



−X X(Ā + F̄Gκ

r M̄) X(B̄ + F̄Gκ
r N̄) 0

−Y Y(Ā + F̄Gκ
r M̄) Y(B̄ + F̄Gκ

r N̄) 0
−Z Z(Ā + F̄Gκ

r M̄) Z(B̄ + F̄Gκ
r N̄) 0

0 0 0 0




+ He



(Xκ)
(Yκ)
(Zκ)

0

[0 F̄(Gr − Gκ
r )M̄ F̄(Gr − Gκ

r )N̄ 0
],

Γ2 =


β(X− Xκ) 0 0

β(Y−Yκ) + M̄T(Gr − Gκ
r )F̄T(Uκ)T M̄T(Gr − Gκ

r )F̄T(Vκ)T 0
β(Z− Zκ) + N̄T(Gr − Gκ

r )F̄T(Uκ)T N̄T(Gr − Gκ
r )F̄T(Vκ)T 0

0 0 0

,

Γ3 =

−β(U + UT) 0 U −Uκ

? −2Vκ + V 0
? ? −V


Proof of Theorem 1. By Lyapunov stability theory, the asymptotic stability of the reduced-
order system (2) can be ensured if, and only if, there exists a Lyapunov matrix Ps = PT

s satisfy-
ing

AT
r Ps + Ps Ar < 0 (11)

and (7) can be further expressed asAe Be
I 0
0 I

T (
diag{Ξ, 0}+ diag

{
0,
[

Ce De
0 I

]T

Π
[

Ce De
0 I

]})
︸ ︷︷ ︸

Υ

Ae Be
I 0
0 I

 < 0 (12)

Let H =
[
−I Ae Be

]T , and its null space denoted as H⊥ =

Ae Be
I 0
0 I

T

. Thus, (14) is

equivalent to
H⊥Γ(H⊥)T < 0 (13)
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By Finsler’s lemma, we have

H⊥Γ(H⊥)T < 0⇔ Γ +HX +XTHT < 0 (14)

where X =
[
XT YT ZT]. It follows that (11) and (14) can be presented in a unified form

of
L + He{ANB} < 0,  = 1, 2. (15)

where
L1 = 0,A1 = Ps,B1 = Ar, N1 = I,

L2 =


−Q P 0 0
? v2

l Q 0 CT
e

? ? −γ2I DT
e

? ? ? −I

+ He



−X XĀ XB̄ 0
−Y YĀ YB̄ 0
−Z ZĀ ZB̄ 0

0 0 0 0


,

A2 =
[
X Y Z 0

]T ,B2 =
[
0 F̄Gr M̄ F̄Gr N̄ 0

]
, N2 = I.

It is observed that Aı is coupled with Bı. For given feasible matrices Pκ
s , Gκ

r , Xκ , Yκ , Zκ ,
we can reformulate (15) as

L+ He{ANBκ +Aκ N(B−Bκ)}+ He{(A−Aκ)N(B−Bκ)} < 0. (16)

We notice that L+ He{ANBκ + Aκ N (B− Bκ)} is linear, whereas He{(A− Aκ)N(B−
Bκ)} is bilinear. According to [23], the bilinear term can be further decomposed into

He{(A−Aκ)N(B−Bκ)}

=

[
(A−Aκ)T

(B−Bκ)

]T[ 0 N
NT 0

][
(A−Aκ)T

(B−Bκ)

]
=

[
(A−Aκ)T

(B−Bκ)

]T[
βN βN
UT −U

][ 1
β (U+UT)−1 0

0 − 1
β (U+UT)−1

][
βN βN
UT −U

]T[
(A−Aκ)T

(B−Bκ)

]
≤ 1

β

(
β(A−Aκ)N + (B−Bκ)TUT

)(
U + UT

)−1(
β(A−Aκ)N + (B−Bκ)TUT

)T

(17)

where U serves as an auxiliary variable and U + UT > 0, without loss of generality.
Defining ∆Aκ , A−Aκ , ∆Bκ , B− Bκ , and applying the above approximation strategy,
results in [

L+ He{ANBκ +Aκ N∆Bκ} β∆Aκ N + (U∆Bκ)T

? −β(U + UT)

]
< 0. (18)

Similarly, we decompose U as U = Uκ + ∆Uκ , and thus[
L+He{ANBκ+Aκ N∆Bκ} β∆Aκ N+(Uκ∆Bκ)T

? −β(U + UT)

]
+He

{[
(∆Bκ)T

0

][
0 (∆Uκ)T]} < 0. (19)

According to He{UV} ≤ UMUT +VTM−1V, one obtains that[
L+ He{ANBκ +Aκ N∆Bκ} β∆Aκ N + (Uκ∆Bκ)T

? −β(U + UT)

]
+

[
(∆Bκ)T

0

]
V
[
(∆Bκ) 0

]
+

[
0

(∆Uκ)

]
V−1[0 (∆Uκ)T] < 0.

(20)

which is equivalent to
L+ He{ANBκ +Aκ N∆Bκ} β∆Aκ N + (Uκ∆Bκ)T (∆Bκ)T 0

? −β(U + UT) 0 (∆Uκ)
? ? −V−1 0
? ? ? −V

 < 0 (21)
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We observe that −V−1 is convex, implying −V−1 ≤ −2(Vκ)−1 + (Vκ)−1V(Vκ)−1 for
a given Vκ . Replacing −V−1 with −2Vκ + (Vκ)−1V(Vκ)−1 and performing the congruent
transformation diag{I, I, Vκ , I} on (21), we can obtain (9) and (10).

In Theorem 1, we first establish sufficient and necessary conditions (11) and (14) for
the existence of a desired model Σr in the form of BMIs. Given feasible solutions Pκ

s , Gκ
r ,

Xκ , Yκ , Zκ satisfying Ls + He{Aκ
s NsBκ

s} < 0,L+ He{Aκ NBκ} < 0, the BMI conditions can
be rewritten as the sum of linear and residual terms. By virtue of the convex-approximation
strategy, we propose an SCO algorithm that iteratively solves a series of convex optimization
sub-problems, {

min γ

s.t. Ps = PT
s > 0, Q = QT > 0, (8)–(10).

(22)

each of which is an inner convex approximation of the original non-convex constraint.
At each iteration, the solution to the previous step is used as a starting point for the next
iteration until the convergence is reached. To be concise, the above procedures can be
summarized in the following algorithm.

Remark 2. As pointed out in Algorithm 1, it is crucial to have an admissible G0
r for optimizing the

subsequent solutions. However, one can see that obtaining such an initial condition is equally as
intricate as solving the original problem. It can be shown that the objective function decreases with
each iteration of the SCO algorithm, and according to the convergence property, we can obtain an
initial solution by simply choosing a stable model G0

r ∈ P. This significantly eases the challenge of
implementing the proposed algorithm.

Algorithm 1 SCO algorithm for calculating reduced-order models

Require: ε: tolerable bound; IMax: maximal iteration limit
1: Given a feasible solution G0

r , solve the convex optimization problem

min γ

s.t. (A0
s )

T Ps + Ps A0
s < 0,

diag{Ξ,−γ2I, I}+ He




X 0
Y 0
Z 0
0 I


[
−I (Ā + F̄G0

r M̄) (B̄ + F̄G0
r N̄) 0

0 (C̄ + H̄G0
r M̄) (D̄ + H̄G0

r N̄) −I

] < 0
(23)

to obtain the initial condition P0
s , X0, Y0, Z0. Fix κ ← 1

2: while κ < IMax do
3: Solve (22) to the solution (Ps, Gr, X, Y, Z) and optimum γ at κ + 1-iteration.

4: if γκ−γκ+1

γκ ≤ ε then
5: γ∗ ← γκ+1, G∗r ← Gκ+1

r
6: break;
7: end if
8: κ ← κ + 1
9: end while

10: Result G∗r : the desired Σr; γ∗: optimal finite-frequency performance index.
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4. Simulation

In the simulation part, a system Σ describing the compartmental network with two
sub-systems is considered, and its state-space realization is given as follows:

A =



−1.5 0.6 1.0 0 0 0
0.3 −1.9 0.2 0 0 0
0.2 0.5 −2.7 1 0 0
0 0 0.5 −3 0.6 0.5
0 0 0 0.4 −1.6 0.3
0 0 0 0.6 0.5 −1.6

, B =



1 0
0 1
0 0
0 0
0 0
0 0

,

C =
[
I2×2 02×4

]
, D = 02×2.

(24)

The example is drawn from [19]. The restricted frequency is taken as [0, 2]rad/s. To de-
velop a reduced-order model for approximating (24), we first adopt the initial condition as

A0
r =

[
−1.9301 0.7093
0.7188 −1.1613

]
, B0

r =

[
0.0294 0.0562
0.0847 0.0379

]
,

C0
r =

[
1.8925 3.7318
2.6822 1.2840

]
, D0

r =

[
0.2669 0.0002
0.0231 0.2462

]
.

(25)

Using the initial model and applying Algorithm 1, we optimize the reduced-order
model as

Ar =

[
−1.7544 0.3616
0.5570 −1.2572

]
, Br =

[
0.0004 0.1864
0.1458 0.0001

]
,

Cr =

[
0.1540 5.9325
4.8997 0.0754

]
, Dr =

[
0.0333 0.0001
0.0042 0.0226

]
.

(26)

with the optimal γ∗ = 0.0207. By virtue of Lemma 2, it can be verified that the obtained
reduced-order model (26) is positive. To validate the convergence property of the proposed
algorithm, Figure 1 depicts the evolution of γ by configuring the maximum number of
iterations IMax = 140 and ignoring the tolerable bound ε. As shown in Figure 1, the
proposed algorithm exhibits a monotonically decreasing trend in γ and converges to a fixed
point eventually. Moreover, the result presents a significant improvement and provides a
more exact approximation over the initial reduced-order model.

0 20 40 60 80 100 120 140

Iteration k

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure 1. Evolution γ by the proposed algorithm.
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To illustrate the accuracy of (26) approximating (24), we provide Figures 2 and 3 that
demonstrate the singular value curves of Guy(λ) with Guyr (λ) and Gue(λ), respectively. It
can be observed that, in the given frequency range ([0, 2]rad/s shaded region), the singular
value curves of the reduced-order system Σr closely match those of the original system
Σ, while the actual maximum singular values of the error system Σe are strictly upper-
bounded by γ∗ = 0.0207. Based on the above analysis, one can conclude that the proposed
reduced-order model is effective in approximating a high-order system with significant
small errors.

Figure 2. Singular value curves of the original and reduced-order systems.

Figure 3. Singular value curves of the associated error system.
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5. Conclusions

This paper has considered the positivity-preserving model reduction for positive
systems within limited frequency regions. To be specific, the positivity of the reduced-order
model has been formulated as an element-wise positivity constraint, while the finite-
frequency specification for the error system has been translated into BMI conditions. To
provide a unified framework for addressing the BMI problems, we have proposed an SCO
algorithm that serves as a promising solution for developing reduced-order models with
positivity constraints and finite-frequency characterizations. Finally, the usefulness of the
proposed method has been validated through a compartmental network example.
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